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Abstract.  We consider the possibility of using optical vibrational 
degrees of freedom as an additional resource for controlling the 
evolution of a charge qubit based on a semiconductor single-elec-
tron double quantum dot. The effect of electron – photon – phonon 
processes on the accuracy of single-qubit operations is investigated. 
It is shown that, depending on the phonon decay rate and detuning 
of the electronic transition frequency from the optical phonon fre-
quency, these processes can both facilitate and prevent coherent 
electron transfer between quantum dots.

Keywords: quantum computer, qubit, quantum dot, microcavity, 
optical phonons.

1. Introduction 

Double quantum dots (DQDs) can be considered as a system 
maintaning the quantum superposition of one-electron states, 
which are localised in each of the individual quantum dots 
(QDs) [1 – 3]. This system can be used as a charge quantum bit 
(qubit) with electrical [4] or optical [5] control. The QDQ 
properties are determined by the growth process of a semi-
conductor layered heterostructure (e.g., InAs/GaAs). The 
reliability of qubits depends on the ratio of the rates of execu-
tion of quantum gates to the rates of dissipative processes. 
The latter are caused by the interaction of the electron with 
the modes of the photon and phonon continua. 

Relaxation (the spontaneous act of emission of a quantum 
of energy by an excited electron), which can be associated 
with phonons, turns out to be slow because of the so-called 
bottleneck effect in a QD [6]. The wave function of the elec-
tron is localised in a region with a characteristic size of about 
ten lattice constants, and longitudinal acoustic (LA) phonons 
cannot effectively interact with it because of the large differ-
ence in wavelengths. At the same time, longitudinal optical 
(LO) phonons have a very weak dispersion, so that the fulfil-
ment of the law of energy conservation during relaxation 
requires a strictly defined transition frequency between the 
levels of the electron spectrum in a QD [7]. Experiments with 
large QD ensembles indicate the relaxation of electrons within 
~10 ps, accompanied by the emission of one or more pho-
nons. This is due to a random coincidence of the transition 
frequencies in some QDs from the ensemble with the fre-

quency of the optical phonon in this material. In addition to 
relaxation, coherent effects associated with phonons are 
also observed in QDs. Magnetospectroscopic studies in the 
far-IR region demonstrate the anticrossing of electronic lev-
els in QDs if their energy is a multiple of the energy of an 
optical phonon [8]. These anticrossings point to the forma-
tion of polarons, i.e., hybridised states of the electron and 
phonons. 

The question arises: is it possible to take advantage of the 
coherent coupling between a phonon and an electron for the 
realisation of one- and two-qubit operations? With a suffi-
ciently large interaction coefficient and a moderate decay rate 
of the optical phonon, which depends on the difference in 
their frequencies, the phonon could play the same role as the 
photon in a microresonator (MR) [9, 10]. As was shown in 
[11], for QDs located in nanostructures, the energy of interac-
tion of an electron with a localised optical phonon gLO can be 
10–4 – 10–3 eV. In this case, the lifetime of a phonon can vary 
from several picoseconds to several nanoseconds in a broad 
range (of the order of several tens of milli-electron volts) of 
detunings [12]. The experimental proof of the possibility of 
using optical phonons for encoding quantum information is 
presented in Ref. [13], where the process of recording and 
reading the state of a qubit with the participation of vibra-
tional modes of a three-dimensional diamond crystal was 
demonstrated for the first time. 

In this paper we study the dynamics of a charge DQD-
qubit with a combined photon – phonon control, taking into 
account the decay channels of all subsystems. We will only be 
interested in optical modes, so we neglect the interaction of 
DQDs with acoustic phonons, assuming their low density at 
the transition frequency between hybridised electronic states 
when the device operates in a low-temperature (less than 
100 mK) mode. Optical phonon modes are introduced using a 
model of a continuous medium with free boundary condi-
tions. This makes it possible to calculate the energy parame-
ters of the Hamiltonian as a function of the sample size. 
Dependences of the populations of the logical states of the 
qubit (the ground DQD states) on time are found by solving 
the Schrödinger equation with a phenomenological account 
of the dissipative channels. It is shown that the probability of 
performing an inversion (NOT) operation in a complex man-
ner depends on such system parameters as the detuning of the 
frequencies of the subsystems, the Rabi frequency, and the 
decay rates of the quantum states. Selecting them in a certain 
way, it is possible to optimise this probability, even by taking 
into account the imperfection of the nanostructure. A non-
trivial result is the detection of the effect of self-suppression of 
dissipation in a DQD through a phonon channel with increas-
ing rate of its decay. 
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2. Model and basic equations 

We simulate the dynamics of a hybrid DQD – MR – phonon 
system by assuming a reversible energy exchange between the 
subsystems. If the frequencies of the phonon modes are 
located in the vicinity of the DQD transition frequencies and 
the MR frequency, then a coherent transformation of the 
electronic excitation of the DQD to the MR photon or to the 
phonons of a crystal lattice is possible. In this case, complex 
oscillations of the populations of the basis states of the hybrid 
system will be observed. Recent experiments confirm the pos-
sibility of a reversible exchange of a single quantum between 
a superconducting phase qubit and a phonon acoustic mode 
under conditions of ultralow temperatures [14].

Consider an asymmetric DQD consisting of their two 
separate QDs A and B (Fig. 1). Point A(B) has two single-
electron states: the ground (localised) |A(B)0ñ   state and the 
excited |A(B)1ñ state (near the edge of the potential barrier) 
with energies eA(B)0 and eA(B)1, respectively. We will assume 
that the energies of the excited states |A1ñ and |B1ñ, necessary 
for the hybridisation of QDs due to electron tunnelling with 
the interaction energy V, are close. In this case, new (common 
for DQDs) states |–ñ and |+ñ are formed, which are linear 
superpositions of excited states of individual QDs. They serve 
as a transport channel linking QDs. The states |A0ñ and |B0ñ 
are not hybridised because of the absence of a tunnel coupling 
between them and are associated with the logical qubit states 
‘0’ and ‘1’, i.e., |A0ñ º |0ñ and |B0ñ º |1ñ. The energy difference 
of the ground states of the DQD is D0 = e1 – e2, and the split-
ting of the hybridised states is ( )V A B1

2
1 1

2e eD = + - . The 
QD parameters are chosen so that the frequency w0(1) – = e– – 
e0(1) of the electronic transition |0(1)ñ « |–ñ from the ground to 
the lower hybridised level in the QD A(B) is close to the MR 
frequency wc (or to the frequency wLO q of a set of optical pho-
nons q = 1 – NLO), and the energy difference D1 of the excited 
levels of the DQD is close to the frequencies wLA q of the set q 
= 1 – NLA of acoustic phonon modes. We will also consider 
the coupling between the acoustic phonons and the electron 
in the DQD to be weak, and the mode population to be low 
(no more than one quantum). For crystal vertical GaAs-
based DQDs with the characteristic size R = 5 – 10 nm and 
barrier thickness L = 10 – 15 nm at a potential well depth U = 
0.2 – 0.3 eV, the transition frequency is w0(1) – = 0.03 – 0.1 eV. 

The Hamiltonian of isolated subsystems has the form
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where at  is the annihilation operator for the photon in the 
MR; and bLOqt  is the annihilation operator of the phonon in 
the optical mode q. Hereinafter, the Planck constant is set 
equal to unity. Dissipative effects are characterised by phe-
nomenological parameters (velocities): k is the photon exit 
rate from the resonator and gLO is the decay rate of the optical 
phonon (here, for simplicity, it is the same for all modes). The 
rate of decay of phonon modes gLO is set on the basis of exper-
imental data and varies from 10–6 to 10–9 eV [6, 7, 12]. The 
photon dissipation rate k » 10–5 – 10–6 eV also corresponds to 
the observed values for high-Q semiconductor MRs [9].

The total Hamiltonian of the system can be represented 
in the form of the sum H0 and the Hamiltonians of the inter-
action between the subsystems. The exchange of energy 
between the MR and DQD is described by the extended 
Jaynes – Cummings Hamiltonian: 

| 0| | 0| | 1|H a a aJC 0 0 1HG HG HGW W W= - + -- + -+ +t t t t

	 | 1| . .H ca1 HGW+ + ++ t , 	 (2)

where W0 – , W0 +, W1 – and W1 + are the coefficients of the inter-
action an electron in a DQD and a photon in a MR (Rabi 
frequencies). The latter are related to the Rabi frequencies of 
the optical transitions gAc and gBc of isolated QDs as follows: 

g cA0 aW =- ,   g1 cB0
2aW = -+ ,

g1 cA1
2aW = -- ,   g cB1 aW =-+ ,

where a = sin(q/2); and q = arctan(2V/D1). The estimation of 
the matrix elements of the optical dipole transition operator 
for typical values of the single-photon field amplitudes Ec » 
1 – 10 V cm–1 and the radius R » 5 – 10 nm of the QD gives 
gA(B) c » 10–6 eV. The Hamiltonian of the interaction of an 
electron and optical phonons is represented by an expression 
analogous to (2), with the replacement of photon operators 
by phonon ones: 
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and the interaction coefficients ( ) ( )0 1W - +
u  of optical phonons 

and electrons are calculated within the framework of a con-
tinuous medium model (see below). 

The total Hamiltonian of the electron – photon – phonon 
system has the form 

H H H HJC e LO0= + + -
t t t t . 	 (4)

At the initial instant of time, the MR contains one photon, 
which is necessary for realising single-qubit rotations [9, 10]. 
The Schrödinger equation

H H
¶
¶ | |i
t

HY Y= t  	 (5)

specifies the evolution of the state vector |Y ñ of the system. 
This vector is represented as an expansion 
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Figure 1.  Schematic of a DQD in a semiconductor nanocrystal (left) 
and the potential profile in it (right). See notations in the text. 
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where d = 2(NLO + 1), taking into account the conditions nc = 
0, 1 and nq = 0, 1. It is convenient to pass to the frame of refer-
ence associated with the MR, using a unitary transformation 
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in this case, the Hamiltonian H0
t  acquires the form
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and expressions (2) and (3) do not change. Here, d = w0 – – wc 
is the detuning of the MR frequencies and the transition |0ñ « 
|–ñ in the DQD, and DLO q = wLO q – wc is the detuning of the 
MR frequencies and the optical phonon mode q. 

In the next section, we present the calculation of the inter-
action coefficient of an electron with localised optical pho-
nons for several variants of the DQD position in a crystal. 

3. Interaction of QDs  
with localised optical phonons 

In crystals of small size (nanocrystals), phonons inevitably 
experience an effect of dimensional confinement. This phe-
nomenon is somewhat similar to the effect of electron locali-
sation in a quantum well. The boundary conditions lead to 
the same restrictions as in the case of an electron in the phase 
space imposed on the phonon wave vector q. Therefore, this 
effect will affect the interaction of phonons both with each 
other and with charge carriers. Following [11], we consider a 
single semiconductor QD placed in a GaAs crystal of size a ´ 
b ´ c. In the absence of an external pressure, the vector u(r) of 
displacement of long-wavelength optical phonons in a crystal 
is represented in the form 

u(x, y, z) = ÑF (x, y, z),

F (x, y, z) µ sinqx x sinqyy sinqz z,

where 

q a nx 1
p

= ,   q
b
ny 2

p
= ,   q c nz 3

p
=

are the projections of the phonon wave vector onto the cor-
responding coordinate axes; and 1,2,3,n , ,1 2 3= . . . . The 
Hamiltonian of the interaction of electrons and optical pho-
nons in a QD can be represented as follows [11]: 
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e0(¥) is the static (high-frequency) dielectric constant of the 
crystal material; and e is the electron charge. Let us consider 
the transition of an electron in a single QD from the excited 
state |eñ to the ground state |gñ, accompanied by the excitation 
of optical phonons. The expression for the phonon interac-
tion coefficient with the wave vector q and QD for this pro-
cess has the form 

, 1 | | ,g g n H e nLO e phq q q= + -
t , 	 (10)

where nq is the number of phonons in the state q. Under the 
assumption of infinitely high potential walls for an electron in 
the conduction band of a QD in the form of a rectangular 
parallelepiped with sides aQD, bQD and cQD, 

g n V I I I1LOq q q x y z= + . 	 (11)

Here, Ix, Iy and Iz are the dimensionless overlap integrals 
along the corresponding coordinate axes. If the conditions 
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are met, where m1, 2, 3 are positive integers, these integrals will 
be zero, and consequently gLO q º 0. If the size of the crystal is 
much larger than that of the QD, i.e., a >> aQD (b >> bQD, 
c >> cQD), then the integrals in (11) take the form:

9
I n

a
a16 OD

x
1

2

2

p=- ,   I n
b
b

2
OD

y
2

2

2p
= ,   I n

c
c

2
OD

z
3

2

2p
= . 	 (13)

This means that the interaction energy | gLO q| decreases rap-
idly with increasing volume. 

We calculated the gLO q for a QD embedded in a GaAs 
crystal for various sizes of the QD and the crystal. The energy 
of the optical phonon wLO q was assumed to be ~36 meV. The 
static (e0) and high-frequency (e¥) dielectric constants of 
GaAs were 13.2 and 10.9, respectively [15]. We have neglected 
the effects associated with the reflection of phonons from the 
interfaces between the materials of the QD and the crystal.

Let us examine the interaction of a cubic QD and phonons 
in a cubic nanocrystal, i.e., we set b = c = a and bQD = cQD = 
aQD. First we consider the case when the size of the QD coin-
cides with that of the nanocrystal: aQD = a. If n1 is an odd 
number, then the integral Ix is strictly equal to zero, and vice 
versa, Iy = 0 and Iz = 0 for even n2 and n3. This means that the 
QD does not interact with such phonons. For even n1 and odd 
n2, 3, the overlap integrals take the form:
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3 3
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Thus, for any phonon, the overlap integrals do not depend on 
the size of the nanocrystal, and the interaction energy | gLO q| is 
determined only by the value of Vq and, according to formu-
las (9) and (11), is  ~1/ a . If we compare the values of | gLO q| 
for phonons with different q, then it turns out that the interac-
tion energy is maximal for a phonon with n1 = 2, n2 = 1, n3 = 1 
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[(211) phonon], since the quantities |Ix, y, z| decrease with 
increasing n1, 2, 3 (Fig. 2). For example, for a = 100 Å, we have  
| gLO q| = 5.8 meV for the (211) phonon and 0.8 meV for the 
(231) phonon.

Now we consider the case when the characteristic size of a 
cubic nanocrystal exceeds the size of a QD: a > aQD. Then all 
phonons will interact with the QD, because there are no n1, 2, 3 
for which the values of Ix, y, z would be strictly zero for any a 
and aQD. For a = aQD, the interaction energy is nonzero only 
for even n1 and simultaneously for odd n 2, 3, and in the remain-
ing cases gLO q(a = aQD) º 0. As a increases, the value of | gLO q| 
first increases (Figs 3a, 3c and 3d), except for the case corre-
sponding to the (211) phonon (Fig. 3b), and then maxima are 
observed, the number of which is determined by the quantum 
numbers n1, 2, 3 (Figs 3b and 3d). For some values of a corre-
sponding to expressions (12), gLO q = 0. Note that only for the 
(211) phonon the quantity | gLO q| decreases at a ³ aQD. For 
a  >> aQD, according to Eqn (13), the interaction energy 
decreases monotonically, and for a QD of a smaller size, a 
weaker interaction with phonons is observed. 

Consider a cubic QD placed in a thin GaAs plate, for 
which the following relationships are satisfied: aQD < a << b, 
c. Then, the interaction of QDs with the plate will be deter-
mined only by the overlap integral Ix and by n1, since the inte-
grals Iy and Iz do not depend on the plate thickness a and, 
consequently, the numbers n2, 3 will not have a significant 
effect on gLO q. We have calculated the energy of interaction 
of QDs and phonons in a plate of size b ´ c = 3000 ´ 3000 Å. 
The main difference in the behaviour of gLO q in comparison 
with the case of a cubic nanocrystal (Fig. 3) is that for the 
plate (Fig. 4), the growth of | gLO q| with an increase in the QD 
size in the limit a >> aQD is much more noticeable. It should 
be emphasised, however, that the energy of the interaction 
between the QD and phonons in the plate is two orders of 
magnitude smaller than that in the nanocrystal, which is asso-
ciated with a decrease in the overlap integrals Iy,z and the 
value of Vq (9) with an increase in the plate area. 

4. Dynamics of a charge qubit in the photon  
and mechanical single-quantum fields 

To realize single-qubit rotations using optical fields in a DQD 
consisting of two QDs with similar spectral properties, it is 
sufficient to use monochromatic laser radiation [5] or single-
mode laser radiation [9]. If QD parameters are different and 

the DQD is asymmetric, an additional source of electromag-
netic field (second laser or MR) is required. In this case, each 
field generates an optical transition in one of the QDs. As a 
result, a three-level scheme is formed for transferring an elec-
tron from the ground (localised) state in one QD to the 
ground state in another QD via an excited (delocalised) state 
in the DQD. The transfer is accompanied by entanglement of 
the electronic and photon degrees of freedom, which can be 
used to perform two-qubit operations, in which the photon 
plays the role of a carrier of interaction between remote 
DQDs (transport qubit) [9, 10]. If the photon field is replaced 
by a phonon field, then a delocalised mechanical oscillation 
(optical phonon) can be used as a transport qubit. We have 
already mentioned above the weak dispersion of optical 
vibrational modes. Therefore, in the calculations we assume 
that the phonon frequency is NLO times degenerate, i.e., 
wLO q º wLO for all modes, and we will henceforth omit the 
mode index. In addition, we assume that the interaction coef-
ficients A and B of the QD with the MR are the same: gAc = 
gBc º gc. 

We assume that the vibrations of the crystal lattice, repre-
sented in the form of a quantum field, are able to maintain 
coherence for a certain period of time. Then the crystal can be 
used to store optical qubits (photons), i.e., as a quantum 
memory. The experiment performed by Lee et al. [13] con-
firms the possibility of recording/reading quantum informa-
tion in the form of nonclassical vibrational states using 
Raman scattering at room temperature. The three-level 
scheme, which includes the ground state of a diamond crystal 
without a phonon and with a phonon, as well as a virtually 
populated excited state (exciton), allows the photon of a laser 
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(qubit) to be reversibly transformed into an optical phonon at 
a frequency of 40 THz and into a signal photon in the focus-
ing region of laser fields. Despite the very low probability of 
successful recording (10 %) and reading (0.1 %), as well as a 
short phonon lifetime (less than 7 ps), the study of the statisti-
cal properties of signal photons accompanying the creation/
annihilation of a phonon indicates the coherent nature of the 
lattice vibration. 

It is assumed that in the scheme presented below, a com-
plete transformation of the optical quantum into the vibra-
tional quantum and back occurs in the course of electron 
transfer to the DQD. We choose as initial the state in which 
the DQD is in the logical state ‘0’, the MR contains one pho-
ton, and the optical phonon reservoir is in the vacuum state. 
In this case, the conditions of strict electron – photon – pho-
non resonance are satisfied: d = 0 and DLO = D0. Let us pres-
ent the simulation results for two decay rates of an optical 
phonon (Fig. 5). It is easy to see that the accuracy of the NOT 
operation is determined (with other conditions satisfied) by 
the maximum decay rate. 

It follows from calculations of the electron – phonon inter-
action coefficients that they can differ significantly from the 
coefficients of the electron – photon interaction. In this case, 
the successful implementation of the gates assumes the equal-
ity of these coefficients. Is it possible in the general case to 
compensate for their difference by varying any of the param-
eters of the Hamiltonian, for example, the frequency of one of 
the transitions? Let us consider the dependence of the maxi-
mum probability P1 of electron transfer between QDs on the 
energy difference of the excited D1 levels (Fig. 6). It is seen 

that at gc = gLO the curve has a maximum at exact coincidence 
of energies. If gc ¹ gLO, then the maximum value can be 
restored by the relative bias of energies eA1 and eB1 in an exter-
nal electric field. This approach is effective when gc and gLO 
differ by no more than twofold. 

As is well known, in three-dimensional crystals the optical 
phonon modes are virtually degenerate in frequency. In nano-
structures with a lower dimensionality, their spectrum has a 
quasi-discrete structure that allows the selection of several 
(and even one) modes as a qubit control element (see 
Section 3). However, an increase in the number of working 
modes with different interaction coefficients can lead to an 
imbalance in the Rabi frequencies and desynchronisation of 
population oscillations in the DQD. Figure 7 shows the 
dependence of the maximum probability of transfer from 
state 0 to state 1 on the number NLO of phonon modes for 
several cases. If we assume that the optical modes are inde-
pendent, the addition of a new mode with the same interac-
tion coefficient leads to an increase in the integral Rabi fre-
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and (d) (311) phonon at aQD = (solid curves) 100, (dashed curves) 200 
and (dotted curves) 300 Å. 
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quency during the interaction of the DQD with phonons. 
This causes a sharp decrease in the probability of transfer 
(solid curve). Thus, as the number of modes increases, it is 
necessary to adjust (increase) the coefficients of the interac-
tion of the DQD with the MR. The growth of NLO can be 
associated with an increase in the size of the structure, while 
the amplitudes of mechanical oscillations and, consequently, 
the Rabi frequency of individual modes will decrease. The 
dashed curve reflects the dependence of maxP1 on NLO for 
gLO = g0 LO /NLO and also shows a decrease in the probability 
of transfer. If we assume that the modes interact, this leads to 
their hybridisation and the formation of a new basis. When 
the initial Rabi frequencies of the individual modes are equal, 
this is accompanied by the appearance of the factor NLO  in 
the expression for the integral Rabi frequency. Thus, to com-
pensate for this imbalance, it is necessary that the partial Rabi 
frequencies decrease in proportion to / N1 LO . In this case, 
the magnitude of the maximum does not depend on NLO 
and is determined by the single-mode regime parameters 
(dashed line). 

Let us return to the DQD qubit with monochromatic con-
trol. In this case, the symmetric DQD will experience the 
action of the single-photon field of the MR, and will also 
interact with the optical vibrational modes. Both sources can 
act as independent generators of single-qubit evolution and at 
the same time represent channels of loss of coherence. Let us 
show how serious can be the influence of phonon modes with 
a short lifetime interacting with the DQD on the accuracy of 
operations in the single-photon MR regime. Figure 8 shows 
the curves that illustrate the dependence of maxP1 on the 
decay rate of the phonon mode gLO for several values of 
detuning DLO and NLO = 1. First of all, we note that if the 
frequencies of the DQD, MR, and optical phonon coincide 
exactly, the quantum evolution of the qubit will differ from 
that described by a resonant three-level scheme. The principle 
possibility of the DQD inverting is retained only if the initial 
state of the MR – optical phonon subsystem is an equilibrium 
superposition of their excited states. If, at the initial instant of 
time, only the MR mode contains one photon, oscillations 
that generate a correct one-qubit operation will be superim-
posed by oscillations caused by the redistribution of energy 

between the photon and phonon modes via the DQD. As a 
result, the maximum probability of inversion of the qubit, 
even at a low dissipation rate, does not exceed 0.5. To reduce 
this effect, it is necessary to choose the DQD transition fre-
quency different from that of the optical mode. It can be seen 
(Fig. 8) that if the detuning DLO turns out to be much larger 
than the Rabi frequency gLO, then the effect of the phonon 
mode on the accuracy of single-qubit rotations decreases. 
This is due to the suppression of photon – phonon hybridisa-
tion with increasing detuning of the mode frequencies. 

Analysis of the dependences reveals one interesting fea-
ture. An increase in the decay rate gLO of the phonon mode in 
the range from 10–7 to 10–5, which means an increase in the 
dissipative effect on the qubit, is accompanied by a decrease 
in the value of maxP1. However, starting with the values 
gLO » 10–5, a rapid growth of maxP1 is observed with attain-
ing an asymptotic value common for all detunings. It corre-
sponds to the case when the interaction with the phonon 
mode is completely absent, and the deviation of the maximum 
of the transfer probability from unity is due exclusively to the 
dissipation of photons from the MR. Such an unusual, at first 
glance, result can be explained as follows. It is known that the 
dissipation rates, like the difference in the Rabi frequencies 
for electronic transitions in individual QDs, affect the effec-
tive tuning of the frequencies of the subsystems. Consequently, 
with increasing parameters k and gLO, the detuning of the fre-
quencies of the photon and phonon modes from the frequency 
of the transition to the DQD also increase, which leads to 
blocking of the decay channel by the source of dissipation. 
Further investigation of this extremely interesting and practi-
cally important effect will be carried out elsewhere using a 
more rigorous model based on the Lindblad equation. 

5. Conclusions 

We have considered a scheme for the combined control of the 
charge DQD qubit using single-quantum optical and mechan-
ical fields. An analysis of the population dynamics of the sys-
tem within the framework of the Schrödinger phenomeno-
logical model reveales a number of features that reflect the 
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complex interaction of the electron, photon, and phonon sub-
systems. In particular, the optical phonon mode of the nano-
structure can act as an analogue of the photon MR mode in 
controlling the qubit on the basis of an asymmetric DQD, if 
the rate of the mode decay is small. In this case, the presence 
or absence of a quantum in the photon or phonon mode is 
uniquely associated with the implementation of the NOT gate 
in the DQD, which can be used to entangle several distant 
DQD qubits, and also to create elements of quantum mem-
ory. If the decay rate is high (in comparison with the interac-
tion coefficients of the DQD and the mode), the imbalance of 
effective detunings results in the blocking of the outflow of 
energy from the system. This makes it possible to apply a 
symmetrical scheme with the control of the evolution of the 
state in the DQD by the MR field in both resonant and 
Raman variants.

As a concrete example, the interaction coefficients of 
localised optical phonons and electrons in a cubic QD embed-
ded in a cubic GaAs nanocrystal have been calculated. It has 
turned out that the dependence of the interaction energy of 
optical phonons with the QD on the crystal size has several 
maxima associated with the effect of phonon localisation. In 
addition, for each phonon, it is possible to select the size of 
the nanocrystal so that its interaction with the QD is absent. 
We have demonstrated that for crystals of large size, the inter-
action energy increases with increasing QD size. Similar prop-
erties are also observed for QDs embedded in a thin GaAs 
plate, but in this case the interaction of QDs and optical pho-
nons is much weaker.

The improvement of the charge qubit control schemes 
based on the described principle implies an increase in the life-
times of a photon in the MR and a phonon by engineering the 
optical and mechanical properties of the nanostructure con-
taining qubits. As shown by experiments, there are several 
approaches related to the development of design and improve-
ment of the technology of manufacturing of such systems.

It should be noted that quantum operations in two-level 
systems, realised by phonon emission/absorption, are being 
investigated in many theoretical works (see, for example, 
[16 – 18]). It was shown in [16] that the increase in the energy 
of the electron – phonon interaction leads to a decrease in the 
electron transition time between the levels in the quantum 
wire and, consequently, to an increase in the rate of quantum 
operations. On the other hand, increasing the speed of opera-
tions can be achieved, in particular, by modifying the phonon 
spectrum, which consists in placing a quantum emitter in a 
phonon resonator and optimising the design of the latter by 
tuning the frequency of one of its modes to resonance with the 
frequency of the electronic transition between the emitter lev-
els [17]. In this case, there is a phenomenon similar to the 
Purcell effect [19]. In our approach, the evolution of the DQD 
qubit is controlled both by the mechanical field of the localised 
optical phonon and by the electromagnetic field of the photon 
in the MR. This makes it possible to more effectively control 
the evolution of the qubit by selecting appropriate frequency 
detunings for the mechanical and optical subsystems.
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