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Abstract.  The problem of measuring red blood cell deformability 
by laser diffractometry in shear flow (ektacytometry) is considered. 
An algorithm has been developed for measuring the four central 
parameters of the erythrocyte deformability distribution, i.e. mean 
value, variance, asymmetry coefficient and kurtosis. The algorithm 
is designed to work with the peripheral part of the diffraction pat-
tern and serves to analyse weakly inhomogeneous ensembles of red 
blood cells. 

Keywords: red blood cell deformability, laser diffractometry, eryth-
rocyte deformability distribution.

1. Introduction 

Deformability of red blood cells is one of the main rheological 
characteristics of blood [1, 2]. The task of measuring this 
parameter, taking into account the heterogeneity of red blood 
cell population, is very important [3], and possible approaches 
to its solution are discussed in [4 – 6]. In our work [7, 8], we 
have shown that laser ektacytometry makes it possible to 
measure the statistical characteristics of red blood cell ensem-
bles: mean deformability, width and asymmetry of the eryth-
rocyte deformability distribution. In this paper, we discuss 
the possibility of measuring another parameter – the coeffi-
cient of kurtosis for the distribution of red blood cells in terms 
of their deformability. 

The coefficient of kurtosis is traditionally used to charac-
terise the difference between the probability density distribu-
tion and the Gaussian distribution. One of the manifestations 
of this difference may be the bimodality of the structure of the 
erythrocyte deformability distribution, characteristic of some 
diseases, in particular for sickle cell anaemia and malaria. The 
measurement technique proposed by us can be useful in the 
diagnosis and treatment of these and other diseases associ-
ated with the impairment in blood cell deformability.

Laser ektacytometry is a method based on measuring the 
deformation of red blood cells under a given level of applied 
shear stress. The latter occurs during the flow of a suspension 
of erythrocytes through a thin capillary or a Couette-like sys-
tem, when a fluid flow is produced in a gap between two 
plates as a result of the movement of one of them. Shear stress 
deforms (elongates) red blood cells and makes their shape 

close to ellipsoidal [3]. To visualise the shape of erythro-
cytes, the flow is illuminated by a laser beam and the result-
ing diffraction pattern is observed. Experience shows that 
with an increase in shear stress, the diffraction pattern is 
stretched in the direction perpendicular to the flow direction 
(Fig. 1a). The degree of diffraction pattern elongation serves 
as a measure of red blood cell deformability. The method of 
ektacytometry of red blood cells is described in more detail 
in [9 – 11]. 

2. Red blood cell ensemble model 

For a correct interpretation of the experimental data, a theory 
is needed that relates the characteristics of an ensemble of red 
blood cells with the parameters of the observed diffraction 
pattern. Following work [12, 13], an erythrocyte in shear flow 
will be modelled by a transparent elliptical disk. The semi-
axes of the disk a and b are considered to be random variables 
and are defined by the formulae [14 – 17] 

a = a0(1 + e),     b = b0(1 – e), 	 (1)

where a0 and b0 are the average dimensions of the semi-axes; 
and e is a random parameter of the shape of particles with the 
following characteristics: 

áeñ = 0,   m = áe2ñ,   n = áe3ñ,   d = áe4ñ. 	 (2)

In addition, we assume that 
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Figure 1.  (a) Example of a diffraction pattern observed using a red 
blood cell ektacytometer and (b) isointensity curve and its polar points. 
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|e| <<  1, 	 (3)

that is, the heterogeneity of the ensemble in the particle shape 
is relatively weak. In this model, the mean red cell deform-
ability is characterised by the parameter 

s = a0/b0. 	 (4)

The red blood cell deformability distribution is described 
by the probability density w(e) for a random parameter e. The 
parameters defined by formulae (2) represent the central 
parameters of this distribution. The coefficient of kurtosis is 
expressed through them by the formula

Ex = d/m2 – 3. 	 (5)

For a Gaussian random variable, Ex = 0.

3. Diffraction pattern characteristics 

A diffraction pattern can be conveniently analysed using 
the concept of an isointensity curve, which is the curve on 
the observation screen with some constant value of the 
scattered light intensity. For healthy blood samples, shapes 
of isointensity curves are close to ellipses. For blood sam-
ples containing a fraction of weakly deformable cells (for 
example, in sickle cell anaemia), isointensity curves become 
rhombic [18]. 

To describe the shape of an isointensity curve, we use the 
Cartesian coordinate system on the observation screen. The 
origin of this system is placed at the centre of the diffraction 
pattern (the point of incidence of a direct laser beam), the x 
axis is directed horizontally, and the y axis is directed verti-
cally. Physically, these directions differ in that one of them is 
parallel to the direction of the shear flow, and the other is 
perpendicular to it. In this coordinate system, the shape of the 
isointensity curve is described by the function x = x(y) or y = 
y(x). The points of intersection of the curve with the axes of 
coordinates are called the polar points of the isointensity 
curve (Fig. 1b). We denote the coordinate of the right polar 
point by xp, and the top polar point – by yp. The shape of the 
isointensity curve near the polar points is characterised by the 
derivatives of the functions x(y) and y(x), as well as by the 
dimensionless parameters
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In addition, the isointensity curve is characterised by the level 
of light intensity I or normalised intensity 
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Here, I(0) is the intensity of the central maximum of the dif-
fraction pattern; and b = – 0.4 is a constant value (a parameter 
of the Bessel function). To find the numbers C1, C2, C3, and 
C4, we need to choose the coefficients of the fourth-degree 
polynomials describing the shape of the isointensity curve 
near the polar points. These polynomials have the form: 
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We assume that the parameters f0, C1, C2, C3, and C4 can be 
measured with a laser ektacytometer. 

As an example, Fig. 2 shows the approximation of a circle 
by second- and fourth-degree polynomials. One can see that 
the fourth-degree polynomial significantly expands the region 
of similarity of the circle and its polynomial approximation. 
As applied to laser ektacytometry of red blood cells, this 
means that the approximation makes it possible to more fully 
reveal the features of the observed diffraction pattern and 
thus better to take into account the properties of the blood 
sample being investigated. 

4. Diffractometric equations 

In the model of flat elliptical disks, the distribution of light 
intensity on the observation screen is described by the for-
mula [19]
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where

( ) ( )q z
k a x b y1 10

2 2 2
0
2 2 2e e= + + - ; 	 (9)

I0 is the intensity of the incident laser beam; N is the number 
of particles illuminated by the beam; z is the distance from the 
measuring volume to the observation screen; k = 2p/l is the 
wave number; l is the wavelength of the light; and J1(x) is the 
first order Bessel function. The parameter |g|2 is determined 
by the thickness and optical density of the disk mimicking an 
erythrocyte; angle brackets denote averaging over an ensem-
ble of red blood cells. Note that formulae (8) and (9) describe 
the distribution of the light intensity at those points of the 
observation screen where the direct laser beam is absent. 
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Figure 2.  Approximation of a circle by second- and fourth-degree poly-
nomials.
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Assuming that x = y = 0, and also taking into account 
the asymptotics of the Bessel function and formulae (2), we 
find the intensity of light at the centre of the diffraction pat-
tern: 

(0) | | ( )I I N a b z
k
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1 1 20
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0 0

2
g m d= - +` j .

By normalising the intensity of light at an arbitrary point of 
the observation screen to the intensity of the central maxi-
mum, we obtain 
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Laser ektacytometry traditionally makes use of the dif-
fraction pattern region on the periphery of the central maxi-
mum, that is, near the first dark ring. This part of the diffrac-
tion pattern is most sensitive to the parameters of the ensem-
ble of red blood cells [6]. The Bessel function in this region 
allows linear approximation: 

J1(q) = b(q – q1).

Here b = – 0.4 and q1 = 3.82 are constant values (parameters 
of the Bessel function). In this case, the normalised distribu-
tion of light intensity takes the form: 

( )
( )

I
I

p0 1 2
4

1 1 1
2

2
2

m d
b

e=
- +

- -
e

c m; E , 	 (10)

where p = q/q1. 
We introduce the quantities u = x/A and n = y/B, where 
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are the parameters determining the size of the diffraction pat-
tern, as well as g = u2 + n2 and h = u2 – n2. Then the expression 
for the parameter p takes the form

( )p g h1 22e e= + + .

Substituting this expression into formula (10), we obtain
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We expand the function F (e) into a Taylor series in pow-
ers of the parameter e, and then average the resulting expres-
sion over an ensemble of erythrocytes. With formulae (2) 
taken into account, we obtain 

g g g H g g1 4 3 2 5 32 2 m= - + - - + -f ^ ^h h6 @

	 g H g H g H8 5 7 8
4
1 64 352 4n+ - + - + + -^ ^h h6 6@

	 2 4 19 16g H g g40 27 2 d+ - + + - +^ h @ . 	 (12)

Here, H = h/g. When f = const, this formula is an equation for 
the isointensity curve. 

We introduce the polar coordinates r and j, defining them 
by the formulae u = rcosj and n = rsinj. Then,  g = r2, h = 
r2 cos(2j), and 

H = cos(2j). 	 (13)

In polar coordinates, the isointensity curve is described by 
the function r = r(j). The right polar point corresponds to 
j = 0, and the upper polar point corresponds to j = p/2. The 
equation for the function r(j) follows from equation (12) and 
has the form 
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or 

ar2 – 2(1 + U )r + 1 + V = 0. 	 (14)

Here, f0 is defined by formula (7);
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For a weakly inhomogeneous ensemble of erythrocytes, m, 
n , and d are small parameters. In this case, an approximate 
solution of equation (14) can be represented as 

r(j) = GR(j),

where
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, 

and the function R(j) is described by the formula 
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Note that the function R(j) and its derivatives are linear in 
small parameters. 

We introduce the functions 

( ) ( )cosu Rj j j=u ,    ( ) ( )sinRn j j j=u . 	 (21)

Then,

( ) ( )x A uj jG= u ,    ( ) ( )y Bj n jG= u , 	 (22)

where AG = const and BG = const. Using formulae (4), (6), 
(11), and (22), we obtain 
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Here, the functions ( )u ju  and ( )n ju  are defined by formulae 
(13), (17) – (21). Let us calculate the values of C1s and C3 s. 
Derivatives of /du2 2nd u u  and /du4 4nd u u   can be expressed in terms 
of derivatives of functions ( )u ju  and ( )n ju  with respect to the 
argument j. Namely,
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The primes in these formulae denote the derivatives of the 
functions with respect to the argument j. 

Using formulae (13), (17) – (21), (23), (25), and (26), in the 
approximation of a weakly inhomogeneous ensemble of par-
ticles (3) we obtain

C1s = 1 + mq1 – nq2 + dq3 – m2q4,	 (27)

C3s = 1 – mq1 + nq5 – dq6 + m2q7. 	 (28)

Here, 
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Similarly, we calculate the values of C2 /s and C4 /s, defined by 
formulae (24): 

s
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Formulae (27), (28), (30), and (31) are diffractometric equations. 
They relate together the parameters of the diffraction pattern 
and the characteristics of the ensemble of red blood cells. 

5. Algorithm of data processing 

Equations (27), (28), (30), (31) can be rewritten in the form
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Having solved equations (32) – (35), we obtain 
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Here,
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Formulae (36) – (42) determine the algorithm for measur-
ing the characteristics of erythrocyte deformability, whose 
input parameters are the numbers f0, C1, C2, C3, and C4, 
defined by formulae (6), (7) and measured using a laser ekta-
cytometer. The output parameters are the numbers s, m, n, 
and d, defined by formulae (1), (2), and (4). These numbers 
characterise the red blood cell deformability distribution for a 
given blood sample. The sought values are found by succes-
sively applying formulae (29), (41), (37), (39), (36), (42), (38), 
(40), and (5). 

6. Statistical moments of bimodal distribution 

Consider bimodal erythrocyte ensemble deformability. For 
such an ensemble, the random parameter e can take only two 
values, i.e. e1 and e2. Let p be the probability of the first of 
these values. Then, using notation (2), we can write: 
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( )p p1 01 2e e+ - = ,    (1 )p p2 2e e m+ - =1 2 ,

(1 )p p3 3e e n+ - =1 2 ,    (1 )p p4 4e e d+ - =1 2 . 

These formulae yield the equation 

02
2

d m m
n

- - = .

Thus, for a bimodal random variable, there is a definite 
relationship between the central statistical moments of the 
second, third, and fourth orders. With regard to laser ektacy-
tometry, this means that a certain combination of statistical 
moments, including the kurtosis of a distribution, can serve as 
an indicator of the modal structure of the red blood cell 
deformability distribution. 

Thus, we have considered the problem of measuring the 
erythrocyte deformability by laser diffractometry (ektacy-
tometry) in shear flow. An algorithm has been presented for 
measuring the four central parameters of the erythrocyte 
deformability distribution: mean value, dispersion, asymme-
try coefficients and kurtosis. The algorithm is designed to 
work with the peripheral part of the diffraction pattern and 
serves to analyse weakly inhomogeneous ensembles of eryth-
rocytes. The simultaneous determination of these parameters 
may be important for blood samples containing a fraction of 
weakly deformable cells (for example, in sickle cell anaemia).
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