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Abstract.  This paper presents an analytical study of the formation 
of normal modes of probe light for electromagnetically induced 
transparency in a lambda system of quantum transitions between 
3P0, 3P1

0 and 3P2 levels in the case of an elliptically polarised control 
field and inhomogeneous broadening. The normal modes are ellipti-
cally polarised waves with identical polarisation ellipse eccentrici-
ties but different electric vector rotation directions. The mode 
eccentricities are only determined by the control field polarisation 
ellipse eccentricity. The major axis of the polarisation ellipse of 
one of the normal modes is parallel to the major axis of the control 
light polarisation ellipse, whereas the major axis of the polarisation 
ellipse of the other normal mode is perpendicular to it. The former 
type of mode has a higher group velocity than does the latter type 
of  mode, and both velocities depend on control light polarisation 
ellipse eccentricity and intensity. Probe light with an arbitrary 
elliptical polarisation is the sum of normal modes which propagate 
independently of each other. Since the modes differ in group velocity, 
a probe pulse entering the medium splits into two components, each 
of which is a normal mode. The fraction of energy in each normal 
mode depends only on polarisation characteristics of coupled fields 
and is independent of their intensity.

Keywords: electromagnetically induced transparency, elliptical polari­
sation of light, birefringence, normal modes.

1. Introduction

The use of destructive interference of the probability ampli­
tudes of quantum transitions between energy levels under 
resonant excitation of a medium by coherent laser radiation is 
of considerable interest both from a theoretical point of view 
and in the context of potential applications. Depending on 
the experimental configuration, such interference underlies a 
number of effects, the most important of which are popula­
tion trapping [1, 2] and electromagnetically induced trans­
parency (EIT) [3 – 5]. Restricting ourselves to EIT, note that the 
use of this effect is promising for producing optical quantum 
memory systems [4], quantum communication [4, 6, 7] and 
quantum information systems [3 – 5] and precision magneto­
metry [8] and chronometry [9] devices. The EIT effect under­
lies methods for producing high optical nonlinearity [5, 10] 
and amplifying light without population inversion [11]. The 

specifics of EIT in different situations continue to attract 
intense theoretical interest. For example, considerable research 
effort has focused on distinctive features of this effect in 
strongly correlated quantum gases [12], in an rf field [13], on 
impurities in photonic crystals [14] and in the presence of 
nanofibre [15].

EIT leads to a number of effects related to polarisa­
tion  characteristics of coupled optical fields in the case of 
degenerate energy levels of quantum transitions. Wielandy 
and Gaeta [16] and Bo Wang et al. [17] theoretically and 
experimentally studied the accompanying rotation of the 
plane of polarisation of a probe field in response to changes 
in  control field intensity. Agarwal and Dasgupta [18] and 
Sautenkov et al. [19] investigated the effect of a static mag­
netic field on the evolution of circular components of probe 
light. Linear and circular birefringence of a probe field in the 
case of EIT was studied theoretically and experimentally by 
Tai Hyun Yoon et al. [20]. In a theoretical study, Kis et al. [21] 
predicted the possibility of probe field propagation in the case 
of EIT in the form of two modes in different polarisation 
states.

Numerical simulation results for birefringence accom­
panying EIT in the field of an elliptically polarised control 
light were presented previously [22]. The subject of that research 
was a lambda system of quantum transitions between 3P0, 3P2 
and 3P10 degenerate energy levels of 208Pb, whose vapour was 
used to experimentally observe EIT of circularly polarised 
laser fields [23, 24]. Simulation demonstrated the possibility 
of representing a probe field as a sum of elliptically polarised 
normal modes. At the same time, numerical simulation gives 
no way of assessing the generality of the previously obtained 
results [22], nor does it ensure detailed understanding of 
how characteristics of normal modes are related to those of 
coupled optical fields. The purpose of this report is to present 
an analytical theory of EIT,  whose numerical simulation was 
described previously [22].

2. Governing equations

The lambda system under consideration (Fig. 1) comprises 
a  nondegenerate lower level (3P0) and five-  and threefold 
degenerate intermediate (3P2) and upper (3P10) levels of the 
208Pb isotope. Let fk (k = 1, 2,…, 9) be an orthonormal basis 
consisting of the common eigenfunctions of the energy, 
squared angular momentum and angular momentum projec­
tion operators for an isolated atom that correspond to the 
lower (k = 1, M = 0), upper (k = 2, 3, 4; M = – 1, 0, 1) and inter­
mediate (k = 5, 6,…, 9; M = – 2, – 1, 0, 1, 2) levels. Let D1 and 
D2 be reduced electric dipole moments of the 3P0 ® 

3P10  and 
3P2 ® 

3P10  transitions, respectively, and w1 and w2 (w1 > w2) 
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be the centre frequencies of the transitions (Fig. 1). In addition, 
T1 = 1/D1, where D1 is the 1/e half width of the 1wl  frequency 
distribution density for the 3P0 ® 

3P10  transitions as a conse­
quence of the Doppler effect.

The total electric field of two laser pulses propagating 
along the z axis can be represented in the form

E = E1 + E2,	 (1)

where

El = ml[iExl cos(wl t – kl z + dxl) + jEyl cos(wl t – kl z + dyl)],

l = 1, 2,

is the electric field strength; wl is the carrier frequency of the 
probe (l = 1) or control (l = 2) field; ml = l2 1' + /(|Dl|T1); 
i  and j are the unit vectors along the x and y axes; Exl and 
Eyl are nonnegative real amplitudes; dxl and dyl are the phase 
shifts of the x and y components of the probe (l = 1) and 
control (l = 2) fields; and kl = wl  /c. Exl, Eyl, dxl and dyl are 
functions of z and t.

We define fl and gl as

fl = [Exl  exp(idxl) – iEyl  exp(idyl)] / 2 ,

gl =[Exl  exp(idxl) + iEyl  exp(idyl)] / 2 .	
(2)

Following Saleh and Teich [25], we will refer to fl and gl as 
the amplitudes of the left and right circular components of the 
probe (l = 1) and control (l = 2) fields. The wave function Y 
of an atom in field (1) can be represented as an expansion in 
terms of fk (k = 1, 2,…, 9):

Y = ( ) [ ( )]exp expi ic c ck k
k

k k
k

1 1
2

4

1
5

9

1 2f f x f x x+ - + - -
= =

r r re eo o/ / ,

where  ckr  (k = 1, 2,…, 9) are the amplitudes of the probability 
that the quantum states are occupied and xl = wl t – kl z (l = 1, 2). 
We introduce ci in the form

с1 = p c
*
1 1r ,   c2 = c2r ,   c4 = c4r ,  c5 = p c2 5r ,

c7 = 1/ p c6 2 7r^ h ,   c9 = p c2 9r ,

where pl = 2Dl  /|Dl| (l = 1, 2). The normalised independent 
variables s and w are given by

s = z/z0,   w = (t – z/c)/T1,

where z0 = 3 c' /(2pN|D1|2T1w1) (N is the atomic concentra­
tion). Using the Schrödinger and Maxwell’s equations, we 
obtain, as a first (slow envelope) approximation, the following 
system of equations:

¶
¶
s
f1  = expi dc c *1 2 1

2
1

p
e e

3

3

-

+
)(-y ,

¶
¶
s
f2  = – ( )expi dc c c c* *

4 9 2 7 1
2

1
p

x e e+
3

3

-

+
)(-y ,

¶
¶
s
g1  = – expi dc c *1 4 1

2
1

p
e e

3

3

-

+
)(-y ,

¶
¶
s
g2  = ( )expi dc c c c* *

2 5 4 7 1
2

1
p

x e e+
3

3

-

+
)(-y ,

¶
¶
w
c1  = – i(  f1c2 – g1c4),

¶
¶

( )i i
w
c

c f c g c f c c
4

* * *2
1 2 1 1 2 5 2 7 2e g+ =- + - - ,	

(3)

¶
¶

( )i i
w
c

c g c g c f c c
4

* * *4
1 4 1 1 2 7 2 9 4e g+ = - + - ,

¶
¶

( )i
w
c

c5
1 2 5e e+ -  = – ig2c2,

¶
¶

( ) ( )i i
w
c

c f c g c
6 4

7
1 2 7 2 2 2e e+ - = - ,

¶
¶

( )i
w
c

c9
1 2 9e e+ -  = i f2c4,

where 1( ) /1 1 1e w w D= -l ; e2 = be1; x = 0.6 b|D2/D1|2; and 
b = w2 /w1.

The system of equations (3) does not contain  c3r , c6r  or c8r , 
in agreement with the selection rule (DM = ±1) for transitions 
driven by circular components of field (1). In the equations 
for c2 and c4, we phenomenologically introduced the terms 
– gc2 and – gc4 to take into account spontaneous decay of 
upper level states in the lambda system under consideration. 
Here g = T1/(2t), where t is the radiative lifetime of the P3 1

0  
level.

Below we use the parameters al, al and gl of the polarisa­
tion ellipse (PE) for probe (l = 1) and control (l = 2) light. 
Here al is the semimajor axis of the PE in units of ml ; al is its 
angle relative to the x axis in radians; and gl is a compression 
parameter (0 £ al < p, – 1 £ gl £ +1) [26]. The value of |gl| 
determines the ratio of the minor axis to the major axis of the 
PE. Negative and positive values of gl correspond to right 
and left elliptical polarisations of light, respectively [25]. It is 
worth noting that setting al, al, gl and dxl values is equivalent 
to setting the field by (1), because it is easy to derive the fol­
lowing relations:

Exl = al [1 (1 ) ] /cos 2 2l l l
2 2g g a+ + - ,

Eyl = al [ ( ) ] /cos1 1 2 2l l l
2 2g g a+ - - ,	 (4)
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Figure 1.  Lambda system of quantum transitions. Indicated on the 
right are the numbers of the states in the mathematical model.
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exp[i(dyl – dxl)] = 
( ) ( )

(1 ) 2 2

cos

sin i

1 1 2l l l

l l l

2 2 2 2 2

2

g g a

g a g

+ - -

- +
.

We assume that the probe field is so weak compared to the 
control field that its effect can be taken into account by the 
method of successive approximations with v E Ex y1

2
1
2

= +u  
E Ex y2
2

2
2

+  as a small parameter. As a zeroth approxima­
tion, we assume that vu  = 0, i.e. that there is no probe field. 
Since the energy levels of quantum transitions resonant with 
the control field are initially unoccupied, to a zeroth approxi­
mation this field does not interact with the medium. This 
means that, to a zeroth approximation, the following rela­
tions are valid:

f2(w, s) = f20(w),   g2(w, s) = g20(w),	 (5)

where f20(w) and g20(w) are the circular components of the 
control field at the input to the medium. In addition, in this 
approximation we have |c1| = 2|c1r | = 2 and ci = 0 (i = 
2, 4, 5, 7, 9) because we assume that, without a probe field, 
only the lower energy level is occupied. Note that the circular 
components of the control light, as well as c1, are identical in 
the zeroth and first orders of the method of successive approxi­
mations. 

In what follows, we assume that a2 = 0, i.e. that the major 
axis of the control field PE coincides with the x axis. It then 
follows from (2) and (4) that

f20(w) = k2 g20(w),   k2 = (1 + g2)/(1 – g2).	 (6)

Taking into account these relations and taking c1 = 2, we 
obtain from (3) equations for the evolution of the probe field 
to first order of the method of successive approximations:

¶
¶
s
f1  = expi dc2 *

2 1
2

1
p

e e
3

3

-

+
)(-y ,

¶
¶
s
g1  = expi dc2 *

4 1
2

1
p

e e-
3

3

-

+
)(-y ,

¶
¶

( ) ( )i i i
w
c

c f g w c c c
2 4

* *2
1 2 1 20 5 2 7 2e k g+ =- - - - ,

¶
¶

( ) ( )i i i
w
c

c g g w c c c
2 4

* *4
1 4 1 20 7 2 9 4e k g+ = - - - ,	 (7)

¶
¶

( ) ( )i i
w
c

c g w c5
1 2 5 20 2e e+ - =- ,

¶
¶

( ) ( ) ( )i i
w
c

c g w c c
6

7
1 2 7 20 2 2 4e e k+ - = - ,

¶
¶

( ) ( )i i
w
c

c g w c
6

9
1 2 9 2 20 2e e k+ - = .

3. Normal modes

In what follows, we assume that |g2| ¹ 1, i.e. that the polari­
sation of the control field is not circular, and that

f20(w) = f20,   g20(w) = g20,	 (8) 

where f20 and g20 are constants. Conditions (8) correspond 
to a counterintuitive configuration of the fields [3], which is 

most often used in experimental studies of EIT. Consider 
two probe fields with intensities E ( )

1
1  and E ( )

1
2 . The field E ( )

1
1  

describes an elliptically polarised probe pulse with the fol­
lowing parameters:

a1 = a
( )
1
1 ,   a1 = 

( )
1
1a  = 0,   g1 = 

( )
1
1g ,   dx1 = 

( )
x1
1d ,	 (9)

where a ( )1
1  depends on w and s, whereas ( )

1
1g  and  ( )x1

1d  are con­
stants. This pulse will be referred to as a parallel mode, 
because the major axis of its PE is parallel to the major axis of 
the control field PE. The field E ( )

1
2  describes an elliptically 

polarised probe pulse with

a1 = a
( )
1
2 ,  a1 = 

( )
1
2a  = p/2,  g1 = 

( )
1
2g  = – ( )

1
1g ,  dx1 = 

( )
x1
2d .	 (10)

Note that a ( )1
2  depends on w and s, whereas ( )

1
2g  and  ( )x1

2d  are 
constants. This pulse will be referred to as a perpendicular 
mode, because the major axis of its PE is perpendicular to the 
major axis of the control field PE. If f ( )i1  and g

( )i
1  are complex 

amplitudes of the left-hand (s–) and right-hand (s+) polarised 
circular components of the parallel (i = 1) and perpendicular 
(i = 2) modes, we obtain using (2) and (4)

f g( ) ( )
1
1

1
1k= ,    f g1( ) ( )

1
2

1
2

k=- ,   
1

1
( )

( )

1
1

1
1

k
g

g
=

-

+
.	 (11)

It is easy to show that the Jones vectors [25] of the parallel 
and perpendicular modes are mutually orthogonal and that, 
hence, the probe field strength E1 can be represented in the 
form E1 = E E( ) ( )

1
1

1
2

+ . Taking into account this and (11), we 
obtain

(1/ )f g g( ) ( )
1 1

1
1
2k k= - ,   g1 = g g( ) ( )

1
1

1
2

+ .

Let k [third equality in (11)] be given by

k = – p + p 12
+ ,	 (12)

where p = 10g2 /(1 – 2
2g ).

Combining Eqns (7), we find that the evolution of g ( )1
1  can 

be described by the system of equations (see Appendix 1)

¶
¶

expi d
s
g

U2
1

1
( )

*1
1

2 1 1
2

1
p k

e e=
+ 3

3

-

+
)(-y ,

¶
¶

(1 )i i i
w
U

U g g V U
2 4

( )* *1
1 1

2
1
1

2 1 1e k g+ =- + - - ,	 (13)

¶
¶

( )i i
w
V

V g q U1
1 2 1 2 1 1e e+ - =- .

U1, V1 and q1 in (13) are given by

U1 = kc2 – c4,   V1 = kc5 – (k2 k + 1)c7 + k2c9,

q1 = 1 + k2 [k2 + (1/k)]/6.	
(14)

In a similar way, we find that the evolution of g ( )1
2  is 

described by the system of equations

¶
¶

expi d
s
g

U2
1

( )
*1

2

2

2

2 1
2

1
p k

k e e=-
+ 3

3

-

+
)(-y ,
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¶
¶

i i i
w
U

U g g V U
2

1
4

( )* *2
1 2 2

2

1
2

2 2 2e
k

k g+ =
+

- - ,	 (15)

¶
¶

( )i i
w
V

V g q U2
2

1 2 2 2 2e e+ - =- ,

where

U2 = (1/k)c2 + c4;   V2 = (1/k)c5 – (k2 /k – 1)c7 – k2c9;

q2 = 1 + k2 (k2 – k)/6.	
(16)

The systems of equations (13) and (15) have no common 
dependent variables and, hence, can be solved independently 
of each other. This means that, if condition (12) is satisfied, 
the parallel and perpendicular modes of the probe field 
propagate in the medium independently of each other as well. 
Moreover, according to (9) and (10) the polarisation charac­
teristics of these modes remain unchanged. The above leads 
us to conclude that the perpendicular and parallel modes are 
elliptically polarised normal modes of the probe light.

Taking into account (12) and the definition of k [see (11)], 
we can find the compression parameter of the PE of the parallel 
normal mode, ( )

1
1g , as a function of the compression parame­

ter of the control field PE, g2 (Fig. 2). It is seen that 
( )
1
1g  is of 

opposite sign to g2 and that 
( )
1
1g  is an odd function of g2. At 

g2 = 0, we have 
( )
1
1g  = ( )

1
2g  = 0, i.e. in the case of linear polarisa­

tion of the control field both normal modes are linearly 
polarised. If |g2| approaches unity, |

( )
1
1g | also approaches 

unity. Therefore, if the probe field is circularly polarised, so 
are both of its normal modes.

Assume that, on the input surface of the medium (s = 0), 
the probe field has the form of an elliptically polarised pulse 
with a polarisation state constant in time. First, consider the 
case of g2 ¹ 0. We denote the values of a1, a1, g1 and dx1 on the 
input surface as a10, a10, g10 and dx10. Among these parame­
ters, only a10 is assumed to depend on time w. Since the input 
probe field is not phase-modulated, we can take dx10 = 0 with­
out loss of generality. Let a ( )i10 , 

( )i
1a ,  ( )i1g  and ( )

x
i
1d  (i = 1, 2) be the 

values of a ( )i1 , 
( )i
1a , ( )i

1g  and ( )
x
i
1d  on the input surface. According 

to (9) and (10), ( )
1
1a  = 0 and ( )

1
2a  = p/2, whereas ( )

1
1g  and ( )

1
2g  

can be found as described above. The values of a ( )i10  and 
( )
x
i
1d  

are to be determined.
Let us introduce A, B and C – parameters independent of 

w and s:

A = e+ (a10, g10),   B = sign(g2) e– (a10, g10) cos dy10,

C = – sign(g2) e– (a10, g10) sin dy10,	
(17)

where

e±(a10, g10) = ( ) /cos1 1 2 210
2

10
2

10!g g a+ -6 @ ;

exp(idy10) = 
(1 ) (1 )

(1 ) 2 2

cos

sin i

210
2 2

10
2 2 2

10

10
2

10 10

g g a

g a g

+ - -

- +
;

and sign(x) is the sign function. Let X, Y, Z and T be given by

X = 
A C

1 ( )

( )

1
1 2

1
1

g

g

+

+

^ h
,   Y = 

B

1 ( )

( )

1
1 2

1
1

g

g

+ ^ h
,   Z = 

A C

1 ( )

( )

1
1 2

1
1

g

g

+

-

^ h
,

T = –  B

1 ( )
1
1 2

g+ ^ h
.	

(18)

The missing characteristics a ( )i10  and 
( )
x
i
1d  (i = 1, 2) of the 

normal modes on the input surface of the medium are then 
given by (see Appendix 2)

a a X Y( )
10
1

10
2 2

= + ,        a a Z T( )
10
2

10
2 2

= + ,

/cos X X Y( )
x1
1 2 2d = + ,    /sin Y X Y( )

x1
1 2 2d = + ,	 (19)

/cos Z Z T( )
x1
2 2 2d = + ,    /sin T Z T( )

x1
2 2 2d = + .

According to (19), the a ( )i10 (w) (i = 1, 2) functions are propor­
tional to a10(w). In other words, the variation of the major 
axes of the PEs of the normal modes on the input surface with 
time w is similar to the time variation of the major axis of the 
PE of an input probe pulse. In the case of circularly polarised 
input probe light, the a10 angle is not defined, but relations 
(19) remain valid at any a10.

At g2 = 0, the expressions for a
( )i
10 and 

( )
x
i
1d  (i = 1, 2) through 

input probe pulse parameters have the form

cosa a( )
10
1

10 10a= ,    0( )
x1
1d = ,    sina a( )

10
2

10 10a= ,

0( )
x1
2d =  for 0 £ a10 £ p/2,	

(20)
cosa a( )

10
1

10 10a= ,    0( )
x1
1d = ,    sina a( )

10
2

10 10a= ,

( )
x1
2 pd =  for p/2 < a10 < p.

The propagation of probe light in a medium can be thought 
of as the propagation of two independent normal modes. 
Characteristics of such modes on the input surface can then 
be determined using (19) or (20) from known characteristics 
of input probe light. If an input probe field has the form of a 
sufficiently short pulse, a10 differs significantly from zero only 
in some time interval w. According to (19) and (20), a ( )10

1  and 
a ( )10
2  will also have such properties and, hence, each normal 

mode in a medium will have the form of a pulse. While propa­
gating, a pulse corresponding to each normal mode becomes 
distorted and decays. In the case of EIT, however, these factors 

g1
(1)

0.5

0

–0.5

–1.0 –0.5 0 0.5 g2

Figure 2.  Graph of 
( )
1
1g  against g2.
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show up rather slowly as the distance passed by a pulse in the 
medium increases. This allows us to approximately estimate 
energetic characteristics and propagation group velocities of 
normal mode pulses.

Let I ( )10
1  and I ( )10

2  be the intensities of the perpendicular 
and parallel normal modes, respectively, on the input surface. 
Then, we have

/ /I I a a( ) ( )
10
(2)

10
(1)

10
2

10
1 2
= ^ h .	 (21)

The parameters a ( )10
1  and a ( )10

2  can, in turn, be expressed through the 
polarisation characteristics a10 and g10 of an input probe pulse 
using (19) and (20). Formula (21) can be used to approximately 
estimate the intensity ratio of normal modes in a medium.

The ratio of pulse energies of normal modes in a medium 
is determined by two factors. One of them is the ratio of pulse 
energies on the input surface of the medium. This ratio coin­
cides with the pulse intensity ratio (because /a a( ) ( )

10
2

10
1  is time-

independent) and, according to (19) and (20), depends only 
on g2, a10 and g10. Figure 3 shows contour lines of the function 
R(a10, g10, g1) – the fraction of the input probe pulse energy in 
the parallel mode on the input surface – at a10 = p/6. According 
to Fig. 3, this fraction exceeds 0.5 if g10 and g1 have opposite 
signs.

The other factor is the difference in the rate of energy absorp­
tion by the medium between the normal modes. According to 
the general theory of EIT [1], the energy of a slower propagat­
ing pulse of the perpendicular mode (see below) would be 
expected to decrease faster than that of a pulse of the parallel 
mode.

Let V ( )i
1  be the group velocity of a pulse of the parallel 

(i  =  1) and perpendicular (i = 2) normal modes in the s, w 
frame of reference. It can be shown (Appendix 3) that

V ( )i
1  = (1/4)|g2|2 qi (i = 1, 2),	 (22)

where qi are determined by the last equalities in (14) and (16).
Formula (22) can be written in the form

V ( )i
1  = I q

8
1

1

1
i2

2
2

2
2

g

g

+

-
c

^
m

h
  (i = 1, 2),

where I2 is the control light intensity in units of 2
2m . This 

means that the group velocities of the modes decrease with 
decreasing control light intensity. This is consistent with the 
conclusion drawn from EIT theory [1] as to how the velocity 
of probe field pulses depends on control light intensity. Figure 
4 shows graphs of V ( )i

1 /I2 against g2. It is seen that the parallel 
mode always has a higher group velocity than does the per­
pendicular mode. Note that, at a constant value of I2, the dif­
ference between the velocities of the normal modes is smallest 
in the case of linearly polarised control light and rises mono­
tonically as the control field approaches circular polarisation. 
Moreover, it follows from Fig. 4 that V ( )i

1  (i = 1, 2) are odd 
functions of g2.

4. Normal modes: comparison of analytical  
and numerical results

A previous report [22] presented results of numerically solving 
the system of equations (3) subject to boundary conditions 
corresponding to the possibility of formation of normal modes 
of a probe field. Let us compare those results with analytical 
theory predictions. In the first calculation in Ref. [22], boundary 
conditions describing the probe and control fields on the input 
surface (s = 0) were taken in the form

a10 = p/6,   a10 = 0.2sech[(w – 20)/5],

g10 = – 0.5,   dx10 = 0,	
(23)

a20 = 0,   a20 = 6.6516,   g20 = – 0.3,   dx20 = 0.	 (24)

The initial conditions (w = 0) corresponded to all 208Pb atoms 
being at the lower energy level.

Conditions (23) describe an input probe light pulse of 1.5 ns 
duration with a peak intensity of 65 W cm–2. According to 
(24), the constant control light intensity is approximately 
20  kW cm–2. Since the peak intensity of the input probe 
pulse is more than a factor of 300 lower than the control field 
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Figure 3.  Contour lines of the function R(a10, g10, g1) at a10 = p/6.
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/I2 against g2.
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intensity, described by formulas (23) and (24), we deal with a 
weak probe field. (The choice of resonance medium and input 
light parameters was substantiated in a previous study [22].)

The calculation results are presented in Figs 5a – 5c. The 
dependences of the probe light intensity I1 (in units of 1

2m ) on w 
at different constant distances s are represented in Figs 5a – 5c 
by thick solid lines. It is seen that, at sufficiently small dis­
tances in the medium, the probe light pulse begins to separate 
into two components (Fig. 5b, pulses 1, 2). The shape of the 
curves describing the evolution of a1 and g1 suggests that, as 
the probe field passes through a given point, the angle a1 
gradually varies from zero to ~p/2, whereas g1 gradually 
decreases from ~0.74 to near –0.74.

At sufficiently large distances, the probe pulse energy turns 
out to be concentrated in two pulses (Fig. 5c, pulses 1, 2). In 
the localisation region of each pulse, the polarisation charac­
teristics of the light remain unchanged in both space and time. 
Our calculations give a1 = 0 and g1 = 0.7415 for pulse 1 and 
a1 = p/2 and g1 = –0.7418 for pulse 2.

Using (12) and the third formula in (11), we find the ( )
1
1g  = 

0.7414 and ( )
1
2g  = – 0.7414 predicted analytically. This agrees 

well with the g1 values obtained above for pulses 1 and 2 in 
Fig. 5c, respectively.

Using the ( )
1
1g  and ( )

1
2g  values thus found and (19), we find 

all characteristics of the parallel and perpendicular normal 
modes that constitute the input probe field [22]:

( )
1
1a  = 0,   a ( )10

1  = 0.0720sech[(w – 20)/5],

( )
1
1g  = 0.7414,    ( )

x1
1d  = – 0.4991,	

(25)

( )
1
2a  = p/2,   a ( )10

2  = 0.1646sech[(w – 20)/5],

( )
1
2g  = – 0.7414,    ( )

x1
2d  = 0.2865.	

(26)

The evolution of the parallel normal mode in a medium 
was studied by numerically solving the system of equations (3) 
subject to the boundary conditions (24) and (25). Similarly, 
using the boundary conditions (24) and (26), we studied the 
behaviour of the perpendicular normal mode in a medium. 
Our calculations show that both modes propagate in the 
medium without changes in their polarisation characteristic 
( )i
1a  or ( )i

1g  or phases ( )
x
i
1d  (i = 1, 2), which were assumed to 

remain unchanged in going from Eqn (3) to (13) and (15).
Figures 5d – 5f show the variations of the intensities of the 

parallel (solid lines) and perpendicular (dashed lines) normal 
modes with time w at the same distances s as in Figs 5a – 5с. At 
each distance and each time, the sum of the intensities of the 
normal modes (Figs 5d – 5f) coincides with the total probe 
field intensity in the medium to within 0.3 % (Figs 5a – 5c). 
Thus, numerical analysis based on the solution to the input 
equation (3) supports the conclusion that a probe field in a 
medium can be represented as the sum of normal modes.

The numerical solution to system (3) shows that, at a dis­
tance s = 400, the intensity ratio of the perpendicular and 
parallel modes is 4, whereas an estimate using formula (21) 
gives an intensity ratio of 5.2. Moreover, numerically solving 
system (3) we obtained group velocities of the parallel and 
perpendicular modes V ( )

1
1  = 9.4 and V ( )

1
2  = 3.7, respectively. 

Estimates by formulas (22) yield V ( )
1
1  = 9.9 and V ( )

1
2  = 4.1. 

The cause of the discrepancy between the intensities and 
velocities of the normal modes evaluated by formulas (21) 
and (22) of analytical theory and by numerically solving 
system (3) is that, in deriving these formulas, the distortion 
and decay of probe field pulses in the medium were left out of 
consideration. Note that these factors are more important in 
the evolution of the perpendicular normal mode. Because of 
this, the deviations of the values obtained by formulas (21) 
and (22) from those evaluated by numerically solving system 
(3) are larger in the case of the perpendicular normal mode 
than in the case of the parallel normal mode.
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Figure 5.  Evolution of probe field characteristics in a medium at s = (a) 0, (b) 100 and (c) 400 ( I1 is represented by thick solid lines; a1, by dashed 
lines; and g1, by thin solid lines) and the intensity of the longitudinal (solid lines) and perpendicular (dashed lines) normal modes at s = (d) 0, (e) 100 
and (f) 400.
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Additional numerical results obtained at different param­
eters of input probe and control fields and the corresponding 
dimensional estimates were presented in a previous report [22].

5. Conclusions

Analytical treatment confirms the conclusion derived from 
numerical analysis [22] that, in the case of EIT in a lambda 
system of degenerate quantum transitions and an elliptically 
polarised control field, an isotropic medium can become bire­
fringent, with elliptically polarised normal modes of a probe 
field. Note that birefringence with such normal modes origi­
nates from the propagation of radio waves in magnetised 
cosmic plasma [27]. The major axis of the PE of one of the 
normal modes is parallel to the major axis of the PE of 
control light, whereas the major axis of the PE of the other 
normal mode is perpendicular to it. The electric vectors of the 
normal modes have opposite rotation directions. Moreover, 
the rotation direction of the former type of mode is opposite 
to that of the control field. The PEs of the two modes have 
identical eccentricities.

It has been shown analytically that a sufficiently weak 
probe field can be represented as the sum of normal modes 
which propagate in the medium independently of each other. 
The former type of mode (parallel mode) has been shown to 
have a higher group velocity than does the latter type of mode 
(perpendicular mode). In connection with this, at a suffi­
ciently large distance from the input surface, the probe field 
energy is concentrated in two individual pulses. In the initial 
stage of a probe pulse decay, the pulse of the former type of 
normal mode has higher intensity than does the latter type 
of mode if the electric vectors of the input probe pulse and 
control pulse have opposite rotation directions. At identical 
rotation directions, the latter type of normal mode has a higher 
pulse intensity. In all cases, propagating in a medium the 
former type of normal mode decays less than the latter type.

Note that steady-state EIT without inhomogeneous broad­
ening, with the same set of energy levels as in our case, was 
studied theoretically by Kis et al. [21]. However, they con­
sidered a high-frequency field as a strong control field [21] 
and showed that, in such a case, normal modes can also exist, 
but only one of them is involved in probe field energy transfer, 
whereas the other experiences a strong attenuation.

Appendix 1

Equations (13) follow from the system of equations (7) if the 
condition

1 + k2[k2 + (1/k)]/6 = k2 + k[k2 + (1/k)]/6.	 (A1.1)

is satisfied. Equations (15) follow from the system of equa­
tions (7) if the condition

1 + k2(k2 – k)/6 = 2
2k  – (k2 – k)/(6k).	 (A1.2)

is satisfied. From definitions (6) and (11) of k and k2, we 
conclude that Eqns (A1.1) and (A1.2) are equivalent to one 
equation,

k2 + 2pk – 1 =0,	 (A1.3)

where p is given by the formula after (12). According to (11), 
k is nonnegative. The nonnegative root of (A1.3) is given by 

(12). Therefore, if (12) is satisfied the system of equations 
splits into two independent systems: (13) and (15).

Appendix 2

The Jx0 and Jy0 components of the Jones vector [26] of probe 
light on the s = 0 input surface at dx10 = 0 are given by

Jx0 = m1a10 e+(a10, g10),   Jy0 = m1a10e– (a10, g10)exp(idy10).

The J ( )x
i
0  and J

( )
y
i
0  components of the Jones vector of the parallel 

(i = 1) and perpendicular (i = 2) modes on the input surface 
have the form

exp iJ a( ) ( ) ( )
x x0
1

1 10
1

1
1m d= ^ h,

( ) /exp i signJ a 2( ) ( ) ( ) ( )
y x0
1

1 1
1

10
1

1
1

2 pm g d g= -^ h6 @,

exp iJ a( ) ( ) ( ) ( )
x x0
2

1 1
1

10
2

1
2m g d= ^ h,	

(A2.1)

( ) /exp i signJ a 2( ) ( ) ( )
y x0
2

1 10
2

1
2

2 pm d g= +^ h6 @.

We use the equalities

Jx0 = J
( )
x0
1  + J ( )x0

2 ,   Jy0 = J
( )
y0
1  + J ( )y0

2 	 (A2.2)

and substitute relations (A2.1) into them. Assuming that 
g2 ¹ 0, we multiply both sides of the latter equality in (A2.2) 
by i sign g2 ¹ 0, separate the real and imaginary parts of the 
equations obtained and introduce X, Y, Z and T unknowns:

X = / cosa a( ) ( )
x10

1
10 1

1d^ h ,   Y = / sina a( ) ( )
x10

1
10 1

1d^ h ,

Z = / cosa a( ) ( )
x10

2
10 1

2d^ h ,   T = / sina a( ) ( )
x10

2
10 1

2d^ h .	
(A2.3)

As a result, we obtain the following system of linear algebraic 
equations:

X + ( )
1
1g Z = A,   Y + ( )

1
1g T = 0,

( )
1
1g Y – T = B,     ( )

1
1g X – Z = C,

where A, B and C are given by (17). The solution to this 
system is given by formulas (18). Comparing (18) and (A2.3), 
we obtain (19). At g2 = 0 and, accordingly, 

( )
1
1g  = 0, Eqns (20) 

directly follow from Eqns (A2.2).

Appendix 3

It follows from (2) and (4) that, in the case of the parallel 
normal mode, the condition

exp ig a1 2 1( ) ( ) ( ) ( )
x1

1
1
1

1
1

1
1g d= -^ ^ ^h h h.

is satisfied. We introduce new dependent variables,

P1 = 
( )

exp
i

i
U

1

( )
*x

2

1
1

1
k

d

+

-^ h
,   Q1 = 

( )

exp
i

i
V

1

( )
*x

2

1
1

1
k

d

+

-^ h
,

and neglect relaxation processes and the inhomogeneous 
broadening of lines due to quantum transitions. System (13) 
then transforms into a system of equations that describes the 
spatiotemporal evolution of the major axis of the PE of the 
parallel normal mode field in a medium:
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¶
¶
s
a ( )1
1

 = P
1

2 2
( )
1
1 1

g-
,   

¶
¶
w
P1  = ia g Q

2 2

1
4

( )
( )1

1

1
1

2 1
g -

+ ,

¶
¶
w
Q1  = ig q P*

2 1 1.	

(A3.1)

 

Let us transform to new independent variables,

u = s – V ( )
1
1 w,   v = s,

where V ( )
1
1  is the group velocity of a parallel normal mode 

pulse in the s, w frame of reference. Assuming the distortion 
of the parallel mode envelope a ( )1

1  to be sufficiently slow, we 
take

( ) ( , )a a u a u v( ) ( ) ( )
1
1

1
1

1
1

= +r u ,   P1 = ( ) ( , )P u P u v1 1+r u ,

Q1 = ( ) ( , )Q u Q u v1 1+r u .

Here a ( )1
1u , P1u  and Q1

u  are small corrections whose effect can be 
taken into account by the method of successive approxima­
tions. As a zeroth approximation of this method, the system 
of equations (A3.1) then takes the form

d

d

u

a
P

1

2 2
( )

( )

1
1

1
1 1

g
=

-

r
r ,   

d
d iV
u
P

a g Q
2 2

1
4

( )
( )

( )
1
1 1 1

1

1
1

2 1
g

=
-

-
r

r r ,

d

d
iV

u

Q
g q P( ) *

1
1 1

2 1 1-
r

r ,	

(A3.2)

where q1 is given by the last formula in (14). From the system 
of equations (A3.2), we obtain an equation describing the 
evolution of ( )P u1r :

d

d

u

P

V V

g q
P1 1

4( ) ( )2

2
1

1
1

1
1

2
2
1

1= -
r

rf p .	 (A3.3)

V ( )
1
1  is nonnegative by definition. Let k2 denote the coef­

ficient of P1r  on the right hand side of Eqn (A3.3). If the con­
dition k2 = 0 is not satisfied, P1r  can be expressed linearly 
through exponential functions of a real or purely imaginary 
argument. According to the first equation in (A3.2), this in 
turn means that the function ( )a u( )

1
1r  does not tend to zero as 

|u| tends to infinity and that the field described by it is not a 
pulse. Using the condition k2 = 0, we can determine the group 
velocity V ( )

1
1 . In a similar way, we find the group velocity of 

the perpendicular normal mode, V ( )
1
2 . As a result, we obtain 

equalities (22).

References
  1.	 Agap’ev B.D., Gornyi M.B., Matisov B.G., Rozhdestvenskii Yu.V. 

Usp. Fiz. Nauk, 163, 1 (1993).
  2.	 Vitanov N.V., Rangelov A.A., Shore B.W., Bergmann K. Rev. 

Mod. Phys., 89, 015006 (2017).
  3.	 Harris S.E. Phys. Today, 50, 36 (1997).
  4.	 Lukin M.D. Rev. Mod. Phys., 75, 457 (2003).
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