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Abstract.  The effects of laser beam propagation in a coupler com-
posed of two parallel optical-fibre arrays are studied by the cou-
pled-mode method taking into account the interaction of a given 
fibre with the nearest neighbours and the linear dependence of the 
propagation constant on the fibre number. It is shown that, due to 
the complex structure of each subsystem, the structure of light 
intensity spatial distribution becomes significantly complicated in 
the system under study. The occurrence of space limited transverse 
light diffraction is predicted. 

Keywords: anharmonic Bloch oscillations, optical fibre array, cou-
pled-mode method.

1. Introduction 

At present, much attention is being paid to the study of linear 
and nonlinear optical effects in arrays of coupled optical 
fibres. Such investigations are performed using the coupled-
mode method taking into account the interaction of a given 
fibre with its neighbours, both the nearest and more distant 
ones. These interactions lead to the occurrence of transverse 
discrete diffraction in the system of fibres. At high excitation 
levels, when nonlinear effects become pronounced, light can 
propagate along fibres in the form of discrete soliton pulses. 
A number of interesting phenomena arise in these systems: 
Bloch oscillations [1 – 13], Zener tunnelling [12 – 14], dynamic 
localisation [15 – 19], etc. Bloch oscillations in an optical fibre 
array were studied in [1, 8 – 11] with allowance for the propa-
gation constant correction, linearly changing as a function of 
the fibre number. Some specific features of light propagation 
in planar semi-infinite optical fibre arrays with a variable cou-
pling constant between optical fibres were investigated in [12]. 
A possibility of forming Chebyshev arrays of the first and sec-
ond kinds, as well as Laguerre, Legendre, Jacobi, and 
Gegenbauer arrays, was predicted. 

Recently, researchers have been greatly interested in the 
properties of zigzag optical fibre arrays [8 – 11], where second-
order coupling plays an important role in diffraction effects. 
The results of [1] were generalised in [8 – 11] to the case of 
zigzag optical fibre arrays; anharmonic Bloch oscillations in 

these arrays were studied using the system of coupled-mode 
equations. An analytical expression for the beam trajectory 
was found in those studies; it is obtained that it has an oscil-
lating form. The solutions for the beam trajectory make it 
possible to determine the beam oscillation periods and the 
coordinates of trajectory turning points. 

Apparently, anharmonic Bloch oscillations may also 
occur in more complex optical objects, e.g., in optical wave-
guide arrays with an arbitrary law of coupling of an individ-
ual fibre with its nearest and more distant neighbours, in 
blocks of optical fibre arrays, in PT-symmetric systems, etc. 
As follows from the above brief review of the literature on the 
subject, the analysis of the specific features of light propaga-
tion in complex systems of optical fibres is an urgent problem, 
interesting from both theoretical and applied points of view. 
Complex array geometries and the use of new materials, such 
as graphene, metamaterials, and photonic structures, provide 
unique possibilities for monitoring and controlling light prop-
agation. Below we present the main results of a theoretical 
study of the light propagation effects in one of these systems, 
specifically, in a directed coupler consisting of two parallel 
optical fibre arrays, with allowance for their coupling with the 
nearest neighbours and linear dependence of the propagation 
constant on the fibre number. 

2. Basic equations 

The starting point of our consideration is the system of equa-
tions for the amplitudes of coupled modes of two parallel infi-
nite optical fibre arrays (Fig. 1):

( ) 0i
d
d
z
f

nf f f n gn
n n n n1 1b g a+ + + + + =- + ,	

(1)

( ) 0i
d
d
z
g

ng g g n fn
n n n n1 1b g a+ + + + + =- + ,

were, for simplicity, the term containing the propagation 
constant b0 is excluded by simple exponential transforma-
tion; z = kx; k is the coupling constant between a given opti-
cal fibre and its nearest neighbours; x is the coordinate along 
the fibre axis; g is the coupling constant between arrays; b is 
an anharmonic correction to the propagation constant b0 in 
each array, which determines the phase difference between 
neighbouring fibres in an array; a is a similar correction, 
taking into account the coupling anharmonicity between 
arrays; and fn and gn are the normalised field amplitudes of 
the modes propagating in the nth fibre. System of equations 
(1) is a generalisation of the corresponding system from [10]. 
In our case two identical optical fibre arrays interact, thus 
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forming a directed coupler. We will assume that a light beam 
with a field amplitude f0 is pumped only to the zero fibre of 
the first array. Then the initial conditions for system (1) can 
be written as

fn|z = 0 = f0dn0,   gn|z = 0 = 0,	 (2)

where dn0 is the Kronecker delta. Having introduced two new 
functions, un = fn + gn and un = fn – gn, we derive two indepen-
dent differential-difference equations from (1) for them, 

( )iu n n u u u 0n n n n1 1g a b+ + + + + =- +o ,	
(3)

( ) 0i n nn n n n1 1u g a b u u u- + - + + =- +o ,

with the initial conditions 

un|z = 0 = un|z = 0 = f0dn0.	 (4)

Let us first consider the solution of the first equation from (3) 
for the function un(z). Having assumed that 

un(z) = Fn(z)exp[i(g + an + bn)z],	 (5)

we derive the following equation for Fn(z) from (3):
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with the initial condition Fn(z)|z = 0 = f0dn0. Then we apply a 
Fourier transform to the function Fn(z): 
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Substituting (7) into (6), we obtain a first-order differential 
equation for the Fourier transform F(q, z), 
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whose solution, with allowance for the initial conditions, has 
the form 

( , ) 4exp sin cosiF z z z
2 2

q
a b

a b
q

a b
=

+

+
-

+
c cm m; E.	 (9)

Substituting (9) into (7) and using the well-known relation 
[20, 21] 
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where Jk (z) is the kth-order Bessel function, we find the solu-
tion for the function Fn(z): 
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Then the function un(z), in correspondence with (5), can be 
written as 
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Similarly, using the second equation from (3), one can obtain 
a solution for un(z): 
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Then the final solutions to initial Eqns (1) for the functions 
fn(z) and gn(z) take the form 
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and the propagating-wave intensities | fn(z)|2 and |gn(z)|2 are 
described by the expressions 
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Using (16) and the relation 
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from [22, 23], one can easily show that 
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Figure 1.  Schematic arrangement of optical fibres in two parallel infi-
nite coupled arrays. 
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This relation is the energy conservation law in the system: the 
sum of the energies over all optical fibres in both arrays is 
retained at any point, independent of the coordinate z, and is 
equal to the energy supplied to the zero-fibre end face (z = 0). 

Assuming that g = 0 and a = 0 in (14) and (15) (i.e., there 
is no coupling between the first and second arrays), we arrive 
at the solution for an individual array [1]:

| ( )| sinf z J z4
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In another particular case, where only a = 0 (there is no cou-
pling anharmonicity between the arrays, but anharmonicity is 
retained for each array), the expressions for the radiation 
intensities in fibres have the form 

| |
| |

( )
( )

sin
cos
sin

f
g

J z
z
z

4
2

n

n
n

2

2
2

2

2b
b g

g
=e cc eo mm o.	 (19)

If b = 0 (there is no coupling anharmonicity between fibres in 
an array), we arrive at the following expressions for the radia-
tion intensities: 
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Finally, if a = b (the coupling anharmonicity between the 
arrays and within each array is the same), we have the expres-
sions: 

| |

| |
( ) ( )sin

f

g
J z J z

4
1 2 2n

n
n n

2

2 a a= +e `o j)

	 ( ) ( )
[( ) ]

[( ) ]
sin

cos

sin
J z J z

n z

n z
2 2 2

2

2
n n

2

a a
g a

g a
+

+

+
` ej o3 .	 (21)

3. Results and discussion

Let us first consider the simplest case, where coupling with 
neighbouring-array fibres is absent ( g = a = 0). Under these 
conditions, pumping is performed only into the end face of 
the first-array zero fibre. In this case, radiation is not supplied 
to the second-array fibres; therefore, |gn(z)|2 = 0. Light propa-
gates only through the first-array fibres. As follows from (18), 
the intensity of light propagating through the nth fibre 
depends on the coordinate z and the fibre number n. The spa-
tial distribution of the nth-fibre field intensity periodically 
changes with an increase in the coordinate z along the fibre 
axis (Fig. 2). 

Figure 3 shows the first period of the spatial distribution 
of light intensity in array fibres. In the zero (pumped) fibre, 
the light intensity is equal to f02 at the points zk = kp/b (k = 
0, 2, 4, … ) (Fig. 2), i.e., the spatial intensity distribution in a 
given fibre is periodically repeated with a spatial period T = 
2p/b. Within one period, the light intensity in the fibre oscil-
lates, so that the oscillation envelope first slowly decreases 
from the point z0 = 0 to the point with a coordinate z1 = p/b, 
after which it monotonically increases to the end of the period, 
z2 = T = 2p/b (Fig. 3). The reason is that, due to the coupling 
between neighbouring fibres, light is transferred from the 

pumped optical fibre to its nearest neighbours, then from 
these fibres to the next ones, etc. 

This light propagation regime can be considered as diffu-
sion in the direction perpendicular to the fibre axis. The inten-
sity distribution is periodic due to the periodicity of the func-
tion sin(bz/2) in the argument of the Bessel function. The sine 
value first increases with an increase in z from zero to unity 
and then decreases from unity to zero; the Bessel function 
oscillates during the first half-period, with a monotonically 
decreasing oscillation amplitude. During the second half-
period, the Bessel function repeats the evolution of the first 
half-period but in reverse order. At large n values, the Bessel 
function remains zero for a long time, and only at large values 
of the argument (i.e., large z values) it rapidly increases; pos-
sibly, makes few oscillations; and them changes again in 
reverse order. It can be seen in Fig. 3 that the amplitudes of 
light intensity oscillations in the middle of the period are 
smaller than in the beginning and end of the period. If the 4/b 
value is smaller than the amplitude of the first maximum of 
the nth-order Bessel function, there are practically no observ-
able disturbances in the n-th fibre, and specifically this fact 
determines the maximum transverse size of the region of dis-
turbed array fibres. 

The spatial intensity distribution in other (unpumped) 
fibres is also a sequence of maxima, separated by field zeros. 

0
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z

Figure 2.  Spatial distribution of light intensity in the first array as a 
function of coordinate z at g = a = 0 and b = 0.01. 
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Figure 3.  Spatial distributions of field intensity for a series of optical 
fibres with different numbers n in an array within the first period. Zeros 
of the functions | fn|2 are shifted for clarity. 
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The coordinates znk of zero intensity values are given by the 
expression 

arcsinz j k2
4nk nk p

b
b

= +c m; E,

where jnk is the kth zero of nth-order Bessel function. 
It follows from expressions (18) and Fig. 4 that the char-

acteristic period of changes in the spatial field distribution 
tends to infinity at b ® 0. This means that, at b ® 0, the dis-
turbed array region is located between straight lines that are 
symmetric with respect to the pumped optical fibre, because 
| f–n(z)|2 = | fn(z)|2 (Fig. 4). At b ¹ 0 the largest distance between 
the zero fibre and the fibre reached by light is determined by 
the expression z = z1 = p/b. Thus, the maximum transverse 
size of the region of disturbed fibres monotonically decreases 
with an increase in b (Fig. 4). 

Let us now consider the spatial distribution of light inten-
sity in the case of only linear coupling (g ¹ 0, a = 0) between 
the arrays. It follows from expressions (19) that the functions 
| fn(z)|2 and | gn(z)|2 are characterised by two spatial periods 
(Fig. 5). One of these periods is due, as in the previous case, to 

the change in the Bessel function argument sin( bz/2), while 
the other period is caused by the factor cos2(gz) for the func-
tion | fn(z)|2 or the factor sin2(gz) for the function | gn(z)|2. 
These factors determine the transfer rate for light with a 
period T1 = p/g, which is characteristic of a coupler consisting 
of two parallel optical fibres with a coupling constant g. 
Therefore, the spatial distribution of light intensity in the first 
array is the same as the distribution obtained for f 2(z) = 
Jn
2(( 4/b)sin( bz/2)) at g = 0 (Fig. 2), but additionally modu-
lated by the function cos2(gz) (Fig. 5a). Therefore, the spatial 
light intensity distribution in the second array is given by the 
function | gn(z)|2 at g = 0, modulated by the function sin2(gz) at 
b = g (Fig. 5b). 

The positions of zeros and extrema of the factors cos2(gz) 
and sin2(gz), which determine the light transfer rate between 
the arrays, are independent of the fibre number n. The spatial 
distribution of light intensity in the arrays depends on the 
intensity maxima positions (determined by the Bessel func-
tion value z = z1 = p/b), which coincide with the positions of 
minima z = z2 = p/2g of the function sin2(gz), z1 = z2, at b = 2g 
(Fig. 5). Dark transverse bands correspond to zero field val-
ues in fibres. The centres of these dark bands are located at 
the points zk = (k + 1/2)p/g in the first array and at the points 
zk = kp/g in the second array. 

The spatial intensity distribution depends strongly on the 
relationship between the interaction constants b and g. An 
analysis of expression (19) shows that the distribution of light 
intensity maxima in the arrays changes significantly in com-
parison with that reported in Fig. 2, depending on the relation 
between b and 2g. At b < 2g, the light intensity maxima in the 
first array are located, as previously, at the distribution nodes 
(Fig. 6а), whereas the light intensity maxima in the second 
array are concentrated in extreme excited fibres (Fig. 6), 
which is indicative of almost complete light transfer between 
the arrays. At b > 2g, the positions of intensity distribution 
maxima in both arrays change. The light intensity is maximal 
in the zero optical fibre of the first array (Fig. 7a). At a half-
period distance, the intensity maximum is transferred to the 
zero optical fibre of the second array (Fig. 7b). The excited 
region of the arrays narrows in the transverse direction in 
comparison with that shown in Fig. 6 because of the light dif-
fusion. At b >> 2g, the excited region sharply narrows in the 
transverse direction, practically to a single fibre (Fig. 8). If 
b = 0, the spatial intensity distribution | fn(z)|2 is a set of max-

0
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4

Figure 4.  Spatial distribution of light intensity in the first array in de-
pendence of coordinate z at g = a = 0 and b = 0.2. 
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Figure 5.  Spatial distributions of light intensity in the (a) first and (b) second arrays as a function of coordinate z at a = 0 and g = b = 0.3. 
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ima and minima (zeros) with a period T1 = p/g, located 
between two straight lines containing the first maxima of the 
Bessel function Jn

2(2z) (Fig. 9). 
If there is no coupling anharmonicity between fibres in an 

array ( b = 0) and a ¹ g ¹ 0, the spatial distribution of light 
intensity remains periodic. The complete-transfer period 
between the arrays is T = 2p/a. Spatial oscillations of inten-
sity distribution occur within this period. The positions of 
intensity maxima and minima in both the first and second 
arrays are asymmetric with respect to the zero fibre (Fig. 10). 
The factor sin2[(g + an/2)z] in (20) determines the existence of 
unexcited fibre with a number n = – 2g/a in the second array 
(Fig. 10b). 

Finally, the spatial distributions of light intensity in the 
first and second optical fibre arrays are presented in Figs 11 – 13. 
One can see a complex superposition of oscillations with sev-
eral periods, the number of which depends on the parameters 
of the system. 

4. Conclusions

The spatial intensity distribution for light propagating in two 
coupled parallel optical fibre arrays was studied by the cou-
pled-mode method with allowance for the coupling of fibres 
with their nearest neighbours and the linear dependence of 
the propagation constant on the fibre number. It was shown 
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Figure 6.  The same as in Fig. 5 but at a = 0, g = 0.4, and b = 0.2.
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Figure 7.  The same as in Fig. 5 but at a = 0, g = 0.1, and b = 0.4.
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Figure 8.  The same as in Fig. 5 but at a = 0, g = 0.6, and b = 5.
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that the distribution of light intensity is a periodic function of 
coordinate. The dependences of fibre-to-fibre light transfer 
periods on the system parameters were found. It was estab-
lished that space limited transverse diffraction of light occurs 
in the system under consideration. The results of this work 
may be used to design new quantum electronics devices for 
light propagation control. 
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Figure 13.  The same as in Fig. 5 but at a = 0.1, g = 0.8, and b = 0.2.




