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Abstract.  Based on the model of a photon as a ‘radiation oscillator’ 
of a field moving in space with the speed of light and having a zero 
rest mass, we have constructed a wave function that describes the 
photon states of the electromagnetic field. It has been suggested 
that the entire space where the field is present splits into separate 
regions of the order of the radiation wavelength, within which the 
field is coherent and the total field energy is equal to the photon 
energy. 
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The concept of a photon – “a quantum of the electromagnetic 
field” – was introduced by M. Planck and A. Einstein* at the 
beginning of the 20 century [2, 3]. Recently, there has been a 
great interest in studying the quantum states of the electro-
magnetic field (photon states) in order to understand how an 
elementary particle of this field is constructed [4]. A critical 
review devoted to various aspects of the concept of ‘photon’ 
is presented in [5]. St. Weinberg defines the concept of ‘an 
elementary particle’ as a bundle of corresponding fields [6]. 

In the modern interpretation of quantum electrodynam-
ics, the concept of an elementary particle-photon is intro-
duced somewhat formally through the production and anni-
hilation of quanta of the electromagnetic field in the asymp-
totic approximation in the entire space and time [7]. At the 
same time, the question of the structure of elementary parti-
cles does not arise, although the quanta of electromagnetic 
radiation – photons – have relatively large dimensions (~1 mm 
– of the order of the wavelength) in the optical spectral range 
and can be ‘probed’ by modern methods of investigation. 

We will try to construct a wave function describing the 
photon itself, i.e., in essence, the structure of the electromag-
netic field of the photon. The starting point for this is the 
model of a photon as a ‘radiation oscillator’ of a field moving 
in space at the speed of light and having a rest mass equal to 
zero. 

Thus, we will assume that the photon’s wave function 
consists of a product of two functions: a function describing 
its free motion with momentum p, i.e., a de Broglie wave, 
and a function describing its structure. We adhere to the 
point of view that this problem is analogous to the problem 
of the wave function of a massive particle that has an inter-
nal structure, for example, a hydrogen atom that freely moves 
in space. 

We choose a coordinate system. Let the z axis be directed 
along the direction of the photon motion. The x axis is 
directed in the direction of the electric field vector E (linear 
polarisation of the electromagnetic wave is considered), and 
the y axis is perpendicular to the xz plane. In this plane, at the 
origin, the monochromatic wave vector E performs harmonic 
oscillations with a cyclic frequency w like a linear oscillator. 
Let us try to reduce the problem of a photon, sometimes 
called the ‘radiation field oscillator’, to the problem of the 
quantum states of a mechanical linear oscillator [7]. 

We will try to build on this basis a quantum approach to 
the solution of the problem of the photon structure. To do 
this, we consider a classical oscillator performing harmonic 
oscillations along the x axis. The problem of the quantum 
behaviour of the oscillator was first considered by 
W.  Heisenberg in 1925, even before the discovery of the 
Schrödinger equation [8]. Heisenberg applied the matrix 
method he developed, relying on the commutation rules for 
the canonically conjugate quantities of the operators of the 
coordinate x and momentum ¶ ¶/ip x'=-t .

For the ‘radiation oscillator’ the role of the coordinate is 
played by the electric field strength E(t, x), which oscillates in 
time with a frequency equal to that of the electromagnetic 
wave. Thus, we can use the relation [8]: 

¶
¶ i
t
E E 0w+ = .	 (1)

In going over to a quantum analysis, the quantities E and 
¶ ¶/E t  should be replaced by noncommuting operators Et  and 
¶ ¶/E tt . 

Note that in the classical case, at the point where  
¶ ¶/ 0E t = , the value of E reaches a maximum value equal to 
the amplitude of the oscillations E0(x, 0), which, in turn, 
defines the time-averaged field energy density in the wave and 
the energy flux density (the latter taking into account the 
equality of electric and magnetic fields are equal to E0

2/8p and 
cE0

2/8p , respectively). After E becomes equal to E0, it will 
decrease with time like the coordinate of a mechanical oscilla-
tor. The behaviour of E and the coordinates of the mechani-
cal oscillator are very similar: both quantities perform har-
monic oscillations, and the energy characteristics in both 
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* In his letter to M. Besso, on 12 December 1951 A. Einstein wrote, “All 
these fifty years of pondering have not brought me any closer to answer-
ing the question, What are light quanta? Nowadays every Tom, Dick 
and Harry thinks he knows it, he is mistaken” [1].
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“For the rest of my life  I will 
reflect on what light is.” 

A. Einstein, 1917
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cases are proportional to the squares of the corresponding 
quantities. 

In the case of quantum description, the system in a sta-
tionary state, i.e., in a state with a given energy, is described 
by the wave function, which is the product of two functions 
that depend only on the coordinate and only on the time: 

( , ) ( ) ( )x t t xy y y= ,	 (2)

where y(t) = exp(–iwt), and y(x) determines the structure of 
the object, i.e., the wave field corresponding to the standing 
wave. To determine y(x, t), it is necessary to find a solution to 
the ‘boundary value problem’.

Equation (1), written for operators, has the form 

¶
¶ i
t
E E 0w+ =
t t .	 (3)

It coincides with the equation for the operator xt , i.e. the 
operator of the Heisenberg linear oscillator coordinate, with 
the only difference being that the mechanical oscillator oscil-
lates with respect to point with x = 0, to which the elastic force 
returns it, and the field E does not have such a point – it is not 
local and oscillates in the entire volume, where this field is 
present. 

Since equation (3) coincides with the equation

¶
¶ i
t
x x 0w+ =
t t ,	 (4)

which describes the quantum behaviour of a mechanical oscil-
lator (here we have chosen the sign ‘+’ in accordance with 
formula (23.11) in [8]), their solutions are analogous. Thus, 
our problem reduces to replacing Et  by xt , and, accordingly, 
the electric field strength operator Et  does not commute with 
the rate of its change. 

In our coordinate system at a given time (for example, at 
t = 0), the electric field directed along the x axis has the same 
value in the xy plane. Therefore, as a point in which an oscil-
lating electric field is present, we can choose a point with an 
arbitrary coordinate (x, y). This corresponds to a wave of the 
electromagnetic field (or probability wave) when all the 
parameters on the phase surface are the same (for example, a 
plane wave). For simplicity, we set x = y = 0 for this point. 

It can be assumed that is the photon is located near this 
point and the next task is to define the structure of this pho-
ton (the determination of the spatial dependence of the elec-
tric field in this region). 

Here one important remark should be made. It refers to 
the question of the coherence of the electromagnetic field. 
Since we introduced the field frequency w specified by the 
source, the question arises of the spatiotemporal coherence of 
a monochromatic field. Namely, if we have an ideally mono-
chromatic field, then it is the same in the entire space and 
time, which are formally unlimited. However, this is impos-
sible, since fluctuations and changes in its amplitude, phase 
(i.e., frequency), and spatial properties take place during the 
emission of a wave. These properties are determined by the 
so-called spatiotemporal correlation function of the electro-
magnetic field of the wave. As a result, the entire space 
where the field is present breaks up into separate regions on 
the order of the radiation wavelength, within which the field 
is coherent, and its total energy is equal to the photon 
energy. 

In this connection, reference should be made to the work 
of Ya.B. Zel’dovich, in which the total number N of quanta of 
the electromagnetic field is determined in terms of the correla-
tion integral [9]: 

H( ) ( ) ( ) ( )
( )
d dN

c r r

E r E r r H r r r
2
1

21 2
2

1 2 1 2
3

1 2

' p
=

-

+y y ,	 (5)

where H is the intensity of the magnetic field; r1 and r2 are the 
radius vectors of two different points in space; and the multi-
plier 1/| r1 – r2 |2 determines the correlation of the field at these 
points. Here, in fact, Huygens’ idea is used that every point of 
the wave front radiates spherical waves and, consequently, 
radiation from a point with a radius vector r1reaches a point 
with a radius vector r2 weakened by | r1 – r2 | times. This 
ensures the finiteness of the volume of integration and is actu-
ally equivalent to the introduction of a spatial correlation 
function. 

The ‘speed’  ¶ ¶/E t , as follows from Maxwell’s equations, 
can be expressed in terms of the spatial derivative 

¶ ¶ ¶ ¶( / ) /c E t E x1
=--  and, thus, we obtain 

¶
¶ ic
x
E E 0w- = .	 (6)

Multiplying this equation by /i c' , we obtain 

¶
¶i
x
E

c E 0' 'w
+ = ,	 (7)

After that, introducing the momentum operator ¶ ¶/ip xx '=-t , 
we can write 

p E c Ex
'w

=t .	 (8)

Equation (8) is a relation that determines the eigenvalues of 
the momentum operator and the boundary conditions for  
¶ ¶/E t , namely,   ¶ ¶/E t  = 0 when E reaches the maximum 
value, i.e., 8 /E S c0 p=  (S is the radiation flux density). 
Then, 

E = ±E0 at ¶ ¶/E t  = 0,

E = 0 at ¶ ¶/E t  ® max|¶ ¶/E t |.

	 (9)

The first of these conditions can be considered as a boundary 
condition for E(x). 

Here an important question arises, connected with the 
dualism of quantum ‘wave – particle’ physics, which is consid-
ered, in particular, in [9]. Namely, how much is the electro-
magnetic field coherent on the phase plane xy? In our case, 
the electric field is polarised along the x axis and depends only 
on x. The characteristic coherence length is determined by the 
wavelength l = 2pc/w; therefore, equation (8) is valid only at 
distances x £ l. Thus, this equation can be written in the form 

¶
¶
x
E xE2

2
p
l

=- .	 (10)

The factor x/l reflects the fact that for x = 1 the field energy 
enclosed in the volume l3 is equal to the quantum energy 'w. 
It follows from this that it is equivalent to the wave function 
of a linear mechanical oscillator (see [8], §23). Since the wave 
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electric field can be considered as a wave function of a photon 
in quantum electrodynamics (up to a normalising factor), the 
solutions given in [8] are, in essence, a solution for the electro-
magnetic quantum particle of the ‘radiation’ oscillator, i.e. a 
photon. 

Namely, the ground state with n = 0 is zero field oscilla-
tions, and the first excited state with n = 1 corresponds to one 
photon. Essentially, the solution of equation (10) is ‘standing’ 
waves (states) in a parabolic potential proportional to E 2 
(Fig. 1), where E is the current value of the electric field 
strength of the wave. The solutions normalised to unity for 
E(x) = y0(x) are Hermite polynomials and give the energy 
density distribution of the electromagnetic field along the 
transverse coordinate x.

Thus, the total wave function of the photon, the state cor-
responding to the quantum number n = 1, is the product of 
the wave function describing the photon propagation in free 
space and the wave function in the form of the first Hermite 
polynomial describing the photon structure (Fig. 2).

Of course, there remains a fundamental question: why is 
an elementary particle, i.e. a photon, stable? It would seem 
that the presence of a dependence of y on the transverse coor-
dinate x should lead to diffraction and the ‘decay’ of the pho-
ton over time. However, it seems to us that any violation of 
the solution found should be accompanied by a ‘rearrange-
ment’ of the wave function, which leads to an increase in the 
energy of the given state, which is impossible. Formally, this 
is expressed in the fact that the solution found is stationary 
and   const'w = . The physical reason for this is the lack of 
field sources. 

Let us pay attention to the following circumstance. The 
energy density of an electromagnetic field with its linear 
polarisation oscillates in space and time in proportion to Ex

2, 
but for a photon the energy is a constant equal to hw. This 
discrepancy is eliminated we assume that the photon has cir-
cular polarisation with the field components Ex and Ey, dis-
placed in phase from each other by p/2. Given that the expres-
sion for Ey is the same as the expression for Ex (with x replaced 
by y), for | E^ |2 we have a value that is constant in time and 
space. This removes the above contradiction and leads to the 
fact that the photon must have a momentum M ~ | r ´ p |, 
which, taking into account the fact that | r | ~ l, and | | /cp 'w= , 
is equal to '  (see [10]). 

Here one important remark should be made. The total 
energy of a mechanical oscillator is equal to the sum of the 
kinetic and potential energies, and is constant in the station-
ary case. In the process of oscillations, the kinetic and poten-
tial energies convert into each other. For the ‘radiation oscil-
lator’ only in the case of circular polarisation of the wave, the 
total energy is a constant value, and this means that the sum 
of the vibrational energies along the x and y axes is an integral 
of motion analogous to the above-mentioned case of a har-
monic oscillator. This provision, in essence, reveals specifi-
cally the statement about the analogy between the ‘radiation 
oscillator’ and the mechanical one. This also means that a 
photon must be circularly polarised and have a moment of a 
momentum equal to '. 

In conclusion, it should be emphasised that the transition 
from the classical description of the electromagnetic field 
(Maxwell’s equations) to the quantum representation is 
closely related to the concept of coherence, as was noted ear-
lier by Ya.B. Zel’dovich, who in introduced an expression for 
the number of field quanta. In this case, the region of space 
where the electromagnetic wave is present as if decays into 
‘domains’, the number of which corresponds to the number of 
photons, i.e., the field in one ‘domain’ is equivalent to the 
field of one photon, and the linear size of this ‘domain’ is 
equal to the wavelength. 
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Figure 1.  Photon energy for zero oscillations (n = 0) and a single-pho-
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Figure 2.  Wave function of a circularly polarized photon propagating 
along the z axis. The field is described by the first Hermite polynomial 
(n = 1).
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