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Abstract.  The possibility of achieving superresolution on a micro-
step phase image in a laser scanning differential heterodyne micro-
scope is studied both heoretically and experimentally. The super-
resolution is estimated as the width ratio for the amplitude and 
phase components of the microscope response measured at half the 
height of the corresponding parts of the response. It is shown theo-
retically that superresolution greatly exceeding unity can be 
achieved for an object in the form of a phase microstep introducing 
a phase shift equal to p. Superresolution of ~2 is experimentally 
obtained for certified test micro-objects. A possibility of tuning a 
test sample into the superresolution regime by shifting a point pho-
todetector in the microscope’s Fourier plane is demonstrated.

Keywords: superresolution, heterodyne microscopy, phase response, 
phase image, microscopic object positioning.

1. Introduction 

The idea of increasing the resolution of an optical microscope 
using the phase component of the image optical field is well 
known [1, 2]. The optical phase image is defined as the optical 
field phase distribution in the image plane of an optical sys-
tem, in contrast to the conventional image, which is defined as 
the optical field intensity distribution in the same plane. 
Currently, much interest is shown in this subject, which is 
apparently explained by its both fundamental and applied 
aspects [3, 4]. 

Despite a large number of publications on this subject, 
one cannot state that there is a unified definition of the con-
cepts of ‘resolution’ and ‘superresolution’. This can obviously 
be explained by the wide variety of methods and approaches 
in use, which hinder elaboration of unified definitions and 
call for refining the terminology in each specific case. As was 
noted in [1], the development of the latest microscopy meth-
ods leads, in particular, to a diffusion of boundaries between 
the concepts of spatial resolution and accuracy in measuring 
coordinates. Some researchers (see, e.g., [5]) suppose that 
these concepts should be distinguished; nevertheless, even 
they acknowledge that this cannot always be done. 

In this study we apply a generalised approach to the con-
cept of resolution in optics [6, 7], based on estimation of the 
characteristic width of line spread function. Taking into 
account the specificity of the method in use and following 
[1,  8], the characteristic width of the edge response function is 
used as a measure of resolution. Note that this concept of 
resolution was already used previously, for example, in [2]. 
Concerning the superresolution concept, in our specific case, 
we consider expedient the approach proposed in [9], in which 
resolution is compared in the sense of accuracy in determin-
ing the range of a phase gradient maximum for a step object 
and the Airy disk width. Based on this approach and the defi-
nitions proposed in [7, 9], we will formulate below the defini-
tion of superresolution for the scanning differential hetero-
dyne microscope (SDHM) used by us [10]. 

A possibility of forming superresolution in the SDHM 
was shown previously in [11, 12]. In [11] this possibility was 
demonstrated both theoretically and experimentally using an 
algorithm based on the use of a priori information and solving 
the corresponding integral equation. The specially defined 
superresolution parameter reached ~3. A threefold excess of 
resolution above the diffraction limit was experimentally 
obtained in [12] when solving the inverse problem for a step 
object by extrapolating the SDHM response spectrum. In this 
context, it is of interest to analyze the possibility of forming 
superresolution directly based on the SDHM response, apply-
ing no additional mathematical processing and using the 
existing a priori information about the object. Here, step-like 
objects are of special interest, because the SDHM response to 
them has a similar bell-like shape for both the amplitude and 
phase components due to the specific features of the micro-
scope optical scheme. This circumstance makes it possible to 
compare both components without any additional processing 
and introduce a quantitative parameter to estimate their 
width ratio. Thus, the purpose of our work was to investigate 
both theoretically and experimentally the complex response 
of the SDHM to step-like objects and demonstrate superreso-
lution based on the analysis of the phase and amplitude 
response components.

The paper is organised as follows. Section 2 contains a 
description of the SDHM optical scheme, as well as the deri-
vation and analysis of the analytical expressions for the 
response to an ideal step-like phase object. The possibility of 
narrowing significantly the phase response in comparison 
with the amplitude one is shown. The concept of resolution is 
considered and a quantitative criterion is introduced to char-
acterise the revealed effect of phase response narrowing as 
optical superresolution. The dependence of the SDHM phase 
response narrowing on the parameters of the object and opti-
cal scheme is numerically investigated in Section 3. The exper-
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imental results obtained on certified test objects are described 
and the results are discussed in Section 4. The main conclu-
sions are formulated in Section 5. 

2. SDHM optical scheme and image  
formation theory 

The SDHM optical scheme includes a double-beam laser 
interferometer of the Mach – Zehnder type with a common 
path for both beams (Fig. 1). A He – Ne laser with a radiation 
wavelength l = 633 nm is used as a radiation source. An 
acousto-optic modulator in the form of a Bragg cell, con-
trolled by two harmonic signals with similar frequencies, 
forms two probe beams in the first diffraction order. The 
zero-order beam is filtered by a stop diaphragm. The dif-
fracted beams acquire different frequency shifts in the cell 
and, propagating at some angle with respect to each other, are 
focused by a microlens ( 6 ) onto the surface of the object 
under study in two closely spaced and partially overlapping 
spots. The optical field intensity reflected from surface is 
recorded (after passing through a beam splitter) by a point 
photodetector located in the microlens Fourier plane. Since 
the Fourier plane is in the close proximity of the microlens 
( 6 ), a lens ( 5 ) is used to image it in the detection plane ( 9 ). 

When probe beams with different frequencies are over-
lapped, a dynamic interference pattern is formed in the detec-
tion plane. The photodetector current, which is proportional 
to the field intensity in the detection plane, has a harmonic 
component at the difference frequency. The current ampli-
tude and phase depend on the properties of the object surface. 
The photocurrent phase component is measured using the sig-
nal from a reference photodetector ( 11 ), whose phase is con-
stant. The object is scanned along the line passing through the 
probe beam centres. When the object position relative to the 
probe beams changes, the amplitude and phase of the recorded 
photodetector alternating current I change as well. The func-
tions describing the dependences of the amplitude and phase 
of the photodetector current on the object coordinate (i.e., the 
scanning coordinate xs) will be referred to as, respectively, the 
SDHM amplitude and phase responses to the object under 
study, or, in the representation of a complex exponential 

function D(xs), as a complex SDHM response. The SDHM 
response amplitude is normalised proceeding from the condi-
tion D(xs) = 1 on the unperturbed object surface. 

Based on the aforesaid, the alternating current compo-
nent of the photodetector, at which the light reflected from 
the object arrives, can be written as

I(xs, t) = I0Re{D(xs)exp(iwt)},

where I0 is the photodetector current corresponding to the 
reflection of radiation from the unperturbed part of the 
object; w is the difference (heterodyne) frequency of probe 
beams; the function D(xs) = A(xs)exp[iF(xs)] is the complex 
amplitude of the SDHM response; and A(xs) and F(xs) are, 
respectively, the SDHM amplitude and phase responses. The 
amplitude and phase responses will also be referred to as the 
amplitude and phase object images in the SDHM. Concerning 
the experimental determination of the function D(xs), it is 
obvious that a measurement of the amplitude and phase of 
normalised current function I(xs, t)/I0 yields directly the com-
plex response amplitude D(xs). 

At the same time, when the optical scheme and object 
parameters are known, the complex response amplitude can 
be calculated either analytically or numerically, based on the 
theory of image formation in the SDHM. Since this theory 
was described in detail previously [10, 13], we present below 
only the key expressions that are used to model the micro-
scope response. It is assumed that the object under study lies 
in the xy plane and is homogeneous along the y axis, i.e. the 
reflectance is independent of the coordinate y. The complex 
amplitude of the SDHM response for one-dimensional 
objects is given by the relation [10]

D(xs) = L(xs + e/2)L*(xs – e/2),	 (1)

where the linear response function L(xs) is expressed in terms 
of the line spread function (LSF) g(x) of the microscope and 
the local object reflectance r(x), 

3
( ) ( ) ( )dL x g x x r x xs s= -

3-
y ,	 (2) 

and e is the distance between the centres of focused probe 
beams. The function r(x), which determines the change in the 
amplitude and phase of the optical field after the reflection 
from the object, can be written in the form of a complex func-
tion (complex reflectance): 

r(x) = a(x)exp[ij(x)],

where a(x) is the ratio of the amplitude moduli for the reflected 
and incident optical waves and j(x) is the change in the opti-
cal field phase as a result of reflection. The one-dimensional 
description of image formation is justified, because we con-
sider here only the objects that are homogeneous along the y 
axis [6, 14]. A change in the phase in the reflected field may be 
caused, in particular, by the topographic profile of the object: 
h(x); it this case, j(x) = 2kh(x), where k = 2p/l. Below we 
consider only the phase objects for which a(x) = 1. The line 
spread function g(x) is expressed in terms of the microlens 
pupil function P(u, n) [6]: 
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Figure 1.  Optical scheme of a scanning differential heterodyne micro-
scope: ( 1 ) He – Ne laser; ( 2 ) acousto-optic deflector (Bragg cell); ( 3 ) 
beam splitter (semitransparent mirror); ( 4, 5 ) lenses; ( 6 ) microlens; ( 7 ) 
substrate with object; ( 8 ) mechanical micropositioner; ( 9 ) pinhole; 
( 10 ) signal photodetector; ( 11 ) reference photodetector. 
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Here, u and n are the linear coordinates in the microlens 
Fourier plane and f is the microlens focal length. It is gener-
ally assumed [6] that P(u, n) = 1 when (u2 + n2)1/2 < f NA (NA 
is the microlens numerical aperture) and P(u, n) = 0 in other 
cases. Then the LSF takes the form 

c( ) ( )exp i dg x
f
k

f
k ux u

q
q x

2
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a

a 0
0p p= =

-

sinc my ,	 (3)

where sinc(z) = sin(z)/z; a = f NA is the microlens pupil radius; 
and q0 = kNA is the spectral half width of the spatial frequen-
cies transmitted by the objective. Thus, relations (1) – (3) 
allow one to calculate the complex amplitude of the SDHM 
response. 

Let us consider then the SDHM response to a model 
object, which, being an ideally reflecting phase step, provides 
a step phase drop j0 in the reflected wave. It is convenient to 
express the reflectance of this object in terms of the Heaviside 
function H(x) [2]: 

( ) 1 [ ( ) ] ( )exp ir x H x10j= + - ,	 (4)

where H(x) = 1 at x > 0 and H(x) = 0 at x < 0. Having sub-
stituted expression (4) into (2) and then into (1), we arrive at 

( ) 1 [ ( ) 1] ( )exp iL x H xs s0j= + - u ,	 (5)

( ) {1 [ ( ) 1] ( )}exp iD x H xs s0j= + - u

	 {1 [ ( ) 1] ( )}exp i H xs0# j e+ - - +u ,	 (6)

where the function 

( ) ( )SiH x q x
2
1 1

0p= +u

is expressed in terms of the integral sine function 

( ) sinSi dx t
t t

x

0
= y .

Note that ( )H 03- =u  and ( )H 13+ =u . 
Since it is rather difficult to analyse expression (6) in the 

general form, we will consider the behaviour of the function 
D(xs) in two important cases: at j0 << 1 and at j0 = p. 

In the former case the exponential can be expanded in the 
small parameter: exp(ij0) = 1 + ij0 – 0.5(j0)2 + …. To repre-
sent the phase response, we leave the first two terms in this 
expansion and obtain as a result the expression 

D(xs) » 1 [ ( ) ( )]i H x H xs s0j e+ - +u u .	 (7)

Therefore, the phase component of the response function is 

F (xs) » [ ( ) ( )]H x H xs s0j e- +u u .	 (8)

For the amplitude component, one must also take into 
account the quadratic term in the exponential expansion, 
which yields (with allowance for   ( )H xsu  » ( )H xs e+u ) the fol-
lowing relation at small e values:

A(xs) » 1 ( ) [1 ( )]H x H xs s0
2j- -u u .	 (9)

It follows from expressions (8) and (9) that the phase 
response tends to zero at e ® 0, i.e. when the probe beams 
converge. In contrast, the amplitude response does not 
become zero because it is not differential but is determined by 
the function ( )H xsu  and the j0 value. At a small nonzero e 
value (less than the focused beam size), both response compo-
nents are bell-shaped, with lateral oscillations having a char-
acteristic width Dx = p/q0, which is determined by the coordi-
nate of the first extremum of the integral sine. Obviously, the 
criterion for determining the width of the SDHM response 
function calls for a more correct formulation; it will be pre-
sented below. 

In another important case, where j0 = p, expression (6) is 
reduced to the following one: 

[1 2 ] [1 2 ]D x H x H xs s s e= - - +u u^ ^ ^h h h .	 (10)

Function (10) is real and alternating. It is positive everywhere, 
except for the interval [0, e], in which it is negative. Thus, 
being presented in the form of a complex exponential func-
tion, the amplitude response component is as previously a 
bell-shaped function with a characteristic width Dx = p/q0, 
and the phase component is a rectangular ‘pulse’ with an 
amplitude p and a width Dxp, equal to the distance between 
the points at which the functions 1 2 ( )H xs- u  and 1 2 ( )H xs e- +u  
turn to zero, i.e., Dxp = e. Therefore, decreasing the e value, 
one can reduce the phase response width by the step. This 
change in the response shape is due to the nonlinear character 
of the phase component, which was indicated for the first 
time in [2]. However, the analysis in that study was performed 
for another scheme of the phase microscope and another 
phase object. 

Thus, we revealed that the ratio of the characteristic 
widths of the amplitude and phase responses may change sig-
nificantly as functions of the step object characteristics. 
Following [8, 9], we will determine the resolution R for the 
SDHM as the FWHM of the response to a step object. The 
response height (or peak-to-peak value) is measured between 
the response baseline, corresponding to a homogeneous sub-
strate surface, and the main extremum of the response func-
tion (Fig. 2). The baseline is unity and zero for the normalised 
amplitude response and the phase response, respectively. The 
physical meaning of this definition of resolution is obvious: 
the resolution characterises in this case the accuracy in deter-
mining the step coordinate, i.e., the coordinate of the profile 
point at which the modulus of its gradient is maximum. Note 
that this definition of resolution is not radically new [1, 6 – 8]; 
it is quite expedient in some cases, including the SDHM case. 

Thus, we have two object images for the two components 
of the SDHM response and, correspondingly, two resolution 
values: amplitude (Ra) and phase (Rj) ones. As follows from 
relations (8) – (10), in terms of this definition, the resolution 
will depend on the response component (phase or amplitude) 
it is measured on, as well as on the phase drop j0 introduced 
by the step. 

Relations (8) – (10) are universal at  e ® 0, because they are 
determined by only the behaviour of the integral sine function 
and the parameter j0. This circumstance makes it possible to 
investigate the resolution according to the FWHM criterion. 
Numerical calculations performed with allowance for rela-
tions (8) and (9) for the SDHM response to a phase step with 
a drop j0 << 1 and small e values (e << Dx) yielded the fol-
lowing resolution values: Ra = 2.4/q0 for the amplitude 
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response and Rj = 3.5/q0 for the phase response. Note that, in 
correspondence with the Rayleigh criterion, the resolution is 
Rl = l/(2NA) = p/q0 at these parameters of the system. This 
circumstance reflects the well-known fact that, according to 
the Rayleigh criterion, the resolution is equal (accurate to a 
coefficient of ~1) to the instrumental function width [7]. 

If the phase drop j0 introduced by a step object becomes 
equal to p, the situation, according to relation (10), changes 
radically. The resolution Ra, determined from the amplitude 
response, is equal as previously to 2.4/q0 and corresponds to 
the Rayleigh criterion, whereas the resolution Rj, determined 
from the phase response, is e. This means that the resolution 
in a phase image is determined in this case by only the dis-
tance between the probe beams in the object plane. 
Theoretically, one can expect for this object a significant 
increase in the resolution on a phase image of a microstep in 
the SDHM. The numerical value of resolution in the ampli-
tude image corresponds approximately to the classical 
Rayleigh resolution in both cases; therefore, according to 
[1, 7, 9], we propose to determine in this case the quantitative 
parameter of superresolution SR as the ratio of the width of 
the instrumental function amplitude component to the phase 
component width: 

SR = Ra/Rj,	 (11) 

which yields SR » 0.7 at j0 << 1 (i.e., the absence of super-
resolution), whereas at j0 = p we have SR = Ra/e. The latter 
value may greatly exceed unity with a decrease in the distance 
e between the probe spots. This fact indicates that superreso-
lution may be achieved. 

3. Results of numerical calculations 

Let the first object be a step with a vertical wall of height h. As 
was noted above, at h = l/4 (which corresponds to the intro-
duced phase difference j0 = 2kl/4 = p), the phase response 
has a shape of a rectangular function with a width equal to 
the distance e between the centres of focused probe beams on 
the object surface. For example, at e = 0.1 mm, the width of 
the calculated phase response is 0.1 mm, whereas the ampli-
tude response width is 0.5 mm [Fig. 2, curve ( 1 )]. At the points 
on the scanning coordinate scale, where the amplitude 
response is almost zero, the phase response undergoes a jump 
by 180°. In our case the distance between these points is e. 
According to relation (11) for the aforementioned responses 
[Fig. 2, curves ( 1 )], SR » 5 at e = 0.1 mm. Having reduced the 
e value, for example to 0.05 mm, we obtain SR » 10. 

At a small deviation of the step height from j0 = p, the 
phase response shape starts changing: the peak-to-peak value 
decreases, while the response width increases. As calculations 
showed, with a change in the step phase drop by no more than 
3° (or 0.05 rad), the phase response retains its width [Fig. 2, 
curve ( 4 )]. If the step height differs significantly from l/4, the 
phase response broadens, as well as the amplitude response 
[curve ( 3 )]. However, even at a step height of l/5, which cor-
responds to an introduced phase difference of 144°, the effect 
of phase response narrowing is retained [Fig. 2, curve ( 2 )] 
and, according to formula (11), allows one to reach a twofold 
superresolution. 

The behaviour of the SDHM phase and amplitude 
responses with a change in the distance e between the probe 
beams is radically different (Fig. 3). It can be seen that, at a 
step height of l/4, the phase response width is directly pro-
portional to e, whereas the amplitude response width 
increases by only ~50 % with an increase in the parameter e 
by a factor of five. 

Similar regularities are also observed for a phase step 
whose wall is not vertical but makes some angle with the nor-
mal. In this case an increase in the step width w (see Fig. 5) at 
a fixed height of l/4 leads to a decrease in the phase peak-to-
peak value and phase response broadening [Fig. 4, curves 
( 2 – 4 )]. However, even at a step width of w = 0.3 mm, the 
superresolution is retained and reaches ~2 [curve ( 4 )]. In this 
case, there is height (slightly differing from l/4) for a tilted-
wall step at which the phase response has also a rectangular 
shape [curve ( 5 )]. Note that all amplitude responses in Fig. 4 
have an approximately identical shape and width; they are 
not enumerated for this reason. An increase in the step width 
only slightly reduces the peak-to-peak value for the amplitude 
response. 

Thus, we can conclude that the effect of interest is not 
critical to deviation of one of the step parameters from 
desired, because this deviation can be compensated for by 
changing another parameter. Due to this, one would expect 
the effect to be experimentally observed. To this end, we used 
certified test samples [15], which are applied to calibrate scan-
ning optical and electron microscopes. The application of cer-
tified samples is especially important from the point of view 
of further study of the effect. Two types of test samples were 
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Figure 2.  Calculated SDHM responses to a phase rectangular step with 
a height of ( 1 ) l/4, ( 2 ) l/5, ( 3 ) l/10, and ( 4 ) l/3.93, at a distance of 
0.1 mm between the probe beams. 
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investigated: dielectric and metallised steps (Fig. 5). The met-
allised sample is a phase step with a constant modulus of 
reflectance, whereas the dielectric sample is an ampli-
tude – phase step with a coordinate-dependent reflectance 
modulus. 

Before carrying out the experiment, we simulated numeri-
cally the complex SDHM response for an amplitude – phase 
step. The simulated dependences (Fig. 6) show that a rectan-
gular phase response can also be obtained for this object; 
however, the corresponding step height will differ from l/4. 
This can be explained by the influence of interference in the 
dielectric film; thus, the necessary change in the height will 
depend on not only the geometric parameters but also on the 
refractive indices of the substrate and film. As well as for a 
phase step, the wall tilt can also be compensated for in this 
case by changing the step height [curve ( 3 )] to form a phase 
response of rectangular shape. Thus, the numerical simula-
tion results give grounds to verify experimentally the super-
resolution effect on a phase microstep image in the SDHM. 

4. Experimental results

Two types of certified objects were experimentally investi-
gated to verify experimentally the effect of superresolution on 
a phase image in the SDHM. The first object was an edge of a 

silicon dioxide film on a silicon substrate (Fig. 5a) [15]. The 
film thickness was 356 ± 1 nm, and the edge tilt angle with 
respect to the surface normal was 40°. This angle was formed 
by film isotropic etching. The second object was the same film 
edge but coated (jointly with the substrate) with a 25-nm-
thick gold layer (Figs 5b). The SDHM was used to scan the 
profiles of both objects in the standard signal detection regime 
(point photodetector located at the centre of the Fourier 
plane). The radius of the microscope probe beam on the 
object surface was 0.7 mm [16]. The SDHM responses to these 
steps, obtained with a microlens having a numerical aperture 
NA = 0.65, are shown in Fig. 7. 
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Figure 3.  Calculated SDHM responses to a phase rectangular step with 
a height of l/4, at distances of 0.1 mm (solid line) and 0.5 mm (dashed 
line) between the probe beams. 
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Figure 4.  Calculated SDHM responses to different phase steps: ( 1 ) a 
step with a height of l/4 and a rectangular profile; (2 – 4) a step with a 
height of l/4 and a tilted wall with widths w = ( 2 ) 0.1, ( 3 ) 0.2, and ( 4 ) 
0.3 mm; and ( 5 ) a step with a height of l/3.2 and width w = 0.3 mm. The 
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Figure 5.  Schematic profiles of the experimentally studied (a) dielectric 
and (b) metallised step-like objects. The profile parameters are as fol-
lows: height h = 0.35 mm, wall width w = 0.30 mm, metal-layer thickness 
l = 25 nm, n1 = 3.9  – 0.2i, n2 = 1.48, and n3 = 0.16  – 3.2i. 
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Estimation of the resolution from the response width at 
half maximum for the phase and amplitude components 
yields (see Fig. 7) the following values of the superresolution 
parameter: SR » 1.4 for the metallised step and SR » 2.3 for 
the dielectric step. Note that the samples studied were not 
optimised previously in any way to analyse the superresolu-
tion effect, i.e. the phase drop j0 introduced by the step 
objects under consideration differed significantly from p. 

Based on the results obtained, we can conclude that the 
resolution increases on the phase image in the SDHM and 
that superresolution can be achieved for a certain class of 
objects. Obviously, the question of practical application of 
this effect calls for separate investigations. In this study we 
consider only two aspects important from this point of view: 
(i) the influence of noise on this effect and (ii) the possibility 
of its adjustment using microscope tools. 

A detail analysis of all noise sources and their influence on 
the results of measuring the response was beyond the scope of 
our study. We restricted ourselves to the estimation of the 
summary effect of all experimental noises on the final result of 
measuring the complex SDHM response, which manifests 
itself in the spread of individual measurement results when 
scanning an object. To estimate the noise influence, we per-
formed multiple scanning of the object. This approach 
allowed us to construct responses taking into account the 

influence of the spread of individual measurements. The thus 
obtained SDHM responses are presented in Fig. 8. Based on 
the averaged phase and amplitude responses with a spread at 
each scanning point, one can conclude that the influence of 
noise on the SDHM response must be taken into consider-
ation; however, it is obvious that the effect of phase response 
narrowing is retained even when taking the noise into account. 

The width of measured responses was estimated by calcu-
lating the moments of the function f (x) [17]. First the coordi-
nate x0 = m1/m0 and then the variance s2 = m2/m0 – x0

2 were 
determined. Here, mn (n = 0, 1, 2) are the moments of the func-
tion f (x), found from the formula 

( )dm x f x xn
n

x

x

1

2

= y .	 (12)

In this case, the 2s was taken to be the width of the function. 
When calculating the moments of the function, integration in 
expression (12) was performed within the central part of the 
response: x1 = 9.5 mm and x2 = 11.0 mm. A calculation of the 
function width with allowance for the statistics yielded the 
following values: 2s = 0.30 – 0.45 and 0.70 – 0.90 mm for the 
phase and amplitude responses, respectively. As a result, the 
superresolution parameter SR for the SDHM was estimated 
to be in the range of 1.5 – 3.0. 

Concerning the possibility of increasing resolution for the 
samples that were not optimised with respect to the intro-
duced phase drop j0 that differed significantly from p, it was 
experimentally found that an important parameter of the 
SDHM optical scheme, which allows one to adjust resolution, 
is the coordinate of the point photodetector in the microscope 
Fourier plane. In the standard measurement mode the photo-
detector is placed at the centre of the plane, and the micro-
scope bandwidth is determined by the microlens numerical 
aperture. When the photodetector is displaced from the cen-
tre, the spatial frequency bandwidth is expanded due to the 
detection of the optical field spatial frequencies diffracting at 
an angle exceeding the aperture angle. Previously this tech-
nique was applied to enhance the microscope sensitivity [18]; 
however, the increase in the resolution was not studied. We 
investigated the dependence of the shape of the SDHM phase 
response to a metallised step on the photodetector displace-
ment. The experimental responses are presented in Fig. 9 as 
functions of the angular coordinate of the detector. The linear 
coordinate u in the Fourier plane was transformed into an 
angular coordinate according to the formula q = arctan(u/f ), 
where f = 4.3 mm is the objective focal length. Since a step-
like object is asymmetric, the change in the response is differ-
ent for the photodetector displacements to different sides 
from the centre (q = 0). At one side from centre (q < 0) the 
phase response broadens and decreases in peak value. At the 
other side (q > 0) it increases in peak value and narrows, 
reaching limiting values at a certain point of the Fourier plane 
(q = 11°). For the object under study, the smallest response 
width at this point is 0.5 mm; i.e., it is smaller by a factor of 1.6 
than the result of measuring at the centre of the Fourier plane. 
In this case the superresolution parameter is SR » 2.4. 

We should note again that the effect of increasing resolu-
tion and achieving superresolution for certain classes of step-
like microscopic objects via phase image analysis was thor-
oughly investigated for the first time in [2], where it was 
emphasised that the effect is based on the phase response non-
linearity and must always be correctly interpreted. In contrast 
to [2], we showed that the implementation of this effect does 
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Figure 6.  Calculated SDHM responses to different amplitude – phase 
steps: ( 1 ) a step with a height of l/2 and a rectangular profile, ( 2 ) a step 
with a height of l/2 and a tilted wall 0.3 mm wide, and ( 3 ) a step with a 
height of l/1.7 and a projection of 0.3 mm. The distance between the 
probe beams is 0.1 mm. 
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not require the amplitude response to pass through zero and 
that the superresolution parameter exceeds 2 when the phase 
difference introduced by the object lies in the range of 
140° – 180°. The manifestation of this effect in scanning dif-
ferential heterodyne microscopy, which was considered in this 
work, appears especially promising for practical applications 
(e.g., for designing precise coordinate sensors in positioning 

devices). Therefore, it is of undoubted interest for further 
study. 

5. Conclusions

Based on the above presented and discussed results, we can 
draw the following main conclusions: 
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Figure 7.  Experimental SDHM responses to (a, b) metallised and (c, d) dielectric steps; the distance between the probe beams is 0.3 mm. 
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705Superresolution effect on a microstep phase image in a laser heterodyne microscope

1. The complex response of a scanning differential hetero-
dyne microscope to submicron step-like phase and ampli-
tude – phase objects was theoretically and experimentally 
investigated. 

2. The possibility of controlling the phase response width 
and achieving superresolution by changing the distance 
between the SDHM probe beams and displacing the photode-
tector in the Fourier plane is demonstrated. 

3. The experimental value of the superresolution parameter 
for certified test microscopic objects, obtained on the phase 
image of a step microscopic object, turned out to be ~2. 
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