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Abstract.  We have analysed expressions for the spin part of the 
density vector of the angular momentum (moment of momentum) of 
elliptically polarised cnoidal waves and breathers propagating in an 
isotropic gyrotropic medium with second order frequency disper-
sion and spatial cubic nonlinearity dispersion. We have found that, 
due to nonlinear gyration, the density of the angular momentum 
depends on time and propagation coordinates. 

Keywords: angular momentum of the electromagnetic field, cubic 
nonlinearity, gyrotropy, optically active medium, cnoidal waves, 
breathers. 

1. Introduction 

Such fundamental concepts of electrodynamics as the 
energy – momentum tensor and the angular momentum of an 
electromagnetic wave are still being actively discussed [1 – 6]. 
In the paraxial approximation, the latter is traditionally rep-
resented as a sum of orbital and spin parts. For a plane elec-
tromagnetic monochromatic wave propagating along the z 
axis, the orbital part of the angular momentum is identically 
zero, and the density vector J of the spin part of the angular 
momentum related to its polarisation is directed along the z 
axis. Its projection J on this axis is associated with slowly 
varying amplitudes ± iE E Ex y=!  of circularly polarised 
components of the electric field [7 – 10]: 

(| | | | ) /(16 )J kE E2 2 p= -- + .	 (1)

A similar result was obtained during quantisation of an 
electromagnetic field; the spin part of its angular momentum 
is equal to ( )n n, ,k kk' -- +/  [7 – 10]. Here, '  is the Planck 
constant, and n ,±k  is the number of right- and left-handed 
polarised photons in the mode determined by the wave vector 
k. In both cases we are dealing with real experiments, when an 
abstract plane wave is limited to an arbitrarily large, but finite 
aperture and duration of exposure; in quantising the field, 
this is due to the finiteness of the volume during normalisa-
tion of the wave functions [3]. The J value is proportional to 
one of the Stokes parameters [11, 12] and is related to such 
fundamental photon characteristics as helicity and spin 

[8, 10, 12]. The physical meaning of the orbital and spin parts 
of the angular momentum and the relationship between them 
and similar terms in the quantum-mechanical consideration 
of the propagation of light are interpreted ambiguously and 
for more than forty years have been the subject of many dis-
cussions that are supported by a large number of recent 
works. They analyse the methods for obtaining laser beams 
with different angular momenta and investigate the transfor-
mations of their orbital and spin parts in the process of light 
propagation and its interaction with different objects. 

Beams with different angular momenta are widely used to 
change the orientation and rotation of microparticles trapped 
by light (optical ‘tweezers’), to control mechanical microma-
chines [13], as well as in optical calculations, during informa-
tion transfer, etc. To date, there exist many methods for pro-
ducing such beams, including the use of a spiral phase plate 
[14], a special diffractive element (holographic pattern) [15], 
and a system of cylindrical lenses [16]. Optical elements have 
been developed, with the help of which the mutual transfor-
mation of the orbital and spin parts of the angular momen-
tum of the propagating wave is carried out [17].

However, in the numerical and analytical solution of most 
problems of nonlinear optics, almost always the fulfillment of 
the law of energy conservation, more rarely the law of 
momentum conservation, and almost never the law of angu-
lar momentum conservation are controlled. The study of the 
transformations of the ‘orbital’ and ‘spin’ parts of laser pulse 
angular momenta in the process of their interaction in nonlin-
ear media within the framework of classical electrodynamics 
not only contributes to the development of nonlinear optics, 
but also contributes to a deeper understanding of the funda-
mental laws of nature. Recall that the Planck constant was 
measured in the classical Beth experiment [4, 18], which is 
now actually repeated in [18] for polarised waves propagating 
in a birefringent crystal. In this work, the spin angular 
momentum was measured and the possibility of using the 
obtained results in integrated optics and optomechanical 
devices was demonstrated. This explains our interest in the 
analysis of the spin part of the angular momentum of ellipti-
cally polarised plane waves propagating in an isotropic gyro-
tropic medium with spatial dispersion of cubic nonlinearity 
and second order frequency dispersion of group velocities. 
Elliptically polarised cnoidal waves [19 – 21] and vector 
breathers [22] can propagate in such a medium. Below, we will 
show that the flux density of the spin part of the angular 
momentum of such waves can obviously depend on both the 
running time and the propagation coordinate. This may pro-
vide new material for discussing issues related to the angular 
momentum of propagating waves. 
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2. Spin angular momentum of elliptically 
polarised cnoidal waves and breathers 

The variation of slowly varying amplitudes of circularly 
polarised components of elliptically polarised cnoidal waves 
and breathers propagating in a nonlinear isotropic gyrotropic 
medium with second order dispersion of group velocities 
¶ ¶( / 0)k k2 2

2 !w =  is described by a nonintegrable system of 
partial differential equations [19 – 22]:
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Here, w is the frequency of the propagating wave; k is the 
modulus of its wave vector directed along the z axis; t is the 
running time (in own coordinate system running with group 
velocity); and 4 /( )kc( )

xyxy
2 3 2ps w c=1  and s2 = 2pw2 ́  /( )kc( )

xxyy
3 2c  

are related to the independent components of the local cubic 
nonlinearity tensor ( ; , , )( )3c w w w w-t , and r0, 1 = 2pw2g0, 1/c2 
are defined through the pseudoscalar constants g0, 1 of linear 
and nonlinear gyration.

The particular periodic solutions to system (2) in the form 
of cnoidal waves, satisfying the condition of linear coupling 
of the intensities of the right- (plus) and left-handed (minus) 
polarised components, 

| | | |E E2 2
0d d d+ =+ + - - ,	 (3)

( 0,d ± are constants) can be divided into two groups [19 – 21]. 
The first includes nine solutions of E! , the phases of which 
depend only on z, and the amplitudes ( )tE!  are expressed 
through all possible pairwise combinations of Jacobi elliptic 
functions, sn(vt, μ), сn(vt, μ) and dn(vt, μ) [23]. The modulus 
of elliptic functions μ and the scale factor v satisfy the inequal-
ities 0 £ μ £ 1, v > 0, and are free parameters. The domains 
of existence of these solutions are determined from the condi-
tion 0E

2 H! .
Projections of the density vector of the spin part of the 

angular momentum of the waves with the components 
| ( ) | ( ) ( ) ( , ) /cnt k tE 2 2

2 2 1
2"mn s r n m b=-!  and | ( ) |tE 2

"  = –v2 ́  
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2!s r n m b  are easily found by substituting these 
solutions into (1):
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Here, 1
2

1 2 2
2b r s s s= + + ; the subscripts ,c d± ± (hereafter, s±) 

correspond to the first letters of the elliptic functions and the 
corresponding polarisations of the components. Such waves 
exist if

s2 > 0,  k2 b < 0,  r1 < | s2 |

or

s2 < 0,  k2  b > 0,  r1 < | s2 |. 	

(5)

Firstly, waves with components | ( ) | ( ) ( )t kE 2 2
2 2 1"mn s r=!  

( , ) /sn t2
# n m b  and   | ( ) | ( ) ( ) ( , ) /cnt k tE 2 2

2 2 1
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can propagate in a medium. The projections of the density 

vector of the spin part of the angular momentum, Js c! "
, of 

such waves are given by the expressions
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" /b can also propagate. 
The projections of the density vector of the spin part of the 
angular momentum, Js d! "

 have the form:
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The domain of existence of such solutions is determined by 
different inequalities. For the upper sign,

r1 > 0,  k2  b < 0,  s2 < | r1 |,	 (8)

and for the lower sign,

r1 < 0,  k2  b > 0,  s2 < | r1 |.	 (9)

The first group also includes three degenerate waves, 
whose amplitudes contain the same elliptic functions:

| ( ) | ( ) ( ) ( , ) /snt k tE 2 2
2 2 1

2"mn s r n m b=! ,	 (10)
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The projections of the density vector of the spin part of the 
angular momentum of these waves are given by the formulae 
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In (13), ( , )snf µ vt µ2 2
=s , [ ( , ) 1]snf µ vt µc

2 2
= - , and µf 2

#=d  
( , ) 1sn vt µ2

- . The domain of existence of solution (10) is 
determined by the inequalities 

s2 > 0,  k2 b > 0,  r1 < | s2 |

or

s2 < 0,  k2  b < 0,  r1 < | s2 |,	

(14)

whereas the domain of existence of solutions (11) and (12) coincide 
with (5). Note that for r1 = 0, the right-hand side of (13) vanishes. 

It can be seen from (4), (6), (7) and (13) that the depen-
dence of all projections of the density vector of the spin part 
of the angular momentum on the running time is caused by 
the nonlocality of the nonlinear optical response of the gyro-
tropic medium and has different signs for different solutions 
(for r1  = 0 the dependence on running time disappears). 
However, the frequency of oscillations of elliptic functions for 
nonlinear optically active media is high enough to produce 
real sample oscillations. The time-averaged contribution of 
these oscillations is proportional to

( , ) ( ) ( , )limsn sn dvt µ T vt µ tt T

T2 1 2
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	 = m–2[1 – E( m)/K( m)].	 (15)
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Here, K( m) and E( m) are complete elliptic integrals of the first 
and second kind. Note that for μ = 1 we have sn(vt, 1) = th(vt), 
and ( , ) 1sn vt 1 t

2
= . 

In the second group of solutions to system (2), the ampli-
tudes | ( ) |tE!  of circularly polarised components are expressed 
in terms of the Jacobi elliptical sine, and their phases 
( , ) { ( )}Argz t tEj =! !  explicitly depend on the coordinate 

and on the running time. In this case, the phase derivative 
determines the frequency shift of the components, i.e., their 
chirp [21]. The squares of the amplitude moduli of such solu-
tions are expressed as 

| ( ) | | (0) | [1 ( , )]snt m vtE E2 2 2 m= +! ! ! u u ,	 (16)

where ( ) /[| ( ) | ]m v k 0E2 2
2 2 1

2"m s r b=! !u u ; vu  and mu  are deter-
mined by the initial chirp values 
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The requirements of the positivity of the right-hand side of 
(16) and the radicand expression on the right-hand side of 
(17) impose certain restrictions on the values of vu  and mu  [21]. 
Those solutions of this group, in which the intensities of both 
circularly polarised field components at the point t = 0 begin 
to decrease, exist when conditions (5) are fulfilled. If one com-
ponent at the initial time t = 0 increases and the other 
decreases, then their domain of existence coincides with (8), 
(9). The components synchronously increasing at t = 0 exist if 
the medium parameters satisfy inequalities (14).

The projection of the density vector Jchirp of the spin part 
of the angular momentum of such waves also depends on the 
running time:
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In a nongyrotropic medium, the dependence on the running 
time disappears. The average value of Jchirp(t), as well as for 
the previous solutions, depends not only on the polarisation 
of the incident radiation, but also on the parameters of the 
nonlinear medium:
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Particular solutions (2) in the form of degenerate vector 
breathers [22] propagating along the z axis and satisfying the 
condition
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explicitly depend on the running time and coordinates,
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and exist at bk2 < 0. Here, 8 (1 2 )b a a= - ; W = 2 1 2a- ; 
and the constant B > 0 sets the value of the breather’s perma-
nent pedestal and its spatiotemporal scale. When a < 1/2 and 
a > 1/2, expression (20) describes the Ahmediev breather and 
the Kuznetsov – Ma soliton, respectively. In the limit  a ® 1/2, 
it describes a rational soliton [24, 25]. In (20), B and a are free 
parameters of the problem.

The projection Jb of the density vector of the spin part of 
the angular momentum of the wave (20) onto the z axis also 
depends on the running time and coordinate:
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For the Akhmediev breather, it is periodic in running time 
and soliton-like in coordinate, and for the Kuznetsov – Ma 
soliton, it is soliton-like in running time and periodic in coor-
dinate. In the case of a rational soliton, it behaves as a soliton 
both in space and in running time. The value of Jb averaged 
over t and z is easy to obtain by taking first the integral over 
the variable that corresponds to the soliton behaviour of the 
breather. The values of Jb(z,  t) averaged over t and z are the 
same for all breathers,
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and are nonzero only in a gyrotropic medium at r1 ¹ 0.

3. Conclusions 

A peculiar feature of the obtained expressions for the density 
vector of the spin part of the angular momentum is the variety 
of forms of their dependence on the parameters of the nonlin-
ear gyrotropic medium, running time and coordinates. In the 
absence of nonlinear gyration, the dependences on the last 
two variables disappear. For all degenerate solutions of both 
cnoidal waves and breathers, the density vector of the spin 
part of the angular momentum is proportional to the nonlin-
ear gyration parameter r1 and differs from zero only in an 
isotropic medium with spatial dispersion of cubic nonlinear-
ity ( r1 ¹ 0). 

The results obtained for the density vector of the spin part 
of the angular momentum for cnoidal waves and vector 
breathers can contribute to the study of the properties inher-
ent in both the photon and the nonlinear optically active 
medium, and also be used in integrated optics and optome-
chanical devices. 
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