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Abstract.  The dynamics of a single-electron double quantum dot 
(charge qubit) in an optical microcavity has been theoretically ana-
lysed taking into account the influence of optical and acoustic pho-
nons. The Lamb modes of a two-dimensional mechanical resonator 
(thin slab) are considered as an example of an acoustic phonon sub-
system. It is found that an optical phonon mode can be used as a 
qubit control tool, similar to the microcavity photon one. The prob-
ability of the quantum operation ‘NOT’ has been calculated for two 
qubit control scenarios: in the microcavity photon field and in the 
combined photon – phonon field of a microcavity and slab. It is 
shown that the coherent energy exchange between a qubit and a set 
of acoustic phonon modes reduces this probability, which depends 
on the number of modes, the initial state of the phonon field, and the 
decay rate of modes.

Keywords: quantum computer, qubit, quantum dot, microcavity, 
acoustic phonons.

1. Introduction 

A semiconductor double quantum dot (DQD), consisting of 
two tunnel-coupled quantum dots (QDs) and containing one 
excess electron in the quantised part of the conduction band 
of a confining potential, can be considered as a two-level sys-
tem (qubit) [1 – 5]. The two logical states of a charge DQD 
qubit are associated with localised single-electron orbitals in 
each QD. An arbitrary state of a qubit is set by their linear 
superposition. The possibility of controlling this qubit was 
experimentally demonstrated for a DQD based on two-
dimensional electron gas in a GaAs/AlGaAs heterostructure 
[5]. An important feature of this system is that the qubit 
parameters change with variation in the electric potential on 
the control gates [5, 6] and/or the frequency and amplitude of 
the optical (laser [7] or microcavity [8]) field.

However, there are processes destroying the qubit state 
coherence, which are related to the solid-state environment of 
the DQD. An electron located in a DQD interacts with the 
mechanical stress field, described by longitudinal (LO) and 
transverse (TO) optical lattice vibrations (phonons) and lon-
gitudinal (LA) and transverse (ТА) acoustic phonons [9]. 
Recall that the main relaxation channel for an excited elec-
tron in three-dimensional (crystals) or two-dimensional 

(quantum wells) semiconductors is emission of an LO pho-
non, which is caused by the Frohlich interaction and occurs 
for a time on the order of 1 ps. In point systems (QDs), due 
to the discreteness of the energy spectrum and weak disper-
sion of LO phonons, a qualitative analysis (based on the 
energy conservation law) predicts a rather low rate for LO 
phonon scattering. This statement is valid if the frequency 
wa of the electron transition in the QD (the energy differ-
ence between the ground and first excited electron states) 
differs from the LO phonon frequency (hereinafter, fre-
quencies are given in energy units), which lies, e.g., for 
GaAs, in a narrow range, centred at 36.2 meV (the phonon 
bottleneck effect [10]). In this case, the relaxation of the 
excited electron is due to the hybridisation of the electron 
and phonon degrees of freedom and formation of a polaron, 
whose anharmonic decay is accompanied by emission of sev-
eral acoustic phonons [11]. In crystalline QDs grown by the 
Stranski – Krastanov method, the transition frequency 
ranges from several tens of meV to 0.1 eV. The decay rate 
may depend nontrivially on the transition frequency and 
vary by several orders of magnitude within a given frequency 
range [12]. Therefore, choosing properly the wa value, one 
can slow down significantly the polaron anharmonic relax-
ation. Another dissipative channel is related to LA phonons, 
which are described in the deformation potential approxi-
mation. Their interaction with DQDs is weak in comparison 
with the Frohlich effects in three-dimensional crystals [13]. 
The energy of LA phonons at which their density in crystal 
is significant (from zero to several meV) is much lower than 
the transition energy between the DQD ground and excited 
states, while the probability of the corresponding scattering 
event is small, because the transition energy in such QDs 
exceeds 1 meV [14].

This conclusion is valid if the QD spectrum is described 
well within the two-level approximation. However, the pres-
ence of several closely spaced (or even degenerate) excited 
states of different symmetry leads to combined relaxation, 
including the transition between these states with emission/
absorption of an acoustic phonon [12]. In addition, the DQDs 
whose spectrum contains hybridised excited orbitals may be 
involved in processes with participation of phonons whose 
energy corresponds to the level-splitting energy. The purpose 
of this study was to analyse the influence of a set of quasi-
discrete acoustic modes on the qubit evolution. Under the 
assumption that DQDs and modes can exchange energy 
coherently, we calculate the time dependences of the electron 
transfer probability between ground states. Using a set of 
acoustic modes as a reservoir model, we obtain dependences 
of the maximum transfer probability on the interaction energy 
of these modes with the DQD electron and their decay rates. 
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As will be shown below, this probability depends also on the 
initial state of phonon field (coherent or thermal).

2. Model and basic equations

In this study, the quantum single-photon field of a single-
mode microcavity with a mode frequency wc is used as an 
optical field inducing the desired quantum evolution of the 
charge DQD qubit (Fig. 1). An LO mode with a frequency 
wLO can also be applied to excite an optical transition in 
DQDs [15]. We model the dynamics of the hybrid 
DQD – microcavity – phonons system, assuming reversible 
energy exchange between the subsystems. This situation may 
occur in low-dimensional semiconductor structures (slabs, 
rods) whose phonon spectrum is characterised by a high 
degree of discreteness [16]. If the phonon mode frequencies lie 
in the vicinity of the DQD transition and microcavity fre-
quency, an electron excitation in the DQD may be coherently 
transformed into a microcavity photon or phonons of the 
structure. In this case, complex oscillations of basis-state pop-
ulations are observed in the hybrid system. An analogue of 
our system is a microwave-controlled superconducting phase 
qubit, which can exchange quantum energy with an electro-
mechanical nanocavity based on aluminium nitride [17].

Let the energy difference D1 between hybridised DQD lev-
els be close to the frequencies wLA q of a set of q = 1 – N acous-
tic phonon modes. We also assume a weak coupling between 
the acoustic phonons and DQD electron, which provides low 
mode population: nLA q £ 1. At the initial instant the micro-
cavity contains one photon, which is necessary for imple-
menting single-qubit rotations [8]. The dissipative effects, 
which are related to the photon escape from the cavity and 
anharmonic decay of slab phonon modes, are phenomeno-
logically introduced into the Hamiltonian H0 of the 
Schrödinger equation by adding an imaginary part to the cor-
responding frequencies:
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where ei (i = 0, 1,  –, +) are the energies of four DQD states; 
( )a a @  is the photon annihilation (creation) operator in the 
microcavity; ( )b bLA LAq q

@  is the phonon annihilation (creation) 
operator in the acoustic mode q; ( )b bLO LOq q

@  is the phonon 
annihilation (creation) operator in the optical mode; and k, 
gLA q, and gLO are, respectively, the decay rates of the micro-
cavity and phonon modes. Hereinafter, we assume that 1' =
. The energy exchange between the microcavity and DQD is 
described by the extended Jaynes – Cummings Hamiltonian:

HJC = W0 – a| –ñá0| + W0 + a| +ñá0|

	 + W1 – a| –ñá1| + W1 + a| +ñá1| + H.c.,	 (2)

where W0 –, W0 +, W1 –, and W1 + are the interaction coefficients 
of the electron and microcavity photon (Rabi frequencies). 
The interaction Hamiltonian of the DQD and LO phonon 
has a similar form:

He – LO = g0 – bLO | –ñá0| + g0 + bLO | +ñá0|

	 + g1 – bLO | –ñá1| + g1 + bLO | +ñá1| + H.c.,	 (3)

where g0 –, g0 + , g1 –, and g1 + are the interaction coefficients of 
the electron and the slab optical mode. With regard to the 
contact between the electron and the acoustic modes, it may 
occur for only a transition between hybridised levels, whose 
splitting is on the order of 1 – 5 meV, and the corresponding 
interaction Hamiltonian can be written as 
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where gLA q is the interaction coefficient between the electron 
and acoustic phonon of mode q.

The total Hamiltonian of the electron – photon – phonon 
system has the form

H = H0 + HJC + He – LA + He – LO.	 (5)

The Schrödinger equation
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with Hamiltonian (5) sets the evolution of the state vector | HY  
of the system. This vector can be presented as an expansion 
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where k = 1 – M; nLO is the population of the LO phonon 
mode; and nc is the population of the cavity mode. The dimen-
sion of the model Hilbert space with allowance for the condi-
tions nLA q + nLO £ 1 (no more than one vibrational quantum 
in the system) and nLO £ 1 (no more than one optical quan-
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Figure 1.  (a) Potential profile of a DQD qubit and (b) schematic image 
of a DQD in a thin free-standing slab, which is an optical and phonon 
cavity (see notations in the text).
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tum in the system) is M = 6(N + 1) + 2. It is convenient to pass 
to the frame of reference related to the microcavity using the 
unitary transformation

[ (| | | | ) ]exp iT a a b b tc LO LOHG HGw= - - -++ ++ +
@ @ ,

In this case, the Hamiltonian H0 takes the form
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Here, D0 = e1 – e0 is the energy difference between the DQD 
ground states; D1 = [V 2 + (eA1 – eB1)2]1/2 is the energy differ-
ence between the DQD hybridised states; V is the tunnelling 
matrix element between the excited states |A1ñ and |B1ñ of iso-
lated QDs (A and B in Fig. 1) with energies eA1 and eB1, 
respectively; d = w0 – wc is the microcavity frequency detuning 
from the transition frequency |0ñ « | –ñ; and DLO = wLO – w1 is 
the LO mode frequency detuning from the transition fre-
quency |1ñ « | –ñ. Recall that the hybridised states | –ñ and | +ñ 
are related to the excited states |A1ñ and |B1ñ as

| | 1 | 1A B1 2H H Ha a= + -- ,  | | 1 | 1A B1 2H H Ha a+ = - - ,

where a = sin(q/2) and q = arctan(2V/D1).
Let us indicate the main DQD, microcavity, and phonon 

mode parameters corresponding to real low-dimensional 
QD-based systems. For crystalline vertical GaAs-based 
DQDs with a radius R = 5 – 10 nm and barrier thickness L = 
10 – 15 nm, at a potential-well depth U = 0.2 – 0.3 eV, the tran-
sition frequency w0 – between the ground and excited levels is 
0.1 eV. The location of hybridised levels near the barrier edge 
causes their significant tunnel splitting with an energy V » 
1 – 5 meV. The estimate da » eR for the matrix elements of the 
operator optical dipole transition and the typical values of 
single-photon field amplitudes Ес » 1 – 10 V cm–1 yield an 
approximate value of 10–6 eV for the DQD Rabi frequencies 
W 0 –, W 0 +, W 1 –, and W 1 +. Concerning the interaction coeffi-
cients between the electron and phonon modes, their values 
are set by the type of the structure containing the DQD and 
the mutual frequency detunings for the DQD transitions, 
microcavity mode, and phonon modes. For example, if the 
DQD is located in a (100 – 1000)-nm-thick slab, one can sup-
press (or, vice versa, enhance) the interaction of the excited 
electron with LA phonons by choosing an appropriate geom-
etry of the system [16]. The photon dissipation rate k » 10–5 – 
10–6 eV corresponds to the observed values for high-Q semi-
conductor microcavities.

In Sections 3 and 4 we present the calculation results spec-
ifying the influence of each of the aforementioned processes, 
which are related to the energy exchange between the DQD, 
microcavity, and phonons, on the DQD coherent dynamics. 
A DQD located at the centre of a thin slab is considered as a 
specific example of a real system; eigenfrequencies of the 
acoustic modes and interaction coefficients with the DQD 
electron were found for this DQD. The dynamics was simu-
lated both for this structure and for a system with averaged 
characteristics. All parameters in these sections are given in 
units of microcavity frequency wc, which was assumed to be 
fixed and equal to 0.1 eV.

3. Interaction between DQD and localised 
acoustic phonons in a thin slab

Since quantum coherence is a necessary requirement for a 
physical system considered as a qubit, one should not only 
develop ways for implementing quantum operations but also 
study the parasitic effect of external noise. One of the main 
sources of coherence loss in QD-based charge qubits is the 
electron – phonon interaction, which leads to relaxation and 
dephasing of electronic states in the QD [1, 2]. One of the 
ways to control the electron – phonon interaction is to convert 
the frequency spectrum of mechanical vibrations. The pho-
non spectrum of confined structures (nanocrystals, thin slabs) 
differs from that of bulk materials, in particular, by the for-
mation of subbands (branches). Modern technologies make it 
possible to design structures of different profiles and sizes, for 
example, thin free-standing membranes, interacting with the 
rest (massive) part of the sample only at fixing points. We will 
analyse the influence of phonons on the GaAs/InAs DQD 
placed in a thin slab at frequencies w0  £  1 meV, correspond-
ing to the transition frequency D1 of the electron between split 
excited levels. To this end, the mechanical vibration spectrum 
and the contribution of each phonon branch to the elec-
tron – phonon interaction for slabs of different thicknesses 
will be calculated.

According to [16, 18 – 20], we will apply the model describ-
ing the interaction between Lamb waves and a DQD located 
in the middle of a thin slab. The latter is almost completely 
separated from the rest of the material (substrate), so that 
acoustic vibrations are entirely limited by the upper and lower 
faces. If we neglect the perturbations introduced by contact 
points between the slab and substrate, the slab behaves as a 
phonon cavity [21, 22]. Since we consider only the deforma-
tion interaction, two forms of Lamb modes (waves) arise: 
dilatation modes (compression) and bending modes. If the 
DQD is located in the central part of the slab, one can take 
into account only dilatation waves, because bending waves do 
not interact with the QD. The corresponding dispersion rela-
tions for the dilatation waves can be derived from the 
Rayleigh – Lamb equation (see, e.g., [21]):
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where clong and ctrans are, respectively, the longitudinal and 
transverse velocities of acoustic waves in a three-dimensional 
semiconductor; x = q||W/2; t = qtransW/2; l = qlongW/2; q||, qlong, 
and qtrans are, respectively, the lateral, longitudinal, and trans-
verse components of the phonon wave vector (in the slab 
plane); and W is the slab thickness. System (8) has a set of 
solutions (branches) for t and l at each x value. The frequency 
of a branch with number n is determined by the expression
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The phonon – DQD interaction coefficient has the form [16]

( ) [1 ( )]exp ig q q dP || ||n nl= - - ,	 (10)

where d is the vector connecting the centres of two QDs. The 
form factor for a QD with a radius R is given by the formula
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and the electron charge density distribution is assumed to be 
Gaussian:
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where ( )n re  is the Dirac d(z) function. Thus, the interaction 
coefficient can be written as
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describes the interaction intensity between an electron and 
dilatation LA phonons. Here, Ea is the deformation potential 
constant, As is the slab area, and r is the semiconductor den-
sity; the normalisation constant Fn is calculated from the 
expressions reported in [22]. We used the following parame-
ters for a GaAs QD: Ea = 2.2 ´ 10–18 J, r = 5.3 ´ 103 kg m–3, 
ctrans = 3.35 ́  103 m s–1, clong = 5.7 ́  103 m s–1, As =  1 mm2, R = 
10 nm, and d = 30 nm.

The dependences of frequencies wn of eigenmodes on the 
parameter /x q W 2| |=  for a slab of thickness W = 400 nm are 
shown in Fig. 2. According to expression (9), the number of 
branches in the range w £ 1 meV is proportional to the thick-
ness W; it is equal to 46 at W = 400 nm. The branches make 
different contributions to the electron – phonon interaction. 
System (8) was analysed in detail in [21]; it was shown that, 
depending on x, there are several types of solutions: (i) ln and 
tn are purely imaginary, (ii) ln is imaginary and tn is real, and 
(iii) ln and tn are real. A calculation of the electron – phonon 
interaction coefficient (13) shows that, in the case of imagi-
nary ln and tn, the gn magnitude is many orders of magnitude 
smaller than for real ln and tn. This disproportion is related to 
a decrease in the normalisation constant Fn because of a sharp 
increase in the exponential term [22]. Similar results were 
obtained for slabs with thicknesses W = 200 and 600 nm. 
Thus, all branches of the phonon spectrum must be taken into 
account at small x, whereas at large x only upper branches 
contribute to the resulting interaction.

4. Influence of electron – phonon exchange  
in an excited DQD on the implementation  
of a quantum gate ‘NOT’

Based on the results obtained in Section 3, we will analyse 
the electron dynamics in a DQD and microcavity with 
allowance for the exchange of a quantum between the sym-
metric (D0 = D1 = 0) DQD and a set of acoustic phonon 
modes. Let us consider the |0ñ Ä |1ñc Ä |0LOñ Ä |0LA 1ñ . . . 
|0LA Nñ state as the initial one and tune the transition fre-
quency from the |0(1)ñ level to the |+ñ level in the DQD in 
resonance with the microcavity frequency. Note that tuning 
the transition frequency from the |0(1)ñ level to the |–ñ level 
in resonance with the microcavity frequency does not lead to 
an energy exchange with phonon modes. The reason is that 
all reservoir modes are not populated initially, and the DQD 
cannot absorb an energy quantum that is necessary to induce 
the |–ñ ®  |+ñ transition. Thus, at a sufficiently high degree of 
phonon spectrum discretisation and a low temperature, one 
can isolate the DQD from the influence of acoustic modes 
by choosing the |–ñ state as a transport one. The frequency 
of the optical phonon mode is detuned from the transition 
frequency in the DQD and barely affects the evolution of the 
state vector of the system. 

Let us solve numerically Eqn (6) for different slab thick-
nesses W (Fig. 2). For example, Fig. 3 shows (hereinafter, it is 
assumed that W 0(1)+ = W A(B)) the time dependences of the 
populations Pi of DQD states for some set of parameters at a 
thickness satisfying the condition x = x0. In this case, the sym-
metric DQD is controlled by only the single-photon micro-
cavity field. It can be seen that the electron transfer between 
the logical states through the transport level |+ñ is accompa-
nied by undesirable population of the lower hybridised level 
|–ñ due to the resonance excitation of the phonon subsystem 
that is in the vacuum state. In fact, this process involves sev-
eral LA modes, whose frequencies are in the close proximity 
of the transition frequency between hybridised levels. To 
demonstrate the influence of the entire phonon reservoir on 
the electron transfer, we will plot the dependence of the maxi-
mum population of the final state |1ñ on the tunnelling energy 
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Figure 2.  Spectrum of phonon eigenmodes for a GaAs slab.
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V, which determines the splitting of hybridised levels for 
choosing the slab thickness satisfying the condition x = x0. If 
the energies of the |A1ñ and |B1ñ states coincide exactly, the 
transition frequency between them is 2V. Varying it in the fre-
quency range of slab acoustic modes, one can see how each of 
them affects the electron dynamics. When scanning energy V, 
the dependence of maxP1 on D1 demonstrates a sequence of 
minima (Fig. 4), which correspond to the frequencies of LA 
modes; their magnitudes are determined by the interaction 
coefficients gn: the larger these coefficients, the smaller the 
maxP1 values.

For thicker slabs, the phonon frequencies come closer 
together to form a quasi-continuum, which exhibits proper-
ties of a Markovian reservoir. In this case, the spectrum of the 
phonon subsystem is simulated as follows. We are primarily 
interested in the frequency range with a centre frequency D1, 
corresponding to the energy difference between the hybri-
dised levels |–ñ and |+ñ. Choosing the frequency range X at a 
fixed number of modes N, one links the density of phonon 
modes with the spacing between neighbouring modes, Dm = 
X/(N – 1); the mode frequencies in the equidistant spectrum of 
LA phonons are wLA q = D1 – X/2 + (q – 1)Dm(q = 1 – N). The 
phonon mode decay rate gLA q is set by using experimental 
data and is varied in the range of ~10–6 – 10–9 eV. In this 
study, we assume for simplicity the quantum exchange rates 
between the DQD and phonons and the decay rates to be 
identical for all modes (white noise approximation): gLA q º 
gLA and gLA q º gLA.

Under low-temperature conditions, the probability of 
absorbing a thermal phonon by a QD is much lower than the 
probability of emitting a phonon by an excited electron. 
Therefore, if the lower hybridised state is chosen as a trans-
port one, the electron transfer will be subjected to relaxation 
to a smaller extent. The interaction energy (quantum exchange 
rate) between the DQD and a set of phonon modes is propor-
tional to the population of modes and their density at the 
transition frequency. In turn, the population is determined by 
the ratio of the mode frequency to temperature and by the 
population mechanism. For example, for a thermal (Poisson) 
field, the probability of finding nph phonons in a mode is 

( ) /(1 )P n n ntherm ph
n n 1ph ph= + +r r , while the probability for a 

coherent field (formed, e.g., by a resonance microwave mono-
chromatic source) is ( )P ncoh ph = ( ) / !expn n nph

nph -r r  (here, n =r  
[ ( / ) ]exp 1q

1w Q - -  is the average number of phonons with a 
frequency wq at a temperature Q). We are interested in the the 
case where the average number of phonons in a mode does 
not exceed 1 (Fig. 5).

Let us consider the influence of acoustic phonons on the 
electron transfer in our coherent model. Now, the optical tran-
sitions in an asymmetric DQD are independently controlled by 
the single-photon field of microcavity and the one-phonon field 
of the LO mode (see Fig. 1), and the reversible energy exchange 
with LA phonons occurs at a transition between hybridised lev-
els. The initial state of a phonon mode with a frequency wq can 
be written as | LAqHY  » ( ) |0P1 1 qH- + ( ) |1P 1 qH ; here, the 
possibility of populating states with nq > 1 is neglected. In 
total, N = 10 modes in the vicinity of the transition frequency 
D1 with a width gLA =10–6 were taken into account. The calcu-
lation results (Fig. 6) indicate a monotonic decrease in the 
transfer probability, beginning with the Q values approxi-
mately corresponding to liquid helium temperature. For a 
coherent phonon field, this decrease is larger than that for a 
thermal field. At low temperatures, the main factor determin-
ing the maxP1 value is the choice of the transport level. As 
one would expect, the transfer probability is higher for the 
lower hybridised state (the losses are determined entirely by 
the photon drift from the microcavity). With an increase in 
temperature, the peak magnitude begins to depend on the 
initial state of the phonon subsystem; for a coherent field, 
it decreases more rapidly than for a thermal one.

Let us now analyse the dependence of the transfer proba-
bility on the decay rate gLA of acoustic modes for two gLA 
values. It is reasonable to assume that this probability 
decreases with increasing decay rate. However, one can see 
that at very high rates ( gLA > 10–4) the transfer probability 
increases and tends to values characteristic of the DQDs in 
which the coupling with LA phonons is suppressed (Fig. 7, 
dashed line). In this case, the phonon mode density is rather 
high (20 modes per 0.01V). This result can be explained as 
follows. According to the Jaynes – Cummings model, where 
the dissipation is phenomenologically taken into account 
within the Schrödinger equation formalism, the decay rates of 
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the photon and electron subsystems play the role of effective 
detunings. The parameters chosen for Fig. 7 correspond to a 
symmetric DQD controlled by the single-photon field of 
microcavity, and the phonon modes are considered as a reser-
voir. An increase in the decay rate of LA modes by several 
orders of magnitude detunes them from resonance with the 
DQD, thus blocking this dissipative channel.

5. Conclusions

Traditionally, acoustic and optical phonons in solid-state sys-
tems form the main channel of coherence loss, and serve an 
essential source of errors in quantum calculations based on 
charge qubits. This is primarily due to the continuum type 
of the phonon frequency spectrum, which is described 
within the Markovian approach. However, since the pho-
non mode spectrum for devices with characteristic sizes 
less than 1 mm is quasi-discrete, we can speak about coher-
ent interaction (reversible exchange of energy) between the 

electron system (qubit) and phonon modes. On the one 
hand, this circumstance allows one to use these modes as 
an auxiliary tool for controlling the qubit state. At the 
same time, an increase in the spectrum discretisation and 
enhancement of localisation of mechanical (deformation) 
energy lead to enhanced interaction of the DQD electron 
with a large number of modes, as a result of which the 
qubit evolution may deviate from the calculated one. A 
descriptive example of this phonon system is a set of Lamb 
eigenmodes of a slab-like membrane.

A theoretical analysis of the dynamics of a single-elec-
tron DQD in an optical microcavity was performed taking 
into account the influence of optical and acoustic phonons. 
Lamb modes in a thin GaAs slab were considered as an 
example of an acoustic phonon subsystem, and the phonon 
spectrum frequencies and phonon – electron interaction 
coefficients were determined. The processes related to the 
phonon influence were found to modify to a certain extent 
the quantum evolution of this system. Generally, such a 
modification manifests itself as a decrease in the transfer 
probability with an increase in the interaction energies 
because of the ‘mixing’ of excited DQD levels when their 
splitting energy coincides with the frequency of one of 
acoustic modes. Calculations were performed for a specific 
set of individual slab modes (up to 50 in number) and in the 
white noise approximation, where all modes are assumed 
to be identical. One can note the dependence of the elec-
tron transfer probability between the QDs (the ‘NOT’ 
probability) on the initial state of the acoustic subsystem. 
In addition, an increase in the mode decay rate blocks the 
coupling between the DQD and phonons. A scenario of 
charge qubit control with combined photon – phonon con-
trol was also considered. As follows from the calculations, 
the optical phonon mode of slab can efficiently be used to 
exert a resonance effect on a qubit and design a ‘NOT’ 
gate. Further on, a more detailed consideration of the spe-
cific features of the phonon spectrum (for example, in a 
rod or in a slab) will make it possible to calculate more 
accurately the dissipation rate and gain a better insight 
into the processes occurring in an optically controlled 
DQD.
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