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Abstract.  The dynamics of self-action of a wave field in an array of 
weakly coupled active optical waveguides is studied analytically 
and numerically. It is shown that the introduction of weak gain in 
each of the waveguides allows significant reduction of radiation 
losses and efficient capture of all radiation in a single optical wave-
guide. The possibility of controlling the radiation localisation in the 
desired waveguide at the expense of varying the injection angle of 
the wave field into the considered system is demonstrated. The 
dependences of the characteristic parameters of the wave field are 
determined. 

Keywords: weakly coupled active optical waveguides, self-action, 
localisation of radiation in a waveguide.

1. Introduction

Considerable technological progress in fabricating micro-
structured waveguide systems with given diffraction and dis-
persion properties has led to the active development of the 
nonlinear science research, devoted to nonlinear wave pro-
cesses in spatially periodic media – arrays of weakly coupled 
optical waveguides [1 – 3]. Besides the purely fundamental 
interest, the performed studies have practical aims, namely, 
the supercontinuum generation [4] and reduction of laser 
pulse duration [5, 6], the control of wave field structure [7, 8], 
and the light bullet formation [9, 10].

A distinctive feature of such ‘discrete’ media is the exis-
tence of a stable distribution of the wave field localised on a 
period of the structure in a wide range of amplitudes – the 
discrete soliton [8]. Alongside with this fact, it was experimen-
tally shown in Ref. [11] that when the pulse power exceeds a 
critical value, the initially wide distribution of the wave field 
as a result of the discrete collapse development localises in 
regions, whose size is comparable with the period of the lat-
tice of equidistantly arranged optical waveguides. In Ref. [12], 
this critical power was determined basing on the developed 
variational approximation. However, in the process of local-
ising the radiation in a region, the size of which is approxi-
mately equal to the period of the medium inhomogeneity, the 

‘radiation losses’ of the wave field and the corresponding 
decrease of the power in the narrow central part of the beam 
are observed.

In the present paper, we consider the dynamics of self-
action of the wave field in a one-dimensional system of weakly 
coupled active optical waveguides. It is shown that the intro-
duction of weak gain in each of the optical waveguides allows 
considerable reduction of radiation losses and provides the 
efficient capture of all radiation in one optical waveguide. 
This is achieved due to an adiabatic decrease in the transverse 
size of the beam with an almost plane phase front, which pro-
vides the smoothness of the radiation injection into one wave-
guide. In this case, the discrete collapse occurs at the final 
stage. Besides that, we demonstrate the possibility of control-
ling the localisation of radiation in a desired waveguide by 
varying the angle of the wave field injection into the consid-
ered system.

To describe the self-action dynamics of a wave field the 
discrete nonlinear Schrödinger equation [1, 8, 12 – 14] is used 
with the additional term responsible for the gain of the wave 
field. The use of variational approximation (Section 2) 
allows qualitative analysis of dynamics in the system and 
estimation of the basic parameters of the wave field Gaussian 
distribution (the beam width, the phase front curvature, the 
coordinate of the intensity maximum of the wave beam). In 
Section 3, we study the dynamics of the wave field injected 
along the axis of the considered system. Efficient capture of 
all radiation in the central optical waveguide is demon-
strated. The estimate of the length of this capture is obtained. 
In Section 4, we analyse the dynamics of wave beams injected 
at a certain angle to the considered system. The possibility 
of controlling the radiation localisation in the required 
waveguide by varying the radiation injection angle is shown. 
The analytic dependence of this shift on the parameters of 
the problem is found. 

2. Formulation of the variational problem

Consider the self-action of a wave field, injected into the spa-
tially inhomogeneous medium, formed by an array of equidis-
tantly arranged single-mode optical waveguides with the per-
mittivity

e » ( )s nr l
n

0 1e e+ -=/ .	 (1)

Here l is the lattice period of optical waveguides; 
( ) (| | )steps Rr r= -=  is a narrowly localised function with the 
characteristic scale R << l; n is the optical waveguide number; 
and R is the waveguide radius.
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Let us assume that each waveguide is single-mode. In this 
case, the propagation of the wave field E  in the considered 
system can be approximately described as a superposition of 
modes, localised in each of the optical waveguides:

( , ) ( ) ( )z z nr r lE n
n

Y= -= f/ ,	 (2)

where f (r) is the function that determines the fixed structure 
of the lowest mode of the waveguide; and Yn is the complex 
amplitude of the field in the nth waveguide. The analysis will 
be carried out basing on the standard theoretical model [1, 8, 
14], in which it is assumed that the fundamental guided modes 
of the optical waveguides, oriented parallel to the z axis, are 
weakly coupled to each other. Let us assume that the evolu-
tion of the field envelope Yn in the nth optical waveguide is 
determined in the process of wave field propagation along the 
z axis by the following factors: the Kerr nonlinearity in each 
optical waveguide, the gain in the active medium, and the 
coupling with the adjacent waveguides due to a weak overlap 
of their guided modes.

For the medium consisting of an unlimited number of 
equidistantly arranged optical waveguides, the discrete non-
linear Schrödinger equation in dimensionless variables has 
the form

¶
¶ | |i i
z
n

n n n n n1 1
2 gY Y Y Y Y Y+ + + =+ - .	 (3)

Here the parameter g characterises the linear gain in the active 
medium.

To investigate the dynamics of the systems we use the 
variation approximation that allows classification of charac-
teristic regimes of self-action and determination of the appro-
priate critical parameters. The approximation consists in 
minimisation of the action functional using the probe func-
tion Y that depends on a few parameters, which are functions 
of the evolution coordinate z. Technically the method is based 
on the transition to the reduced Lagrangian L , obtained by 
integrating the initial Lagrangian L  with the substituted 
probe functions over the transverse coordinates.

In this Section we develop the variational approach in 
application to the studied problem of self-action of a wave 
field in the nonconservative discrete system (3), reducing the 
problem to a closed system of ordinary differential equations 
for the characteristic integral parameters of the Gaussian-
shaped distribution of the wave field (the wave packet width, 
the phase front curvature, etc.). Although the situation 
becomes more complex in the case of an active medium 
because of non-Hamiltonian properties of the system, the 
variational problem still can be formulated for the system (3). 
In this case, alongside with the Lagrangian of the conserva-
tive part of the system, it is also necessary to define the dissi-
pative function of the system.

The Lagrange function, corresponding to Eqn (3) in the 
conservative case (g = 0), has the form [12, 14 – 16]
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Using the Poisson summation formula for the function F(x) 
of a continuous argument
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let us rewrite Lagrangian (4) in the form

( )exp inx2p
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This allows the use of a single function Y (z, x), depending 
of the continuous variable x, instead of the infinite ordered 
set of complex field amplitudes Yn(z) in each of the wave-
guides.

To describe approximately the propagation of a localised 
wave packet, injected into the one-dimensional periodic sys-
tem of optical waveguides, let us consider the Gaussian ampli-
tude distribution 

a
P
pY =  

	
( )

( ) ( )exp i i i
a

x x
x x x x

2 2
0
2

0
2

0# b s q-
-

+ - + - +; E	 (6)

as an approximation for the function Y (z, x). Here

| | dP x2
=

3

3

-

+
Yy

is the wave field power; a(z), b(z), and q(z) are the wave beam 
width, the phase front curvature, and the phase of the field on 
the system axis, respectively; x0 is the coordinate of the inten-
sity maximum of the wave beam; and s is the transverse wave-
number. Substituting Eqn (6) into Eqn (5) and integrating the 
obtained expression over the continuous variable x, we arrive 
at a functional series. For wide beams with a(z) >> 1/p the 
coefficients of this series exponentially decrease with increas-
ing n (see, e.g., [12, 15]). Thus, even for the wave fields with 
the characteristic transverse dimension a(z), comparable with 
the scale of the medium spatial inhomogeneity, we will restrict 
ourselves to considering only the terms with n = 0, when using 
Eqn (5) for the description of self-action processes. Finally, 
for the reduced Lagrange function L  of the conservative part 
(g = 0) of the considered system (3), we obtain the expression:
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The evolution of the parameters aj = {P, a, b, s, x0, q} along 
the path of the wave beam propagation is determined by the 
Euler equations
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The generalisation of the Euler equations for the determi-
nation of the parameters of the variational function (6) in the 
nonconservative case consists in considering the contribution 
of the dissipative part. For Eqn (3) the variation of the dissi-
pative function is

( )i dQ x* *d d dg Y Y Y Y= -
3

3

-

+y .	 (9)

Therefore, the Euler equations for the parameters of the wave 
packet (6) in the considered nonconservative case have the 
form
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Performing appropriate calculations for the wave beam (6), 
we find that ds/dz = 0 and s = s0. The rest equations that 
determine the evolution of the parameters of the wave beam 
along the propagation trace have the form

d
d
z
P P2g= ,	 (11a)
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a ad4 0b s= ,	 (11b)

4cos
d
d
z a a

a d
a

P1
82

0
2

2 2
3p

b s b= - -c m ,	 (11c)
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Here the factor

expd
a

a
4
1
2

2 2b= - -c m	 (12)

reflects the specificity of the discrete problem. In the continu-
ous case (a >> 1, ba << 1) it is close to unity. In the opposite 
limit case (both a and ba are of the order of unity) the factor 
d is exponentially small, i.e., the discreteness leads to the 
weakening of linear diffraction of the wave field. The pres-
ence of gain in the medium ( g > 0) causes an exponential 
growth of the wave beam power (11a):

P = P0 exp(2gz),	 (13)

where P0 is the initial power.
The derived system of Eqns (11b) – (11d) is a generalisa-

tion of the corresponding equations of the conservative 
problem [12, 17] for the case of active spatially inhomoge-
neous medium. The spatial evolution of the wave beam and 
the behaviour of the parameter x0 are described by the same 
equations (11b) – (11d) as in Ref. [17], with the only differ-
ence that the power of the wave beam grows along the prop-
agation path in accordance with the exponential law (13). 
Therefore, at the qualitative level we should expect here a 
similar picture of the wave field self-action. Below we dwell 
on considering in more detail the new effects determined by 
the medium gain.

3. Self-localisation of the wave beam injected 
along the system axis

Within the frameworks of the used approach, it is seen that 
the structure changes of the wave field, described by 
Eqns (11a) – (11c) occur independent of the behaviour of the 
intensity maximum coordinate x0 (11d) of the wave beam. 
The trajectory of motion x0(z) is determined by the separate 
equation (11d). It is important to note that the deviation of 
the trajectory from a straight line in a continuous medium 
reflects the specificity of the spatially inhomogeneous prob-
lem. In the case of nonlinear dynamics, the transverse wave-
number is preserved (s = s0 = const), characterising the initial 
angle between the direction of the beam propagation and the 
axis of the system. In this connection, we first analyse the spe-
cific self-action features for a wave beam, injected at the input 
of the one-dimensional lattice of weakly coupled active opti-
cal waveguides in the case s0 = 0. As follows from Eqn (11d), 
the coordinate of the intensity maximum of the wave beam 
will not change: x0 = 0.

The main feature of radiation self-action in the conserva-
tive case is related to the ‘collapse’ of the wave field (capture 
in one waveguide). The discreteness of the medium leads to 
the weakening of diffraction for the narrow wave beams com-
pared to the lattice period. Therefore, even in the conservative 
case, the collapse of one-dimensional distribution of the wave 
field with the power, exceeding the critical power of self-
focusing in the discrete medium becomes possible [11, 12, 17].

In contrast to the discrete conservative medium, in the 
active medium the capture of radiation in one optical wave-
guide occurs smoothly due to the adiabatic reconstruction of 
the soliton distribution under the field amplification. The 
soliton distribution of the wave field corresponds to a station-
ary point of Eqns (11b) and (11c). At the stationary point the 
curvature b = 0 (i.e., the wave beam has a plane phase front), 
and the width a is determined by the equation 

( ) 8 expP P a a a4
1

sol 2/ p
= -c m.	 (14)

Note that this dependence of the power on the width has an 
extremum /eP 4max p=  at /a 1 2max = , corresponding to 
the limiting width of the soliton in the discrete system.

Assuming the invariance of the soliton shape of the wave 
beams, relation (14) between the characteristic width a of the 
field distribution and the power P of the wave beam is con-
served over the entire propagation path. In the case of wide 
spatial solitons (a >> 1), the condition for the conservation of 
the soliton shape will consist in slow variation of the beam 
power (13) at the diffraction length zd:

zd » a2 » 
8
P2
p  << 1g .	 (15)

The exponential growth of the radiation power P (13) will 
lead to an adiabatic decrease in the spatial soliton size. From 
Eqn (14), we find the following law of the beam width 
decrease:

a » 8
8 2P

Pp
p

-  » a0exp(–2gz)  for  P << 8p ,	 (16)
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where a0 » 8 /P0p  is the initial soliton width. It is worth not-
ing that the analogous possibility of an adiabatic decrease in 
the soliton duration in active optical media according to the 
exponential law was discussed in Ref. [18].

The process of the wave beam narrowing is limited by the 
discreteness of the medium, if the width of the wave field dis-
tribution becomes on the order of the lattice period: a » 1. 
Then the length Lh of the wave field capture by the central 
optical waveguide is easily found from Eqn (14) using the sub-
stitution afin = 1:

Lh » ln eP
P P

2
1 8 /cr

cr
0

1 4p
g = -^ h.	 (17)

Note that the determined value of the threshold power of 
radiation capture for active systems Pcr » 3.9 is close to the 
critical power of the wave beam collapse in a one-dimensional 
discrete system Pc » 3.7, found for the conservative case 
[12, 17].

Let us proceed to the results of numerical simulation. 
Figures 1a and 1b, present the evolution of the width a(z) of 
the spatial soliton (6), (14) with the initial size a0 = 25, injected 
into the one-dimensional lattice of equidistantly arranged 
active optical waveguides for the gains g = 10–4 and 10–3. The 
solid curve shows the evolution of the root-mean-square 
beam size

( )
| ( , )|a

P z
n z n1

n

2 2G H Y=
3

3

=-

+

/ ,	 (18)

calculated basing on the numerical simulation of Eqsn (3) and 
the dashed curve shows the dynamics of the beam width, cal-
culated by means of Eqns (11). As follows from the results of 
numerical simulation, presented in Figs 1a and 1c, the data, 
obtained from the solution of the initial system of equations 
(3) agree well with the results of the qualitative analysis of the 
problem based on the variational approach (11). With an 
increase in gain g, the regime of adiabatic decrease in the 
beam size is disturbed insignificantly. In Figs 1a and 1c one 
can see a characteristic step in the dependence of the beam 
size on z (at z L  15000 for g = 10–4 and at z L 1500 for g = 
10–3), which is related to the discrete collapse. Therefore, the 
length of radiation capture in the central optical waveguide is 
smaller than the estimate (17), which is due to faster collapse 
development.

Figures 1b and 1d show the dependence of the phase front 
curvature b on the beam width a for two gains g. It is seen that 
the wave beam conserves the plane phase front ( b » 0) up to 
the beam size a » 2; this also confirms the assumption of adi-
abatic decrease in the beam size during radiation amplifica-
tion. However, with a further decrease in the beam width a, 
the phase front becomes nonplanar; the curvature  b ¹ 0 is 
nonzero and grows along the beam propagation trace.

Thus, we can select two stages of the system evolution. At 
the initial stage, while the radiation power is below the critical 
one (P(z) < Pcr) the adiabatic decrease in the beam size occurs 
in the process of amplification in the active medium, and 
upon the achievement of the critical power the one-dimen-
sional collapse occurs, and the wave beam becomes captured 
in one channel.
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Figure 1.  (a, c) Evolution of the spatial soliton size a (dashed lines) and áañ (solid lines), as well as (b, d) dependence of the phase front curvature b 
on the beam width a for the gains g = (a, b) 10–4 and (c, d) 10–3; a0 = 25.
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Figure 2 presents the dynamics of the amplitude |Y (z, n)| 
of the wave beam in the one-dimensional array of equidis-
tantly arranged coupled active optical waveguides with the 
gain g = 10–3 for different initial powers of the wave beam P0. 
The dashed curve shows the dependence of the radiation 
power P on the evolution variable z, the solid curve shows the 
evolution of the root-mean-square beam size áañ, obtained by 
solving the system of equations (3), the dotted curve presents 
the dynamics of the beam width, calculated basing on the sys-
tem of equations (11). Thin vertical and horizontal lines indi-
cate the position, at which the radiation power achieves the 
threshold value for one-dimensional collapse of the wave 
beam initially having a plane phase front (P = Pcr » 3.9). As 
noted above, in the case of a spatial soliton at the input of 
the medium, the size of the wave structure will adiabati-
cally decrease until the power exceeds the threshold value 
[ ( )P z PcrL ]. After that, the radiation becomes localised in the 
central optical waveguide because of the discrete collapse 
[12, 17]. This case is presented in Fig. 2d. From this Figure, it 
is seen that the beam is captured in one channel, when the 
power attains Pcr (at z » 1350).

In the case when the initial power P0 of the radiation is 
smaller than the soliton power Psol (Figs 2a – 2c), the diffrac-
tion is a dominating process at the initial stage of the beam 
evolution. The increase in the transverse size of the wave field 
will continue until the nonlinearity and diffraction compen-
sate for each other, which provides the formation of a spatial 
soliton, i.e., until the condition 4/a3 » 4 /( )P a8 2p  becomes 
valid. Then the transverse size of the beam will exponentially 
decrease until the radiation power exceeds the critical one for 
self-focusing. The radiation becomes localised in the central 
optical waveguide because of the discrete collapse develop-
ment. For the initial powers above the soliton power (Figs 2e 

and 2f) the nonlinear term is dominant, which leads to a 
decrease in the length Lh of the radiation capture in a single 
optical waveguide. In this case, in the dynamics of the ampli-
tude distribution width the beats are observed.

Note that in the process of self-capturing of radiation in 
the central optical waveguide the radiation losses are consid-
erably reduced, in contrast to the radiation collapse in the 
conservative case, when the leakage of part of radiation from 
the main region of field localisation is more essential [12]. 
Apparently, this is due to the adiabaticity of the beam size 
decrease and smoothness of the radiation entrance into one 
optical waveguide. Therefore, the introduction of weak gain 
allows efficient capture of all radiation in one optical wave-
guide.

4. Controlling the position of the wave beam  
in the lattice of optical waveguides

Now let us proceed to the analysis of self-action of a wave 
beam injected at an angle (s0 ¹ 0) to the axis of the one-
dimensional lattice of weakly coupled active optical wave-
guides, the initial power being smaller than the threshold 
value (P0 < Pcr). As shown in Ref. [17], the presence of a non-
zero transverse wavenumber (s0 ¹ 0) in the conservative dis-
crete problem leads to a different effect of the intensity maxi-
mum trajectory deviation from a straight line for the wave 
beams with the power exceeding the critical self-focusing 
value. Obviously, in a sufficiently long active medium one 
should expect the manifestation of such an effect even for the 
wave beams with the initial power smaller than the critical 
value (P0 < Pcr).

First, let us consider the results of the numerical simula-
tion. Figure 3 presents the dynamics of the amplitude enve-
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lope of the wave beam |Y (z,n)| in the one-dimensional array 
of weakly coupled active optical waveguides with the gain  
g = 10–3 at different initial powers P0 and transverse wave-
numbers s0. At the input of the nonlinear medium, the 
Gaussian-shaped beam (6) was injected with the initial size 
a0 = 25 and plane phase front ( b0 = 0). The solid curve illus-
trates the dependence of the root-mean-square size of the 
wave beam (18) on the evolution variable z, and the dotted 
curve plots the dependence of the intensity centre of the 
beam on z:

( )
( )

| ( , )|x z
P z

n z n1

n

2G H Y=
3

3

=-

+

/ .	 (19)

The cases presented in Figs 3b and 3e correspond to the 
injection of the soliton-shaped wave beam into the array of 
optical waveguides. From the Figures it follows that, as above 
(see Fig. 2), the behaviour of the wave beam size áa(z)ñ is inde-
pendent of the initial transverse wavenumber s0 and is deter-
mined only by the ratio P0 /Psol. In particular, in the case P0 /
Psol < 1 (Figs 3a and 3c) the size of the wave beam at the ini-
tial stage increases until the diffraction and the nonlinearity 
compensate for each other. Then the transverse size of the 
wave beam will exponentially decrease in a similar way as in 
Figs 3b, 3c, 3e and 3f.

At the final stage of the wave field self-action, the discrete-
ness of the studied system begins to play the key role, essen-
tially affecting the dynamics of the main wave beam parameters 
[the size áa(z)ñ and the coordinate of the intensity centre áx(z)ñ], 
when the radiation power exceeds the threshold value Pcr 
because of gain. As a result of the discrete collapse develop-
ment, the wave field is localised in the region having the size 

comparable with the period of the lattice of equidistantly 
arranged optical waveguides, which essentially affects the 
transverse shift of the beam with respect to the considered lat-
tice. In contrast to the continuous medium, the ‘above-critical’ 
beams decline from the initial direction of rectilinear propaga-
tion and localise in a structure element, which is shifted with 
respect to the optical waveguide, initially central for the sym-
metric amplitude distribution.

As follows from Fig. 3, the final shift of the intensity cen-
tre of the wave field Dx0 depends on the ratio P0 /Psol. The 
maximal shift is attained at P0 /Psol < 1, which is due to an 
increase in the wave beam size at the initial stage. Alongside 
with that, the shift of the beam also increases with increasing 
initial transverse wavenumber s0.

Now let us find the final shift of the intensity centre the 
wave beam Dx0 transverse to the lattice. In the case of conser-
vative discrete problem, this shift is inversely proportional to 
the square root of the radiation power (Dx0 µ 1/ P0 ) [17]. 
Unfortunately, in the considered spatially inhomogeneous 
medium with gain it appears impossible to find the exact 
value of the shift because of the absence of the integral of the 
problem. The major part of the intensity centre of the shift of 
the wave field falls at the region of an adiabatic decrease in 
the wave beam transverse size.

Note that the initial transverse wavenumber s0 enters the 
analysed system of equations (11) only as a parameter, which 
does not change in further evolution. From the results of 
numerical simulation of the initial system of equations (3) it is 
seen that the shift Dx0 that takes place is finite although sig-
nificant as compared to the beam size (Fig. 3). For example, 
the total shift of the intensity centre of the wave field for a 
soliton-shaped beam with s0 = 0.06 (Fig. 3b) is smaller than 
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Figure 3.  Dynamics of the wave beam amplitude envelope |Y (z, n)| and z-dependences of the power P (dashed lines), beam size áañ (solid lines), and 
the coordinate of the beam intensity centre áxñ (dotted lines) on z at (a) P0 = 0.2Psol, s0 = 0.06; (b) P0 = Psol, s0 = 0.06; (c) P0 = 2Psol, s0 = 0.06; (d) P0 
= 0.2Psol, s0 = 0.12; (e) P0 = Psol, s0 = 0.12; and (f) P0 = 2Psol, s0 = 0.12; g = 10–3, a0 = 25, b0 = 0.



	 A.A. Balakin, A.G. Litvak, V.A. Mironov, S.A. Skobelev726

Dx0 » 150, although exceeds the initial beam size by a few 
times. Therefore, below we restrict ourselves to the case s0 << 
1 and assume that coss0 » 1. Therefore, the results obtained 
above for the self-channelling of the wave beam remain valid 
for the oblique injection of radiation into the active medium.

To estimate the transverse shift of the intensity centre of 
the soliton-shaped packet we will do the following. First, we 
consider the path segment, at which the power of radiation in 
smaller than the threshold value (P < Pcr). In this case, the 
discreteness of the medium does not manifest itself (d » 1) and 
in correspondence with Eqn (11d) the intensity centre moves 
along a straight line:

x0 = 2s0z.	 (20)

The beam width will decrease according to law (16) until the 
threshold power is attained. As a result, the maximal trans-
verse deviation of the intensity centre of the soliton-shaped 
wave beam from the central optical waveguide (n = 0) in the 
process of adiabatic decrease of the transverse size of the 
wave beam is expressed as

lnx P
Pcr

0
0

0g
sD = .	 (21)

To derive Eqn (21) we determined the segment of rectilinear 
trajectory with the length z0, basing on the law of power 
increase up to the threshold Pcr = P0exp(2gz0).

At the second stage, when the radiation power exceeds the 
threshold, the influence of the medium discreteness becomes a 
determining factor. The wave field in the process of a discrete 
collapse is localised in the cell at the trace for z << z0. It is easy 
to show that the shift of the intensity centre in this case will be 
also negligibly small.

Now let us compare the estimate of the final shift of the 
intensity centre of the wave field Dx0 (21) with the results of 
numerical simulation based on the initial system of equations 
(3). In Fig. 4 the circles show the dependence of the final shift 
of the wave field in the transverse direction on the initial 
transverse wavenumber s0, obtained as a result of processing 
the results of numerical simulation. This case corresponds to 

the injection of soliton-shaped wave field into the one-dimen-
sional array of weakly coupled active optical waveguides. The 
dashed line shows the estimate (21). Good agreement between 
the results of numerical simulation and qualitative analysis is 
seen.

Figure 4 presents also the dependences for the cases, when 
at the input a non-soliton-shaped distribution is injected (for 
P0 /Psol = 2 and 0.2). One can see that in these cases the agree-
ment between the results of numerical simulation and ana-
lytical estimate (21) is also good. 

5. Conclusions

We reported a detailed analytical and numerical study of the 
self-action of a wave beam, injected into a one-dimensional 
lattice of equidistantly arranged identical weakly coupled 
active optical waveguides. For qualitative understanding of 
the basic physical processes in the considered system a varia-
tional approximation is developed that allows a closed system 
of ordinary differential equations (11) to be derived for the 
characteristic parameters of the wave field distribution (the 
power, the width, the phase front curvature, and the coordi-
nate of the beam intensity maximum). This made it possible 
to classify the basic regimes of the wave field self-action and 
to determine the appropriate critical parameters.

Within the frameworks of the present approach, it was 
shown that the shift of the intensity centre of the wave field 
Dx0 does not affect its structure changes. This fact allows sep-
arate investigation of the dynamics of the wave field injected 
along the axis of the considered system (when Dx0 = 0) and 
the shift of the wave beam transverse to the optical wave-
guides. The analysis for the case of the gain increment much 
smaller than the inverse diffraction length of the wave field 
revealed the presence of two-stage dynamics. At the initial 
stage, the size of a soliton-shaped wave beam adiabatically 
decreases until the power of radiation attains the critical 
power for self-focusing in the one-dimensional discrete sys-
tem. As the power exceeds the critical value, due to the devel-
opment of discrete collapse, the wave beam becomes captured 
in one channel. The wave beams having the power smaller that 
the soliton power (14) at the initial stage will expand until the 
nonlinearity and diffraction compensate each other and the 
spatial soliton is formed. Further dynamics of the wave field is 
analogous to the one described above. From the analysis of 
Eqns (11), one can see that the adiabatic decrease in the wave 
beam width occurs when the phase front is nearly plane, which 
provides the smoothness of radiation entering into a single 
optical waveguide and, thus, significantly reduces the leakage 
of radiation from the field localisation region as compared to 
the case of conservative medium. The length at which the radi-
ation is captured into the central waveguide is estimated.

The analysis of wave beam injection at an angle to the 
considered system has shown the following. For the wave 
beams, wide in comparison with the cell size, at the initial 
stage of propagation the variations of the wave beam struc-
ture described above are initially accompanied by quasi-
rectilinear shift of the intensity centre transverse to the lat-
tice of optical waveguides. The subsequent process of radia-
tion capture by a single waveguide stops further shift. The 
estimates of the total shift are in good agreement with the 
results of numerical simulation. The value of the shift is 
mainly determined by the ratio of the injection angle to the 
gain increment.
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Figure 4.  Final shift Dx0 of the intensity centre of the wave beam across 
the considered lattice as a function of the initial transverse wavenumber 
s0 for P0 /Psol = ( ) 2, ( ) 1 and ( ) 0.2; g = 10–3, a0 = 25, b0 = 0. The curves 
present the results of calculation using Eqn (21).
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