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Abstract.  We consider the problems of constructing a cluster state 
from a set of orthogonal modes. It is shown that the commonly used 
unitary transformation is not reduced in this case to a set of stan-
dard operations of linear optics performed over fields in a squeezed 
state, but should be supplemented by a more complicated operation 
of a noise-free transformation of the quantum signal profile. At the 
same time, if it is possible to form a cluster whose node amplitudes 
have different time profiles, this property does not interfere with the 
performance of calculations on the cluster. 

Keywords: quantum cluster state, orthogonal modes, squeezed state 
of the light.

1. Introduction 

Interest in quantum computations and, in particular, in one-
way quantum computing [1 – 3] has generated a huge number 
of variants for constructing quantum cluster states. The prin-
ciples of generation of quantum states and operations with 
them differ dramatically depending on the ‘language’ used to 
describe them, i.e. in terms of discrete [1] or continuous vari-
ables [4 – 6]. For both variants of the description, an appara-
tus has been developed for performing logical operations, 
which makes it possible to implement a universal quantum 
computer provided that a suitable multiparticle-entangled 
quantum state is constructed. In this paper, we will consider 
only continuous-variable cluster states. 

A quantum ‘resource’ for constructing a quantum cluster 
state can be quadrature squeezing of light modes [7, 8], in 
which case one can speak of temporal mode squeezing or of 
spatial squeezing. Methods for constructing clusters based on 
correlations over the orbital angular momentum have been 
proposed in Refs [9, 10]. There are proposals for the construc-
tion of cluster states based on the spin waves of atomic ensem-
bles [11, 12] and optomechanical systems [13]. Of interest are 
the methods for generating ‘hybrid’ cluster states on the basis 
of material and field oscillators [11]. 

When discussing the problem of constructing a quantum 
cluster state, and then calculating it, the key concept is the 
idea of light modes or of the modes of other considered quan-
tum objects. Without loss of generality, we shall speak of light 

modes. Each mode is associated with a quantum oscillator, 
and the transformation of such a mode must be described by 
the laws of quantum mechanics. In this paper, we would like 
to draw attention to the issue of the correctness of the use of 
certain mathematical constructions in the discussion of the 
cluster state generation. The motivation for us was the publi-
cation of a number of papers [14 – 17], which consider the for-
mation of a cluster based on orthogonal modes of different 
nature. 

2. Cluster generation as a unitary  
transformation over squeezed modes 

We recall briefly how a continuous-variable cluster state is 
determined. The mathematical description of the procedure 
for constructing a cluster begins with specifying the graph of 
the future cluster, as it determines the topology (structure) of 
the state that we want to obtain at the output. To determine 
the graph G of the cluster state, it is sufficient to specify a set 
of nodes and a set of edges connecting these nodes. The nodes 
of the graph are the modes of a physical system described by 
pairs of canonical variables ,X Y{ }i i

t t  satisfying canonical com-
mutation relations, and the edges are the quantum entangle-
ment of modes. Each edge connecting the nodes i and j is 
associated with a real number uij Î [–1, 1], called the weight of 
an edge. The set of these weights defines an adjacency matrix 
V = {uij}, which completely defines the graph G. 

Usually, when constructing a cluster state, the following 
procedure for its generation is discussed. We consider n inde-
pendent quantum harmonic oscillators in a quadrature-
squeezed state. Each of these oscillators is given by quadra-
ture operators xit  and yit , subject to the canonical commuta-
tion relations

j[ , ] ,ix y
2j k kd=t t 	 (1)

where the subscripts j and k denote the corresponding oscilla-
tor, and d j k is the Kronecker delta. In this case, we assume 
that all the oscillators are squeezed along the yt -quadrature 
[18], i.e., their variances are less than those of the vacuum 
state: 

, 1, ...,y i n
4
1

i
2 1G Hd =t . 

Let us entangle these subsystems so that the coupling 
strength between the ith and jth oscillators corresponds to the 
element uij of the adjacency matrix V [in the sense of satisfying 
equalities (3) and (4), see below]. As a result, we obtain a 
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physical system in the quantum cluster state, to which the 
graph G given by the adjacency matrix V corresponds. Note 
that the nodes of the graph G correspond to quantum har-
monic oscillators entangled in a certain way. Such an entan-
glement can be described by the Bogoliubov transformation 
[19] over an original set of independent quadrature-squeezed 
oscillators: 

( ), , ...,i iX Y u x y j n1j j j k k
k

n

1

+ = + =
=

k
t t t t/ , 	 (2)

where U = {uij}
n
j, k = 1 is a unitary matrix fixing a specific set of 

transformations over subsystems, so that the result of the 
transformation corresponds to the adjacency matrix V (we 
will discuss the connection of these matrices below); and jXt  
and jYt  are the quadrature operators of the jth node of the 
cluster state. 

The quantum-statistical properties of discrete-variable 
clusters are usually described using stabilisers [20]. However, 
for continuous variables, the most natural way to describe the 
statistics of a cluster state is a ‘nullifier’ operator, which is 
introduced for each node of the graph G: 

j , , ..., .N Y X j n1j ji i
i

n

1

u= - =
=

t t t/ 	 (3)

By definition, the physical system is in the quantum cluster 
state if the variances of all its nullifiers tend to zero in the limit 
of infinite squeezing of the quantum harmonic oscillators 
used to generate it [18]: 

1, ..., , 0limj n N j
26 G Hd= =t  at 0, ..., 0.y yn1

2 2
" "G H G Hd dt t 	 (4)

According to the Bloch – Messiah reduction theorem [21], an 
arbitrary Bogoliubov transformation can be represented in 
the form of four successive operations: 

( ) ( ) ( ) ( )U R S r R D1 2f f a=t t t t t , 	 (5)

where ( )R 1ft  and ( )R 2ft  are the rotation operators on the fam-
ily of angles i{ } ,j i j

n
1 1 1f f= =  and i{ } ,i j

n
2 2 1f f= =j , respectively. 

The operator ( )S rt  corresponds to the n-mode squeezing with 
real squeezing coefficients { .., }r r rn1= . The operator ( )D at  is 
the displacement operator of n quadratures by the quantities 
a = { , ..., }n1a a . If the transformation is performed over 
Gaussian states (we consider this case), the above operators 
can be represented in matrix form: for example, rotation and 
squeezing matrices for a single-mode state have the form

( )
cos
sin

sin
cos

R f
f
f

f
f

=
-e o,     ( ) e

e
S r

0
0r

r=
-

e o. 	 (6)

In the case of the n-mode state, the corresponding matrices 
will acquire a block structure. Note that the matrix of quadra-
ture displacements present in the general expansion can be 
omitted in further transformations, since the displacements of 
each mode described by it for some given classical quantities 
do not affect the quantum-statistical properties of the cluster 
and its use for quantum computations. As was shown in [22], 
when performing the procedure for constructing a cluster 
from initially squeezed modes, it suffices to confine oneself to 
linear optics transformations. The matrix U in this case cor-
responds to a successive application of rotation and mixing 
transformations on a beam splitter. The condition for the 

number of required operations can be obtained based on the 
cluster dimension and topology [23]. However, important for 
us is the mode mixing procedure ‘sewed’ in the Bogoliubov 
transformation. The mixing transformation cannot be per-
formed on modes with different profiles without an addition 
of noise. In fact, if the field with the time profile L1(t) is inci-
dent on the first input of the beam splitter [and with the time 
profile L2 (t) on the second], then, according to the transfor-
mation rules, we should consider the field of the same mode at 
the other input of the beam splitter. Since there is no backil-
lumination of this mode at the second input of the beam split-
ter, this field should be considered as a vacuum field. Thus, 
the mixing of the fields with different profiles should in fact be 
described as a four-wave linear process in which two vacuum 
fields and two squeezed fields participate. When such fields 
are mixed, the mode correlations decrease, and the obtained 
field (although exhibits entanglement properties) is small due 
to the influence of vacuum noise. 

In other words, speaking of the unitary multimode 
Bogoliubov transformation, we must take into account also 
the modes initially in the vacuum state and not participating 
in the process. The rotation of the basis causes the interaction 
of these modes. 

Thus, we see that, by mixing modes with different time 
profiles, it is impossible to generate a well-entangled state. In 
particular, one cannot obtain a quantum cluster state by lin-
ear transformations over squeezed modes with different time 
profiles. The same conclusion is valid if the modes differ not 
by the time profiles, but by any other characteristic that 
allows one to speak of the mode composition of radiation. 

Using the Bogoliubov transformation allows us to discuss 
the problem of mode mixing not directly, like the transforma-
tion of light fields on a beam splitter, but as some generalised 
procedure that transforms the forms of the mixed fields. As 
an example of such a procedure, we can mention the writing 
of a signal in the cell of quantum memory with the subsequent 
reading of a signal of a different form from this cell [24, 25]. If 
the efficiency of such a process tends to unity, the quantum-
statistical correlations of the initial wave are transferred with-
out losses to a wave with a different mode profile. As is well 
known, this transformation is described by the beam splitter 
Hamiltonian, and the high efficiency of the process corre-
sponds in this analogy to the transmission coefficient of the 
beam splitter, tending to unity. However, it should be noted 
that the creation of such converters requires considerable 
effort, and it is unreasonable to assume the presence of a con-
verter in the ‘default’ scheme, without discussing options for 
its implementation. 

We have discussed the issue of constructing a cluster state 
by linear transformations over squeezed oscillators. However, 
this discussion does not solve the problem, since it excludes 
the possibility of using nonlinear transformations to con-
struct a cluster. Suppose that there exists a nonlinear physical 
process that allows us to write down a formal set of equalities 
(3), where the operators jXt  and jYt  refer to orthogonal modes 
[26]. In what sense should we understand this equality and 
can we speak of such a state as a cluster state? 

To answer this question, let us turn again to the definition 
of the cluster state (3) and (4). This definition includes the 
averaging procedure, that is, it is directly related to the mea-
surement. What measurement is assumed with such a writing? 
It can be confidently asserted that it is not possible to specify 
a homodyne profile that performs a measurement in the case 
when the quadratures jXt  and jYt  belong to orthogonal modes. 
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Thus, in this case, we must again assume that there is an aux-
iliary device that transforms the mode profile with the preser-
vation of its quantum statistics. 

In connection with the fact that the quantum cluster state 
is of interest primarily as a resource for one-way computa-
tions, we will discuss the problem of constructing a cluster 
based on orthogonal modes from the point of view of the pos-
sibility of performing such calculations on it. Because the cal-
culation procedure is based on measurements, one can expect 
that they also impose limitations on the cluster’s mode com-
position. 

3. One-way computations and their relation  
to the choice of cluster modes 

Let us describe the procedure for one-way quantum compu-
tations on a many-particle quantum field state satisfying 
equality (3), where the operators jXt  and jYt   are assumed to be 
related to orthogonal modes. 

As an example, we consider a calculation on a linear four-
mode cluster state. The calculation scheme is shown in Fig. 1. 
Amplitudes of such a cluster state can be represented in the 
form 

( ) ( ) , , ...., .i vacA t L t X Y j 1 4i j j j j= + + =t t t^ h  	 (7)

Here { ( )}L tj j 1
4
=  are arbitrary orthogonal functions belonging 

to a complete orthonormal set, over which the field ampli-
tudes are expanded. We assume that the remaining modes, 
which are also present in the expansion, are in the vacuum 
state and are described by the terms vacj. The quantities  

,X Yj j j 1
4
=

t t" ,  are the operator expansion coefficients, which are 
the canonical quadratures of the modes. Since the quantum 
state in question is a cluster, these quadratures must satisfy 
three van Loock – Furusawa inequalities: 

Y X Y X X 11 2
2

2 1 3
2
1d d- + - -t t t t t^ ^h h ,	 (8)

1Y X X Y X X3 2 4
2

2 1 3
2
1d d- - + - -t t t t t t^ ^h h ,	 (9)

1Y X X Y X3 2 4
2

4 3
2
1d d- - + -t t t t t^ ^h h . 	 (10)

These inequalities make it possible to obtain a relationship 
between the quadratures of the cluster state and the quadra-
tures of the squeezed oscillators on which this state was gen-
erated: 

X x x y
2
1

10
1

5
2

1 1 2 3= + +t t t t ,  	

(11)

Y y y x
2
1

10
1

5
2

1 1 2 3= + -t t t t ,

X y y x
2
1

10
1

5
2

2 1 2 3=- + -t t t t ,	

(12)

Y x x y
2
1

10
1

5
2

2 1 2 3= - -t t t t ,

X y y x
2
1

10
1

5
2

3 4 3 2= + -t t t t ,	

(13)

Y x x y
2
1

10
1

5
2

3 4 3 2=- - -t t t t ,

X x x y
2
1

10
1

5
2

4 4 3 2=- + +t t t t ,  	

(14)

Y y y x
2
1

10
1

5
2

4 4 3 2=- + -t t t t

The amplitude of the input field, over which we will carry out 
the calculations, is represented similarly to expansions (7): 

( ) ( ) i vacA t L t X Yin in in in1= + +t t t^ h . 	 (15)

The input signal profile must be consistent with the profile of 
the first cluster node. To perform calculations on the input 
state, we mix it to the cluster state. To do this, we mix the fields 
with the amplitudes ( )A tin

t  and ( )A t1t  on the beam splitter. The 
result of the transformation can be written in the form 

( )
( )

t
L t

X x x y
2 2

1
10
1

5
2

`in in
1

1 2 3= + + +Alt t t t t; 	

	 i vacY y y x
2
1

10
1

5
2

in in1 2 3+ + + - + ,t t t tc mE 	 (16)

( )
( )

t
L t

X x x y
2 2

1
10
1

5
2

in1
1

1 2 3= - - -Alt t t t t;

	 .i vacY y y x
2
1

10
1

5
2

in 1 2 3 1+ - - + +t t t tc mE 	 (17)

To perform the transformation over the input field Ain
t , it is 

necessary to measure the amplitudes ( )A tin
t , ( )tA1lt , ( )A t2t  and 

( )A t3t  using four homodyne detectors whose local oscillators 
have amplitudes bk(t) = b0L1(t)(cos qk + i sin qk), where k = 
{in, 1}, and bk(t) = b0Lk(t)(cos qk + i sin qk), where k = {2, 3}, 
respectively. As a result, we obtain expressions for time-
dependent photocurrent operators: 

( ) ( ) cosi t L t X x x y2
2
1

10
1

5
2

in in in0 1
2

1 2 3b q= + + +t t t t tc m;

	 sinY y y x
2
1

10
1

5
2

in in1 2 3 q+ + + -t t t tc m E,	 (18)

( ) ( ) cosi t L t X x x y2
2
1

10
1

5
2

in1 0 1
2

1 2 3 1b q= - - -t t t t tc m;

	 sinY y y x
2
1

10
1

5
2

in 1 2 3 1q+ - - +t t t tc m E,	 (19)
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Output
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Figure 1.  Schematic of one-way computing using a four-mode cluster 
state. The amplitudes Â1 – Â4 have different mode profiles, but they are 
the amplitudes of the nodes of the cluster state; Âin is the amplitude of 
the input state over which computations are performed; BS is the beam 
splitter; LOin, LO1 – 3 are the local oscillators; and Dx and Dy perform 
photocurrent displacement operations.
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( ) ( ) cosi t L t y y x
2
1

10
1

5
2

2 0 2
2

1 2 3 2b q= - + -t t t tc m;

	 sinx x y
2
1

10
1

5
2

1 2 3 2q+ - -t t tc m E,	 (20)

( ) ( ) cosi t L t y y x
2
1

10
1

5
2

3 0 3
2

1 3 2 3b q= + -t t t tc m;

	 sinx x y
2
1

10
1

5
2

4 3 2 3q+ - - -t t tc m E,	 (21)

which after integration with respect to time, taking into 
account the orthonormality of the set of profiles {Li (t)}, lead 
us to the relations 

cosi X x x y2
2
1

10
1

5
2

in in in0 1 2 3b q= + + +t t t t tc m;

	 sinY y y x
2
1

10
1

5
2

in in1 2 3 q+ + + -t t t tc m E,	 (22)

cosi X x x y2
2
1

10
1

5
2

1 in0 1 2 3 1b q= - - -t t t t tc m;

	 sinY y y x
2
1

10
1

5
2

in 1 2 3 1q+ - - +t t t tc m E,	 (23)

cosi y y x
2
1

10
1

5
2

2 0 1 2 3 2b q= - + -t t t tc m; 	

	 sinx x y
2
1

10
1

5
2

1 2 3 2q+ - -t t tc m E,	 (24)

cosi y y x
2
1

10
1

5
2

3 0 4 3 2 3b q= + -t t t tc m;

	 sinx x y
2
1

10
1

5
2

4 3 2 3q+ - - -t t tc m E. 	 (25)

We solve the resulting system of equations for the 
unknown quadratures x1t , x2t , x3t  and x4t  and substitute them 
into equation (7) for the amplitude ( )A t4

t , taking into account 
relationship (14). Thus, we find quadratures of the field ( )A t4

t , 
which we denote by ( )X tout

t  and ( )Y tout
t . These quadratures are 

related to the quadratures of the initial signal ( )A tin
t  as fol-

lows: 

( )
( )

( ) ( , ) ( , )
X t
Y t

L t K M
X
Y

out

out

in

in
4 2 3q q q q= + -

t

t

t

te eo o

	 ( ) ( )L t F

y
y
y
y

L t H

i
i
i
i

in

4

1

2

3

4

4
1

2

3

+ +

t

t

t

t

t

t

t

t

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO
, 	 (26)

where q± = q1 ± qin; 

( , )
sin

cos cos
sin

sin
cos cos

M 1q q
q

q q
q

q
q q

=
+

- -
+ -

-

+ -

+

+

+ -
e o 	 (27)

and

( , )
( )

sin sin
cos

cot

cot
K

1
2 3 2 3

2 3

2

3q q q q
q q

q

q
=

+

- -
f p 	 (28)

are the matrices; and F and H are also matrices depending on 
qin, q1, q2, and  q3. The general form of the quadratures   ( )X tout

t  
and ( )Y tout

t   is given in the Appendix. 
Equation (26) consists of three terms. The first term cor-

responds to the desired transformation over the quadratures 
of the field Ain

t . This transformation is completely determined 
by the choice of the angles qin, q1, q2, and q3 for homodyne 
detection. The second term contains only squeezed quadra-
tures with numerical coefficients, and the last one contains 
photocurrent operators. In the computations on cluster 
states, we measure the photocurrents; therefore, we must pass 
from the operators i int , i1t , i2t , and i3t  to the corresponding 
measured c-number values. Then in the last term on the right-
hand side of (26) there will be only classical quantities that 
can be compensated for by shifting the quadratures of the 
output field. Formally, the displacement is described by the 
action of the operators ( ) ( )exp iD s sYx = -t t  and ( )D sy =t  

( )exp isX- t : 

( ( )) ( ) ( ( )) ( ) ( )D s t X t D s t X t s tx x = +
@t t t t ,	

(29)
( ( )) ( ) ( ( )) ( )D s t Y t D s t Y tx x =

@t t t t ,

( ( )) ( ) ( ( )) ( ) ( )D s t Y t D s t Y t s ty y = +
@t t t t ,	

(30)
( ( )) ( ) ( ( )) ( )D s t X t D s t X ty y =

@t t t t . 

It is worth noting that the displacement value is selected using 
the feed-forward procedure in each individual experiment. 
The essence of this operation is that we send the measurement 
results to the physical devices that perform the transforma-
tions ( )D sx

t  and ( )D sy lt  before the field arrives at them. Thus, 
we prepare these devices so that the quadratures of the light 
that has come on them are displaced in the way we need. If in 
our problem we apply transformations to output quadra-
tures, 

( ( ) ( ))D L t H i H i H i H iinx 4 11 12 1 13 2 14 3- + + +t ,

( ( ) ( ))D L t H i H i H i H iiny 4 21 22 1 23 2 24 3- + + +t ,

then we completely compensate for the last term in expres-
sion (26). 

The second term on the right-hand side of (26) is propor-
tional to the squeezed quadratures y1t , y2t , y3t  and y4t . Since 
each computation terminates by the procedure for measuring 
the resulting state, these terms under sufficiently good initial 
squeezing can be neglected as small corrections. Therefore, 
the final equation relating the input and output quadratures 
takes the form 

( )
( )

( ) ( , ) ( , )
X t
Y t

L t K M
X
Y

out

out

in

in
4 2 3q q q q= + -

t

t

t

te eo o. 	 (31)

This equation demonstrates a linear relationship between the 
input and output quadratures. Hence, we can use the 
Bloch – Messiah reduction theorem [21], which states that the 
matrix ( , ) ( , )K M2 3q q q q+ -  relating the quadratures can be 
expanded as follows:
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( , ) ( , ) ( ) ( ) ( )K M R S r R2 3 1 2q q q q f f=+ - , 	 (32)

where the matrices of rotation (R) and squeezing (S) have 
form (6), and the rotation angles f1 and f2 and the squeezing 
parameter r are explicitly expressed in terms of the homodyne 
angles qin, q1, q2, and q3. As was shown in [27], this is the most 
common expansion, i.e., by choosing the angles of homodynes, 
we can perform an arbitrary linear transformation over the 
input state of the field. 

The quadratures of the cluster state node (26) after the 
reduction procedure associated with measuring the quadra-
ture of the previous node are proportional to the mode pro-
file of this node. In other cases, expression (26) completely 
coincides with the analogous formula without taking into 
account the specificity of the various profiles of cluster 
nodes [27]. As we see, there are no additional noise terms 
associated with the mismatch of mode profiles. Thus, the 
computation procedure proves to be stable with respect to 
the change in the mode composition of the cluster nodes. 
Note that the signal profile over which the computation is 
performed will change in this case and will coincide with the 
profile of the last measured cluster node. A completely anal-
ogous situation arises when two-qubit operations are per-
formed both on linear clusters and on clusters with a more 
complex topology. 

4. Conclusions 

We have shown that the formal application of the unitary 
transformation, often used in describing the construction of a 
cluster from field oscillators with mismatched amplitude pro-
files, leads to the addition of noise if such a transformation is 
implemented by means of standard linear optics devices. To 
perform this transformation, it is necessary to use an addi-
tional device that modifies the profile of the field amplitude 
and maintains the quantum correlations in it. As a possible 
variant of such a converter, one can consider a quantum 
memory cell [24, 25]. At the same time, if it is possible to gen-
erate a cluster whose node amplitudes have different time 
profiles, this feature does not interfere with the performance 
of computations on the cluster. 

It should be noted that the simplicity of constructing a 
cluster state from field oscillators in a squeezed quantum 
state is considered to be a great advantage of these many-
particle-entangled systems. Excessive noise in them is often 
estimated based on the number of elements that perform 
mixing and rotation of field amplitudes. These estimates 
cease to be true if it is assumed that such nontrivial devices 
as quantum converters of the signal profile are embedded in 
the scheme. 

We have conducted a discussion, assuming that the field 
modes differ in temporal profiles. However, the same reason-
ing is valid if the field modes are obtained by any other expan-
sion with respect to a complete orthonormal set of functions. 
When mixing such modes, it is necessary to take into account 
the presence of orthogonal modes in the vacuum state. Note 
that, although for time modes the mechanisms of their quan-
tum transformation have already been proposed, the develop-
ment of devices that perform a noiseless conversion of other 
degrees of freedom requires discussion. 

We would like to emphasise that in considering the forma-
tion of many-particle-entangled quantum systems, the issue 
of mixing different modes should not remain only a mathe-

matical operation, but requires specifying the used mixing 
procedure.
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Appendix. Relationship between input and 
output quadratures of the oscillators in quantum 
computations 

Let us expand the explicit form of the quadratures Xout
t  and 

Youtt  in expression (26): 
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