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Abstract.  The effect of increasing an electric field E is investigated 
for oblique incidence of radiation on a finite one-dimensional pho-
tonic crystal. The peculiarities in the field distribution in the struc-
ture E(x) are found to be due to the interference of counterpropa-
gating Bloch waves; therefore, the conditions for increasing the 
field to a maximum value |E|max coincide with those for achieving 
the maximum band gap Eg of an infinite crystal. It is shown that a 
significant (several times for structures with 30 periods) growth of 
|E|max is observed with increasing angle of incidence q for wave-
lengths l, which correspond to transmission maxima T nearest to 
the band gap boundaries. The increased interference of the counter-
propagating Bloch modes is caused by an enhancement of the 
x-component contrast (perpendicular to the planes of the layers) of 
the wave numbers k1x/k2x in the structure layers. Along with this, 
there also arise characteristic features in the distribution of E(x) 
associated with the vanishing of the forbidden band width. In this 
case, the field distribution in all periods is the same. Two types of 
such features are observed in the case of oblique incidence. The for-
mer takes place for p-polarisation at an angle of incidence q, which 
is an analogue of the Brewster angle. The latter corresponds to the 
situation when the length of each structure layer is equal to an inte-
ger of half-waves. This occurs simultaneously for s- and p-polarisa-
tions and is observed in a limited range of layer widths only for the 
second and highest forbidden bands. 

Keywords: photonic crystal, forbidden band, angle of incidence, 
radiation polarisation.

1. Introduction

Electromagnetic field distribution in finite layered periodic 
structures (one-dimensional photonic crystals) has a number 
of features (an increase in the field amplitude [1], an increase 
in the density of states and a decrease in the group velocity [2]) 
at parameter values corresponding to the boundaries of the 
forbidden bands of an infinite crystal. These features are due 
to the interference of counterpropagating Bloch waves 
(Floquet modes) and manifest themselves at wavelengths l 

corresponding to the maxima of the dependences of transmis-
sion T on l. This was first noticed in [1], where it was shown 
that in a layered periodic structure formed in a disturbed sur-
face layer of CdS subjected to annealing during the first laser 
pulse, the field intensity can dramatically increase under irra-
diation by subsequent pulses, which leads to an increase in the 
efficiency of annealing. The most prominent effects can occur 
in nonlinear media. Scalora et al. [3] demonstrated the possi-
bility of increasing the second harmonic generation intensity 
by two to three orders of magnitude for the GaAs/AlAs struc-
ture containing 20 periods in comparison with a homoge-
neous medium of the same length. Similar phenomena are 
observed when light propagates in a waveguide grating with a 
finite number of elements [4]. This system in the first approxi-
mation can also be described as a one-dimensional photonic 
crystal. Hopman et al. [4] present a technique for studying the 
field distribution in such systems based on the measurement 
of the scattered light and point to the wide possibilities of 
practical use of the effect.

Gorelik and Kapaev [5] analysed the peculiarities of the 
field distribution in a finite periodic structure with normal 
incidence of radiation and showed the correlation of the max-
imum field value |E |max with the band gap of an infinite peri-
odic structure. In this paper, we will generalise the results for 
the case of oblique incidence. For definiteness, as in [5], the 
objects are opal matrices, i.e. artificial opals constructed from 
close-packed silicon oxide globules (balls) [6 – 8], and mesopo-
rous photonic crystal films. The latter are obtained by anodic 
etching of doped silicon or aluminium [9, 10]. As a result, 
films are formed whose layers are characterised by different 
degrees of porosity and retain the periodicity of the corre-
sponding one-dimensional crystal lattice. 

The most significant increase in the field amplitude in the 
structure is observed when the values of the parameters cor-
respond to the first maxima of the dependences of the trans-
mission coefficient T on the radiation frequency T(n) [or on 
the wavelength T(l)] located to the right and left of the 
boundaries of the forbidden bands. For a sufficiently large 
number M of periods in the structure, the T(l) dependence is 
characterised by the presence of narrow peaks [5]. The posi-
tion of the maxima of T(l) changes with a change in the angle 
of incidence q, i.e., a change in the angle makes it possible to 
adjust the position of the resonance for the applied radiation 
source. Additional opportunities for oblique incidence occur 
when use is made of different polarisations of the incident 
light. The main role of oblique incidence (as will be shown 
below) is to adjust the contrast of the wave vector projections 
k1x /k2x in the structure layers, which is equivalent to changing 
the contrast of the refractive indices of the layers at normal 
incidence. 
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2. Method for calculating the field  
in a finite layered periodic structure 

In the case of a finite layered periodic structure, Maxwell’s 
equations are usually solved numerically using the transfer 
matrix method [5]. This method is simple to implement, but 
has insufficient numerical stability due to finite precision of 
calculations. The formulas for the field simultaneously have 
terms containing the factors exp(ikh) and exp(–ikh) (h is the 
layer thickness); in the presence of the imaginary part of the 
wave number k and a large thickness h, this method requires 
a very high accuracy of calculation of the coefficients at these 
exponents. For the real refractive indices of the layers, this 
instability manifests itself mainly for the parameters corre-
sponding to the forbidden band, when the Bloch wave vector 
is imaginary. In the case of normal incidence, the instability of 
calculations appears already when the number of layers is N 
» 100. With oblique incidence, the effective wavelength in the 
medium increases (especially at large angles of incidence) and 
the method does not allow the dependence on the angle to be 
traced already for N »20. 

An alternative is the method of the scattering matrix S 
[11], which relates the waves incident on the structure on the 
right and left with those reflected to the right and left. For a 
layered structure, the field Uj in each jth layer with a constant 
refractive index nj can be represented as

Uj = exp(ikyy){Aj exp[ikjx(x –xj)]

	 + Bj exp[– ikjx(x – xj)]},	 (1)

where ky = (2p/l)sin q; kjx= (2p/l) sinn j
2 2q-  is the x-com-

ponent of the wave vector in the jth layer (xy is the plane of 
incidence); and xj is the coordinate of the interface between 
the jth and j + 1th layers with refractive indices nj  and nj + 1. By 
U in (1) we mean the z-component of the electric field Ez for 
s-polarisation or of the magnetic field Hz for p-polarisation. 
Continuity conditions at interfaces
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( fj = 1 for s-polarisation and fj = nj
2 for p-polarisation) give 

the relationship of the coefficients in the adjacent jth and 
j + 1th layers:

where hj is the thickness of the jth layer. 
The transfer matrix method consists in the sequential 

calculation of (3) when j varies from 1 to N. For the left-
incident wave, A0 =1, B0 = r, AN + 1 = t, and BN+1 = 0. As a 
result, we obtain the relations that allow one to determine 
the reflection (r) and transmission (t) coefficients of the 
structure: 
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The total transfer matrix D is the product of the transfer 
matrices of the layers D j. 

In the scattering matrix method, the reflection and trans-
mission coefficients are found from the relation 
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The scattering matrix S º S N + 1 for N layers is calculated 
sequentially using (3) and the relationship 
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The relationship of the elements of the matrices S j+1 and S j 
for adjacent layers has the form 
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The danger in numerical calculations is the terms with 
j

D12  
and 

j
D22  containing factors exp(– ikjx hj) (if k has an imagi-

nary part, it can lead to a nonphysical growth of the field 
with increasing x). In the transfer matrix method, the ampli-
tudes of such waves are successively recalculated from 
boundary to boundary. As a result, the error accumulates, 
and the total transfer matrix includes terms containing 
products Õj exp(– ikjx hj). In the scattering matrix method 
recalculating the next layer, the terms in (7) containing 

j
D12  

(first and second equations) are dangerous from the point of 
view of stability. However, such terms are included in (7) 
with a multiplier G containing 

j
D22  in the denominator. As a 

result, compensation occurs, and nonphysical growth of the 
field does not happen. Calculations by the scattering matrix 
method are more cumbersome than those by the transfer 
matrix method.

In this paper, along with the scattering matrix method, we 
used another, unconventional method, i.e. recurrence relation 

method for a plane-layered structure. In this method, the field 
in the jth layer is expressed as

Uj = Aj exp(ikyy){exp[ikjx(x – xj)] + rj exp[–ikjx(x – xj)]}. (8)

Substituting (8) into (2) and excluding Aj, we obtain the recur-
rence relation for the reflection coefficients rj: 
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is the reflection coefficient from the interface between the 
media with refractive indices nj  and nj + 1. 

When radiation from the left is incident on a structure 
containing N layers, in a right semi-infinite (  j = N + 1) 
medium, we have rN + 1 = 0. With this in mind, we can succes-
sively calculate rj in layers (9), and then using the first relation 
of the field continuity at interfaces (2), we can express the 
amplitudes Aj in the layers through amplitude A0 of the inci-
dent wave and, therefore, find the field distribution in the 
structure, U(x), the reflection coefficient, r = r0, and the trans-
mission coefficient, t = AN + 1, for amplitude, as well as the 
corresponding coefficients of R and T for intensity. The for-
mula for rj (9) contains only a positive exponent, which leads 
to a significantly greater stability of the calculation procedure 
as compared with the case of the standard transfer matrix. 
The calculation procedure is less time consuming than that by 
the scattering matrix method. Comparison of the results 
obtained by the two methods can serve as an additional 
method for controlling the accuracy of calculations. A similar 
scheme for calculating the reflection and transmission coeffi-
cients of a layered structure, based on the concept of the gen-
eralised scattering coefficient (GSC) method, is analysed in 
[12], where a number of examples show its greater stability 
compared to other methods. 

As in the case of normal incidence, the reflection coeffi-
cient at oblique incidence from a finite layered periodic 
structure containing M periods is expressed by the expres-
sion [13], which relates the reflection coefficient and the 
modulus of the Bloch wave vector k for an infinite periodic 
structure: 
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r1 is the reflection coefficient from a structure containing 
one period; and d is the period of the structure. Below, we 
will consider structures whose period contains two layers 
with refractive indices n1 and n2. The dispersion equation for 
determining k (ks and kp for s- and p-polarisations) has the 
form 
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where

cs = 1,   cp = (n2 /n1)2; 	 (14)

l1 is the thickness of the layer with the refractive index n1; and 

sink n2
,x x1 2

2 2p
l

q= -,1 2 .

The relation similar to (11) is universal and valid both in 
optics and in quantum mechanics for finite structures with a 
periodic distribution of a potential of arbitrary form [14, 15]. 

It follows from (11) that for a structure containing M peri-
ods, there are M – 1 zero values of the reflection coefficient R 
(unit maximum of transmission T ) in each allowed band. For 
bands beginning from the second one (the bands are num-
bered in accordance with an increase in the radiation fre-
quency n), an additional transmission maximum T is possible, 
provided that T = 1 [C = 0 in (12)] for a single element. The 
increase in the field amplitude at transmission maxima T(n) is 
caused by the interference of counterpropagating Bloch 
waves. This interference is also responsible for the formation 
of forbidden bands, and therefore the field value at the maxi-
mum Emax correlates with the width of the corresponding for-
bidden band. In this connection, of interest is to preliminarily 
investigate the properties for band gap widths Eg. We are 
mainly interested in the conditions for obtaining the maxima 
of the dependences Eg(q, l1). Along with the maxima, there are 
additional features associated with the zero forbidden band 
width [5]. In this case, the distribution of the field in all peri-
ods is the same. It follows from (13) that two types of such 
features are possible. The first type corresponds to the factor 
(1/2)[cs, p k1x /k2x + k2x /(cs, p k1x)] equal to unity. This is possible 
only for p-polarisation, is achieved at an angle that is analo-
gous to the Brewster angle: 

sin
n n

n n
2 2
1 2q =
+ 21

,	 (15)

and requires the condition

n
n

n

1
2 2

11
-1

	 (16)

to be met, i.e., a fairly high contrast of the refractive indices of 
the layers. 

The second type is realised when the factors sin(k1x l1) and 
sin[k2x (d – l1)] are simultaneously equal to zero, which corre-
sponds to the condition under which an integer of half-waves 
fits on each of the structure layers. One can easily see that this 
is possible only for ‘higher’ bands starting from the second; 
this feature occurs simultaneously for s- and p-polarisations. 

In the case of normal incidence, the efficiency of the inter-
action of Floquet counterpropagating modes depends substan-
tially on the ratio of the refractive indices of the layers, n1/n2 [5]. 
With oblique incidence, the result is determined by the ratio 
of the projections of the wave vectors k1x and k2x in the layers, 
which varies depending on the angle of incidence. Thus, a 
change in the angle of incidence is in some way equivalent to 
a change in the refractive indices of the layers in the case of 
normal incidence. For a layer with large n, the value of kx var-
ies only slightly with the angle, and for a layer with n close to 
unity, it varies significanly. The position of the transmission 
resonances T( l) depends on the angle of incidence, which 
allows adjustment for the existing radiation sources.

To calculate the reflection coefficient from formula (11) 
and the transmission coefficient from the relation T = 1 – R 
for each wavelength, the dispersion equation (13) should be 
solved numerically. From the point of view of the numerical 
procedure, it is easier to use the methods of the scattering 
matrix and recurrence relations described above, which allow 
R, T and the field distribution in the structure to be calculated 
in a single procedure. 
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3. High contrast of the refractive indices  
of the layers 

Let us first consider the situation when the refractive index of 
one of the layers is equal to the refractive index of the medium, 
i.e. n2 = 1. This situation in a certain sense corresponds to 
artificial opals, although the approximation of a one-dimen-
sional photonic crystal for them is adequate only at small 
angles of incidence. We consider the model problem of a one-
dimensional photonic crystal with n1 = 1.46 and n2 = 1 in the 
whole range of angles of incidence as a limiting case, which 
allows us to achieve a maximum change in k1x /k2x with a 
change in q. 

Instead of the radiation frequency n = с/l, it is conve-
nient to use, as in [5], the dimensionless quantity d/l. In this 
case, the value of (d/l)g will be used below as the band gap 
Eg. The functions T(d/l) at oblique incidence are the same as 
at normal incidence: there are forbidden bands (stop bands) 
with transmission close to zero, between which oscillating 
dependences T(d/l) with an M – 1 unit maximum in each 
allowed band are observed. The character of the distribu-
tions of the electric field E for s-polarisation and of the mag-
netic field H for p-polarisation with parameters correspond-
ing to unit transmission maxima is quite similar to the case 
of normal incidence [5]; in particular, for the first transmis-
sion maxima T(l) to the right and left of the forbidden bands 
there is a field maximum in the centre of the structure. The 
field value at the maximum |E |max can significantly exceed 
the amplitude of the incident field. The field maximum in 
the central region of the structure is localised in a layer with 
large and small refractive indices for the transmission max-
ima on the left and on the right of the forbidden bands, 
respectively. 

Since the widths of the forbidden bands are determined by 
the same factors as the values of the field maxima, i.e. the 
interference of counterpropagating Bloch waves, it is conve-
nient to preliminarily analyse the behaviour of the band gap 
Eg with changing the angles of incidence and layer thick-
nesses, because this problem contains fewer parameters. We 
first analyse the behaviour of the width of the first forbidden 
band. As already noted, the features associated with the zero 
forbidden band width due to the presence of an integer of 
half-waves in each of the layers are absent for the first band. 
Figure 1a shows the dependences of Eg on the ratio l1/d of the 
thickness of the first layer l1 to the structure period d for s- 
and p-polarisations at various angles of incidence q. 
Noteworthy is a significant increase in Eg and a shift of the 
maximum of the dependence Eg(l1) towards small l1 with 
increasing angle q. Both of these features are explained by an 
enhancement of the contrast in the x-component of the wave 
vectors in media with refractive indices n1 and n2 with increas-
ing q. For n2 = 1, as the angle of incidence changes, the ratio 
k1x /k2x changes from n1 to infinity, i.e. the system implements 
a high contrast regime of the x-components of the wave vec-
tors. A characteristic appearance of the dependence of Eg on 
the angle of incidence is presented in Fig. 1b. For s-polarisa-
tion, we observe a monotonic growth of Eg, which can 
increase several times. For p-polarisation, we observe a 
decrease in Eg at small angles up to the Brewster angle qB (15). 
When q = qB, the value of Eg vanishes, after which it increases 
due to an enhancement of the contrast of the x-components 
of the wave vectors, as in the case of s-polarisation. At large 
angles of incidence, the first band gap width is larger for 
s-polarisation than for p-polarisation.

As shown in [5], the largest growth of the field in the struc-
ture occurs for the first maxima of T(d/l) located to the right 
and left of the boundary of each forbidden band; therefore, 
below we restrict ourselves to considering the fields only for 
these maxima. The dependence of the maxima of the electric 
field modulus |E |max on the angle of incidence for the trans-
mission maxima T to the right and to the left of the first for-
bidden band are shown in Fig. 2 for the structure with the 
number of periods M = 30. For the left maxima, the changes 
in |E |max with q correspond to the above dependences of the 
width of the first forbidden band on the angle of incidence. A 
decrease in |E |max for p-polarisation with a minimum at the 
Brewster angle and a significant (more than twice) increase in 
the field for s-polarisation are observed.

The tendency towards an increase in the field maximum 
with increasing angle arises from the increased interference of 
the counterpropagating Bloch modes, which is due to an 
enhancement of the contrast of the x-components of the wave 
numbers in the layers k1x /k2x and is similar to an increase in 
the refractive index of one of the layers in the case of normal 
incidence. For p-polarisation, the minimum of the depen-
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Figure 1.  Dependences of the width of the first forbidden band gap Eg 
on (a) the layer thickness l1 with a refractive index n1 = 1.46 for angles 
of incidence q = ( 1 ) 0, ( 2, 5 ) 40°, ( 3, 6 ) 60° and ( 4, 7 ) 80°, as well as (b) 
on the angle of incidence for l1 = 0.6d. Solid curves correspond to s-po-
larisation, and dashed curves – to p-polarisation. 
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dence |E|max(q) corresponds to the Brewster angle qB = 55.6° 
for a medium with n1 = 1.46. For the maxima to the right of 
the forbidden band, |E |max decreases at large q for both s-and 
p-polarisations. This is due to the fact that for the right 
boundary of the forbidden band, the maximum transmission 
of one period tends to reach the boundary of the band. In this 
case, the field distribution will be the same in all periods, and 
the field value at the maximum |E |max will become equal to 
unity. From the dispersion relation (13) at k2x ® 0 (at q ® 90°) 
it follows that we have cos(kd ) = – 1 for both polarisations at 
k1x l1 = p. However, the condition k1x l1 = p corresponds to the 
unit transmission of one period, and cos(kd ) = – 1 corre-
sponds to the boundary of the first forbidden band. When 
k1x l1 = p, but k2x ¹ 0, we have cos(kd ) = – cos[k2(d – l)] > – 1, 
i.e., at an angle q other than 90°, the unit transmission maxi-
mum of a single period is located in the allowed band at any 
l1. A decrease in the angle from 90° leads to an increase in the 
ratio d/l, corresponding to T = 1 for a single period, and to a 
decrease in d/l for the boundary of the forbidden band. 

Consequently, the maximum for a single period is shifted to 
the second allowed band. This explains a decrease in the field 
maximum on the right for both s-and p-polarisations at large 
angles for the right transmission maximum. 

Let us now analyse the transmission maxima near the 
highest forbidden bands. For these bands, the forbidden band 
width can be equal to zero, provided that an integer p or q of 
half-waves fits on each of the structure layers: k1x l1 = pp, 
k2x(d –  l1) = pq. These relations yield an equation that deter-
mines the dependence of the angle qс, at which the widths of 
bands simultaneously vanish for s- and p-polarisations, on 
the relative width of the layer with the refractive index n1: 

d
l

p
q
k
k 1
x

x1

2

1
1

= +
-

c m . 	 (17)

The sum p + q determines the number of the forbidden band, 
since when (17) holds, from (13) we obtain cos(kd ) = (–1) p + q. 
Figure 3 [curve ( 1 )] shows the dependence of the critical angle 
qс on l1 for the second forbidden band of the structure with n1 
= 1.46 and n2 = 1. It can be seen that there is a critical value of 
the thickness of the first layer, l1 = lc, above which the width 
of the second forbidden band does not vanish in the entire 
range of angles of incidence.

At l1 < lc there is an angle of incidence at which the width 
of the forbidden band vanishes. In the case of low contrast of 
the refractive indices of the layers [curve ( 2 )], the width of the 
second forbidden band vanishes only in a narrow range of 
values of l1. Figure 4 shows an example of dispersion curves 
calculated by formula (13) for the case when the widths of the 
second forbidden bands vanish at an angle of incidence of 50° 
and n1 = 1.46 and n2 = 1. This corresponds to the ratio l1/d = 
0.3409. One can see from Fig. 4 that for small k the dispersion 
law is linear, but the slopes of the Eg(k) dependence for s- and 
p-polarisations are different. 

Figure 5 shows the dependences of the width of the second 
forbidden band on l1 for different angles of incidence. A char-
acteristic feature of these dependences is the presence of two 
maxima of Eg and the vanishing of Eg between them. The 
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sponding to the first transmission maxima on the left and on the right of 
the first forbidden band. 0
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Figure 3.  Dependences of the critical angle qc, at which the width of the 
second forbidden band vanishes, on the layer thickness l1 with the re-
fractive index n1 at ( 1 ) n1 = 1.46, n2 = 1 and ( 2 ) n1 = 1.65, n2 = 1.45.
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position of zero is shifted with increasing angle in accordance 
with the dependence ( 1 ) in Fig. 3. For p-polarisation, the 
maximum values of the band width first decrease with increas-
ing q up to the Brewster angle (55.6°), then increase, and 
finally become comparable with the Eg values at large angles 
for s-polarisation. When l1 > lc, the dependences of Eg and 
|E |max on q are quite similar to those considered above for the 
first forbidden band (see Figs 1b and 2). The absolute values 
of these quantities become comparable (even somewhat 
larger). When l1 < lc, the behaviour of Eg(q) turns out to be 
more complicated: along with zero Eg(q) for p-polarisation at 
the Brewster angle qB, an additional zero appears at q = qA 
simultaneously for s- and p-polarisations in accordance with 
(17). At a small l1, the value of qA is greater than that of qB (qA 
tends to 90° at l1 ® 0), and at a large l1, the value of qA is less 
than that of qB (qA tends to zero at l1 ® lc). At l1 = 0.32, the 

values of qA and qB coincide. With an increase in the angle of 
incidence q up to qA, the value of Eg changes only slightly, and 
then its rapid growth is observed with increasing q. 

The main tendencies of the change in Eg with a change in 
the angle of incidence q are reflected in the dependences of the 
maxima of the electric field, which turn out to be significantly 
more complex than those described above for l1 > lc. Figure 6 
presents examples of the dependences of |E |max on q for M = 
30 at l1 = 0.25d and 0.4d. The first case corresponds to qA > 
qB, the second – to qA < qB. In both cases, the values of |E |max 
change little up to the angle qA, then there is a sharp increase, 
and the values for the right maxima are much larger than for 
the left ones. Moreover, |E |max is increased by almost an order 
of magnitude compared with the case of normal incidence. 
The effect is more significant for s-polarisation. In principle, 
the same increase |E |max is also possible for the first band at 
small l1. For angles q = qA, the field distribution is the same in 
all periods and the maximum value of |E |max is equal to unity 
for both s-and p-polarisations. For angles q = qB, the field 

0

0 0.5

0.4

0.8

1.0 1.5 2.52.0 kd

1.2

1.6

d/l

Figure 4.  Dispersion law for the angle of incidence q = 50° and l1/d = 
0.3409 for s-polarisation (solid curves) and p-polarisation (dashed 
curves).
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|E |max = 1 only for p-polarisation. A decrease in |E |max for 
left maxima at large angles for both polarisations is 
explained, as in the case of the maxima near the first band, 
by fact that the maximum T = 1 of the single period reaches 
the band boundary. 

Thus, the use of oblique incidence can significantly 
increase the maximum field in the structure compared with 
the case of normal incidence. As with normal incidence, the 
magnitude of |E |max grows linearly with increasing number of 
periods in the structure. The above-considered case with the 
parameters n1 = 1.46 and n2 = 1 corresponding to opal should 
be considered a model one, since at large angles of incidence 
opal is not described by a one-dimensional model. In princi-
ple, modern technologies make it possible to manufacture 
layered periodic structures from a wide range of materials. In 
order for the above features to manifest themselves, a suffi-
ciently high contrast of the refractive indices of the layers is 
necessary in accordance with formula (16). 

4. Low modulation of the refractive indices  
of the layers 

The recently studied layered periodic structures based on 
mesoporous materials have a relatively small contrast of 
refractive indices. On the other hand, the number of layers in 
them can be quite large (~1000), which makes it possible to 
achieve a significant increase in field in these structures due to 
the interference effect of the Floquet counterpropagating 
modes, since the field grows linearly with increasing number 
of periods in the structure. In this regard, it is interesting to 
consider the change in field in such structures at oblique inci-
dence of radiation. Al2O3-based structures typically have the 
refractive indices n1 = 1.65 and n2 = 1.45. For these refractive 
indices, condition (16) is not satisfied, and the band gap for 
p-polarisation does not vanish (the analogue of the Brewster 
effect is not realised). If the condition for ‘an integer of half-
waves on each of the layers’ is fulfilled in accordance with 
(17), the Eg vanishes in a narrow range of l1 values, from 0.444 
to 0.468 [see curve ( 2 ) in Fig. 3]. Outside this range, the 
dependences Eg(q) turn out to be monotonously increasing 
and decreasing in the case of s- and p-polarisations, respec-
tively, for both the first and second band gaps. While for 
structures with a high contrast of refractive indices, a signifi-
cant shift in the position of the Eg(l1) dependence maximum is 
observed when the angle of incidence changes (see Fig. 5), for 
structures in question, the shift is very small. 

Thus, in this case, from the point of view of increasing 
the electric field, only the s-polarisation is of interest. Figure 
7 shows examples of the angular dependence of the maxi-
mum field |E |max in the structure for two values of l1 and M 
= 100. In almost the entire thickness range of l1 values, an 
increase in the field with increasing q for the maxima T(d/l) 
near the first forbidden band is large compared to its increase 
for the maxima near the second band. An exception is the 
narrow region near l1 = 0.6d, where at large angles an 
increase in the field is maximal for the left maximum at the 
second forbidden band (Fig. 7b). As for the first forbidden 
band, there prevails a situation when a larger growth of 
|E |max(q) is observed for the left maximum; an opposite situ-
ation takes place in a narrow region of l1 » 0.4d. For M = 
100, the field can increase two-fold compared with the case 
of normal incidence. 

In the situations presented in Fig. 7, there is no unit trans-
mission maximum for one period (it exists only in the range of 

l1 from 0.444 to 0.468); therefore, there is no explicit reduc-
tion of the field at a large angle q for the right transmission 
maxima noted above for the case of high contrast of the 
refractive indices. 

5. Conclusions 

In this paper, we study the effect of increasing the electromag-
netic field E in a finite layered periodic structure at oblique 
incidence of radiation. Specific calculations have been per-
formed for structures whose period contains two layers with 
different refractive indices n1 and n2. The effect of the field 
growth is due to the interference of counterpropagating Bloch 
waves; therefore, the maximum increase in the field is 
observed under conditions corresponding to the maxima of 
the width of the forbidden band gap Eg. In this connection, 
the dependences of Eg on the parameters of the structure and 
the angle of incidence are preliminarily analysed. The ten-
dency towards an increase in the field maximum with increas-
ing angle is due to the increased interference of the counter-
propagating Bloch modes caused by an enhancement of con-
trast of the x-components of the wave numbers k1x /k2x in the 
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Figure 7.  Angular dependences of the maximum values of the electric 
field |E|max for the d/l values corresponding to the first unit transmission 
maxima to the left and to the right of ( 1 ) the first and ( 2 ) second forbid-
den bands in the case of s-polarisation with M = 100, n1 = 1.65, n2 = 
1.45, l1 = (a) 0.4d and (b) 0.6d. 
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layers, which is similar to an increase in the refractive index of 
one of the layers in the case of normal incidence. 

If the refractive index of one of the layers is close to unity 
(or equal to it), this ratio significantly changes depending on 
the angle of incidence. As a result, it is possible to obtain a 
substantial (several times) increase in the width of the forbid-
den band and the maximum of the field |E |max when changing 
the angle of incidence. Along with the maxima of Eg, there are 
particular situations when the width of the forbidden band 
vanishes at a certain angle of incidence. There are two types of 
such features. The first type is observed only with p-polarised 
radiation for structures with a sufficiently high contrast of the 
refractive indices (16) and serves as an analogue of the 
Brewster effect. The second type corresponds to the condition 
kjx lj = qj p, in which an integer of half-waves fits on each of the 
layers, and is realised simultaneously for s- and p-polarisa-
tions in a limited range of layer thickness ratios only for the 
second and higher forbidden bands. The field |E |max at the 
finite angle of incidence increases for both polarisations, but 
in general, the effect is greater for s-polarisation.

For structures with a low contrast of refractive indices, as 
is the case in mesoporous structures, the conditions for the 
Brewster angle are not met, and the condition of an integer of 
half-waves in each of the layers can be achieved only in a nar-
row range of l1/d values. The effect of an increase in the field 
with increasing angle of incidence is observed only for s-polar-
isation, and at M = 100, the field can increase two-fold.

An additional advantage of oblique incidence of radiation 
is the possibility of the wavelength adjustment of the posi-
tions of the transmission resonances, for which an increase in 
|E |max is observed.
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