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Abstract.  Diffraction phenomena arising due to reflection of a 
plane electromagnetic wave from a metal film, which are caused by 
a limited size of the incident beam aperture, are considered in the 
Kretschmann scheme used to excite a surface plasmon wave. It is 
shown that the wave reflection occurs nonlocally, that is, the region 
of the surface on which the wave is incident and the region from 
which it is reflected do not substantially coincide. The localisation 
of the maximum field is investigated when a surface plasmon is 
excited on a silver film. The absolute values of the gain in terms of 
the amplitude of the field on the free surface of the film are calcu-
lated. The proposed theory is applied to explain the Goos – Hänchen 
effect. 

Keywords: surface waves, surface plasmons, integrated optics, opti-
cal sensors.

1. Introduction and problem statement 

Currently, much attention is being paid to the development of 
multichannel optical sensor systems used in biological, chem-
ical and physical studies and utilising surface plasmon (or 
plasmon-polariton) waves to diagnose changes in the propa-
gation of surface waves caused by changes in the surface 
properties of the medium under study [1 – 4]. Such waves, for 
example, propagate along the metal surface, being localised 
near it [5, 6]. A frequently used method for the excitation of 
surface plasmons is the Krechmann method [7]. 

In the framework of the Krechmann scheme [8] (Fig. 1), a 
surface plasmon wave ( 1 ) on the surface of a metal film ( 2 ) 
and an incident wave ( 3 ) are matched with a glass prism ( 4 ). 

A linearly polarised monochromatic wave E i is incident 
on the metal film from the side of the prism. The electric field 
vector of the incident wave lies in the plane of incidence 
(p-polarisation). The prism is necessary for matching the inci-
dent plane wave and the surface plasmon wave by the wave-
number, since the wavenumber of the surface plasmon wave 
is greater than that of the plane wave of the same frequency in 
free space [9, 10]. To ensure the equality of the wavenumbers 
of the incident ( 3 ), reflected ( 5 ) and surface plasmon ( 1 ) 
waves along the metal surface (Fig. 1), it is needed that the 
incident wave approaches the film from an optically denser 
medium (where the wavenumber is greater than that in free 

space). The refractive index of the prism and the angle of inci-
dence are chosen so as to ensure the equality of the wavenum-
bers of the incident and surface waves. With these parameters, 
in the absence of a metal film (and excitation of surface plas-
mons), one can observe the total internal reflection of the inci-
dent wave. 

Experiments show that if the angle of incidence meets 
the condition of matching the wavenumbers of the incident 
and surface plasmon waves, then there is a sharp decrease in 
the reflection coefficient. For example, according to the the-
ory outlined below, when the wavelength of the incident 
wave in vacuum is l = 633 nm and the thickness of the silver 
film is approximately 53.8 nm (this value depends on the 
specific value of the refractive index of the prism and the 
frequency of the incident wave), there is a strong change in 
the reflection coefficient – almost from unity to zero in the 
vicinity of the angle of incidence corresponding to the 
matching of the free and surface plasmon waves. With a 
small deviation of the angle of incidence from the angle of 
matching, the value of the reflection coefficient changes 
from almost zero to unity. 

Because the field of the surface plasmon wave is concen-
trated in a thin layer near the metal surface, the behaviour of 
reflection in the Krechmann scheme strongly depends on 
changes in the refractive index in the thin layer near the sur-
face. This is the basis for the widespread use of the Krechmann 
scheme for producing various types of highly sensitive sensors 
[11]. Studies have shown that sensitivity is dependent on the 
angular width of the reflection minimum [12], which, in 
turn, is determined by the absorption of radiation in a metal 
film. The lower the absorption in the metal, the narrower the 
minimum. 
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Figure 1.  Excitation of a surface plasmon wave ( 1 ) on the surface of a 
metal film ( 2 ) according to the Kretschmann scheme: the incident wave 
( 3 ) in the prism ( 4 ) generates a surface plasmon wave ( 1 ) and a re-
flected wave ( 5 ). 
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To increase the sensitivity of the sensors by reducing the 
minimum angular width of the minimum, it was proposed to 
decrease the thickness of the metal film. It turned out that the 
attenuation of the surface plasmon wave in a thin film 
decreases with decreasing film thickness. However, to match 
the surface wave in the Krechmann scheme, it was necessary 
to introduce an additional matching layer between the prism 
and the metal film [13 – 16], and in some cases even a multi-
layer film [17, 18].

Note that surface waves can also propagate in dielectric 
films of planar waveguides [19]. In this connection, it was 
shown [20, 21] that the Krechmann scheme can be used to 
excite a surface wave (not necessarily a surface plasmon 
wave), which is matched in the wavenumber with the incident 
wave. In this case, a film (or several films) of optically dense 
material (with a large refractive index), separated from the 
prism by a film of a matching substance with a low refractive 
index, can be employed as a waveguide of a surface wave. 

For devices of finite size (in the plane of a multilayer 
structure), the aperture of the incident beam has a limited 
cross section; therefore, reflection will not occur quite exactly 
as in the case of an infinite structure and ideally plane waves. 
In our paper [22], a narrow reflection minimum is shown to 
retain in the case of a limited aperture, but the amplitudes of 
the reflected waves have an angular distribution within the 
diffraction angle. Obviously, in determining the size of the 
sensor layer of the probe, it is necessary that the region of the 
film coating in which the reflected field is localised be suffi-
ciently large. This paper is devoted to the study of this prob-
lem on the example of the excitation of surface plasmons on a 
metal film. In addition, the amplification of the field on the 
free surface of the film, important for a number of technical 
applications, is investigated. 

2. Incidence of a plane electromagnetic  
limited-aperture beam on a plane-layered  
structure

Let a plane monochromatic wave with cyclic frequency w and 
unit amplitude (Fig. 2) be incident from half-space ( 1 ) (prism) 
filled with a homogeneous isotropic dielectric with refractive 
index n1 on a flat film with thickness d1 at an angle a to the 
normal. A generalisation to an arbitrary number of layers will 

be given below. For definiteness, it is assumed that the film is 
metallic and has a complex permittivity e2 at the considered 
frequency w, and behind the film there is a homogeneous half-
space with a permittivity e3 (free space). Let the size D of the 
aperture of the wavefront of the beam in the xz plane be such 
that the wave is incident on a segment of the interface of 
length L, i.e. D = Lcosa. In the future we will use the gener-
alisation of ideas of work [23] (pp 377, 378). 

Maxwell’s equations in these regions can be written as 

curl Ej = iwBj ,	 (1)

curl Bj = – iwej  mj Ej ,	 (2)

where Ej and Bj are the vectors of the electric field strength 
and magnetic field induction in the region with the number j; 
j = 1 corresponds to half-space ( 1 ) (for which z < 0); j = 2 
corresponds to the region of the film ( 2 ) (0 < z < d1); and 
j =  3 corresponds to free half-space (z > d1). The complex 
representation of fields in time is described by the multiplier 
exp(–iwt). 

We will consider fields that are independent of the y coor-
dinate and have only x- and z-components of the electric field 
strength vector. From (1) and (2) we find the wave equation 
for the electric field

curl curl Ej – w2mj ejEj = 0.	 (3) 

Given that divDj = 0, or ¶xEjx + ¶zEjz = 0, we obtain the 
expression

¶ ¶ ¶ ¶curl curl E E E EE e ej x xx jx zz jx z zz jz xx jz
2 2 2 2

= - - + - -^ ^h h,

where ex and ez are unit vectors in the x- and z-axis directions. 
As a result, from (3) we find the equations for the components 
Ejx and Ejz: 

j j¶ ¶ 0E E Exx jx zz jx jx
2 2 2w m e+ + = ,	 (4)

j j¶ ¶ 0E E Ezz jz xx jz jz
2 2 2w m e+ + = .	 (5)

We represent the components of the electric fields in the form 
of Fourier expansions: 

( , ) ( , ) ( )exp i dE x z E z x
2
1

jx jxp x x x=
3

3

-

+ uy ,

( , ) ( , ) ( )exp i dE x z E z x
2
1

jz jzp x x x=
3

3

-

+ uy , 

where the Fourier transforms are determined by the integrals

( , ) ( , ) ( )exp i dE z E x z x xjx jxx x= -
3

3

-

+u y ,

( , ) ( , ) ( )exp i dE z E x z x xjz jzx x= -
3

3

-

+u y .

Then, for the Fourier transforms of the fields, we obtain from 
(4) and (5) the equations 
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Figure 2.  Geometry of the electromagnetic problem. A plane p-polar-
ised wave is incident from the prism ( 1 ) on a metal film ( 2 ) with vacu-
um ( 3 ) behind the film.
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0
d

d

z

E
Ejz

j j jz2

2
2 2w m e x+ - =

u
u^ h .	 (7)

The solutions of these equations are ( )expE E k zjx jx jz!=
! !u t , 

( )expE E k zjz jz jz!=
! !u t , where E jx

+t ,E jx
-t ,E jz

+t , andE jz
-t  are func-

tions of only x, and ( ) ( )k k /
jz jz j j

2 2 1 2x w m e x= = - .
The general solution of equation (3) for polarisation in the 

plane of incidence and a given variation of the field along the 
x axis during propagation along the z axis and in the opposite 
direction can be written as

3
( )

( )

[ ( ) ] ( )exp expi i d

E

E

k z xE
2
1 0

jx

jz

jz!p

x

x

x x x=
!

!

!
3-

j

t

t

J

L

K
K
K

N

P

O
O
O

y ,	 (8)

where j( ) .k jz j
2 2 2x x w m e+ =  Since divDj = 0, we have 

( )E k E 0j jx j jz jz!e x e x =t t .	 (9)

Using formula (9), expression (8) can be rewritten as
 

3!

( )

( ) [ ( ) ] ( )exp expi i d

k

E k z xE
2
1

1

0j

jz

jx jz

"

!p

x
x

x x x x=
!

3-

t

J

L

K
K
K
KK

N

P

O
O
O
OO

y .

(10)

The expressions for the fields in the considered regions can be 
written in the form: in region 1

3
( , ) ( ) ( ) ( )exp expi i dx z

k

E k z xE
2
1

1

0

z

x z1

1

1 1p
x

x x x=

-
3-

+t

J

L

K
K
K
KK

N

P

O
O
O
OO

y

	
3

( ) ( ) ( )exp expi i d

k

E k z x
2
1

1

0

z

x z

1

1 1p
x

x x x+ -
3-

-t

J

L

K
K
K
KK

N

P

O
O
O
OO

y ,	 (11)

in region 2

3
( , ) ( ) ( ) ( )exp expi i dx z

k

E k z xE
2
1

1

0

z

x z2

2

2 2p
x

x x x=

-
3-

+t

J

L

K
K
K
KK

N

P

O
O
O
OO

y

	
3

( ) [ ( )] ( )exp expi i d

k

E k z d x
2
1

1

0

z

x z

2

2 2 1p
x

x x x+ - -
3-

-t

J

L

K
K
K
KK

N

P

O
O
O
OO

y ,	 (12)

in region 3

3
( , ) ( ) [ ( )] ( )exp expi i dx z

k

E k z d xE
2
1

1

0

z

x z3

3

3 3 1p
x

x x x=

-

-
3-

+t

J

L

K
K
K
KK

N

P

O
O
O
OO

y .

(13)

The obtained expressions for the fields must satisfy the 
known boundary conditions. Consider the boundary of the 
first and second regions, z = 0. The tangential components of 
the electric field and the normal components of electrical 
induction on this boundary must be continuous, that is, 

( ,0) ( ,0)E x E x 0x x1 2- = ,	 (14)

( ,0) ( ,0) 0E x E xz z1 1 2 2e e- = ,	 (15)

where 

( , ) ( , ) ( , )E x E x E x0 0 0x x x1 1 1= ++ - ,

( ,0) ( ,0) ( ,0)E x E x E xx x x2 2 2= ++ - ,

( ,0) ( ,0) ( ,0)E x E x E xz z z1 1 1= ++ - ,

( ,0) ( ,0) ( ,0)E x E x E xz z z2 2 2= ++ - .

Note that the condition constEj jze =  in our case is equiv-
alent to the condition of continuity of the tangential compo-
nent of the magnetic field strength Bjy /mj (the magnetic field 
has only a component along the y axis). 

From the boundary conditions (14) and (15), using expres-
sions (11) and (12), at z = 0 we obtain two equations:

( )exp iE E E E k d 0x x x x z1 1 2 2 2 1+ - - =+ - + -t t t t ,

k
E

k
E

z
x

z
x1

1
1

1
1e x x

- ++ -t tc m

	 ( ) 0exp i
k
E

k
E k d

z
x

z
x z2

2
2

2
2 2 1e x x

- - + =+ -t t; E , 	

which can be rewritten in a matrix form

( )

( )

exp

exp

i

i
k k

E

E k

k d

k
k d

E

E

1 1 1

z z

x

x z

z

z
z

x

x
1

1
1

1

1

1
2

2

2 1

2
2

2 1

2

2
e x e x e x e x

-
=

-

+

-

+

-

t

t

t

t
f fp p> >H H  

or 

( )

( )

exp

exp

i

i
E

E k k k

k d

k
k d

E

E

1 1 1
x

x z z z

z

z
z

x

x

1

1
1

1
1

1

1

2
2

2 1

2
2

2 1

2

2
e x e x e x e x=

- -

+

-

-
+

-

t

t

t

t
f fp p> >H H .

(16)

Similarly, we consider the boundary of the second and 
third regions (z = d1). The boundary conditions are written in 
the form

( , ) ( , ) 0E x d E x dx x2 1 3 1- = ,

( , ) ( , ) 0E x d E x dz z2 2 1 3 3 1e e- = . 

Two matrix equations follow from them:

( )

( )

exp

exp

i

i

k d

k
k d

k

E

E k

E1 1 0

0 0

z

z
z

z

x

x z

x
2 1

2
2

2 1 2
2

2

2
3

3

3

e x e x e x
-

=
-

+

-

+t

t

t
f fp p> >H H ,	

(17)

( )

( )

exp

exp

i

i

E

E

k d

k
k d

k k

E1 1 0

0 0

x

x

z

z
z

z z

x2

2

2 1

2
2

2 1 2
2

1

3
3

3

e x e x e x=
- -

+

-

-
+t

t

t
f fp p> >H H

From matrix equations (16), (17) we obtain the expression

E

E
M

E

0
x

x

x1

1

3
=

+

-

+t

t
t

t
e eo o, 	 (18)
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where the matrixx Mt  is represented as a product of three 
matrices: M T T T1 2 3=t t t t , in which
 

T
k k

k

k

1 1

2
1
1

1
z z

z

z
1

1
1

1
1

1

1

1

1

1e x e x
e x

e x

=
-

=
-

-

t

R

T

S
S
S
SS

>

V

X

W
W
W
WW

H ,

( )

( )

( )

( )

exp

exp

exp

exp

i

i

i

i
T

k

k d

k
k d

k d

k
k d

k

1 1

z

z

z
z

z

z
z

z

2
2

2

2 1

2
2

2 1

2 1

2
2

2 1 2
2

1

e x e x e x e x=
- -

-

t > >H H

	
( )

( )

( )

( )

cos

sin

sin

cosi

ik d

k
k d

k k d

k d

z

z
z

z
z

z

2 1

2

2
2 1

2

2
2 1

2 1
e x

e x
=

R

T

S
S
S
SS

V

X

W
W
W
WW
,  

 T
k

1 0

0
z

3
3

3
e x=

-
t > H. 

From (18) we obtain that E M Ex x1 11 3=+ +t t  and .E M Ex x1 21 3=- +t t  
By introducing the function R(x) = –M21/M11, we can express 
the reflected wave as ( )E R Ex x1 1x=- +t t . In addition, we intro-
duce the function ( ) /M1T 11x =  with the help of which we can 
write ( )E ETx x3 1x=+ +t t .

Note that formula (18) can be generalised to the case of a 
structure of N layers by induction, which leads to the expres-
sion:

E

E
M

E

0
x

x

N x1

1

2
=

+

-

+
+

te eo o; 

moreover, the matrix Mt  has the form

M T T Tm
m

N

N1
2

1

2=
=

+

+
t t t te o% ,

where 

T

k

k2
1
1

1

z

z
1

1

1

1

1

e x

e x

=
-

t

R

T

S
S
S
SS

V

X

W
W
W
WW
,

( )

( )

( )

( )

cos

sin

sin

cosi

i
T

k d

k
k d

k k d

k d
m

mz m

mz

m
mz m

m

mz
mz m

mz m

1

1

1

1
e x

e x
=

-

-

-

-

t

R

T

S
S
S
SS

V

X

W
W
W
WW
,

T
k

1 0

0N
N

N z

2
2

2
e x= -+

+
+

t > H.

In this paper, we will be interested in incident, ( , )x zE i
1 , 

and reflected, ( , )x zE r
1 , waves in the first medium (z £ 0) and 

in a wave behind the film in the third medium E3(x, z) (z ³ d1). 
These fields, taking into account (11) and (13), can be rewrit-
ten as

i ( , ) ( ) ( ) ( )exp expi i dx z

k

E k z xE
2
1

1

0

z

x z

1

1 1p x
x x x=

-
3

3

-

+
1

t

J

L

K
K
KK

N

P

O
O
OO

y ,	 (19)

r ( , ) ( ) ( ) ( ) ( )exp expi i dx z

k

R E k z xE
2
1

1

0

z

x z

1

1 1p x
x x x x=- -

3

3

-

+
1

t

J

L

K
K
KK

N

P

O
O
OO

y ,

(20)

( , )

( )

( ) ( )x z

k

EE
2
1

1

0 T

z

x3

3

1p
x

x
x x=

-
3

3

-

+t

J

L

K
K
KK

N

P

O
O
OO

y

	 [ ( ) ( )exp expi i dk z d xz3 1 x x# - .	 (21)

Formulas (19) and (20) show that the incident field can be 
decomposed into plane waves with different harmonic varia-
tion along the x axis [i.e. with dependence on x in the form of 
exp(ixx)] and each such plane wave will be reflected from the 
flat-layered structure with the reflection coefficient R(x) at an 
angle a corresponding to the given x. To prove this, we first 
consider the incident of a plane infinite wave of unit ampli-
tude onto a film. The incident field at a plane boundary has a 
variation along the x axis, proportional to exp(ik1x x) = 
exp(ik1x sina), where k1 = n1w/c is the wavenumber in the first 
medium, c is the speed of light in a vacuum, and n1 = 1e  is 
the refractive index of the first medium.

Let the incident wave be polarised in the plane of inci-
dence. The electric field of this wave can be then represented 
(Fig. 2) in the form

i ( , ) ( , ) [ ( )]exp sin cosix z x z k x k zE E 1 1a a= = ++
1 1

	 ( )cos sine ex za a# - .

At z = 0 we obtain 

i ( ) ( )exp i dE E x x xx x= -
3

3
+

-

+

x1
t y

	 ( ) ( )exp sin exp cosi i dk x x x1 a x a= -
3

3

-

+y

	 2 ( )sin cosk1pd a x a= - .

From formulas (19) and (20) we find the field in the first 
medium (taking into account the fact that | cosk ksinz k1 11 a=x a= ): 
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2 ( ) ( )sin exp cos
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i dk x 01# pd a x x a x

a

a
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-
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	 [ ( )] ( )exp sin cos sini k x k z R k1 1 1# a a a+ -

	 [ ( )]
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exp sin cosi k x k z0 1 1#

a

a
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O
O

.

As a result, we obtain that the full field is the sum of the 
fields of the incident and reflected plane waves, with the 
reflection coefficient R = R(k1sina). 
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Suppose now that a bounded plane wave is incident on the 
film, and at z = 0, it (Fig. 2) is only incident on the segment 
x Î [–L/2, L/2]. Then,

i ( ) ( ) ( )exp i dE E x x x
/

/

x
L

L

2

2
x x= -+

-
x1

t y

	 ( ) ( )exp sin exp cosi i dk x x x
/

/

L

L

1
2

2
a x a= -

-
y

	 2
[( ) / ]

cos
sin

sin sin
k
k L 2
1

1a
a x
a x

=
-

- .	 (22)

Substituting this expression into formulas (19) and (20), we 
find the full field in the first medium

3
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x z L
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E
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2

1
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z

1

1
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x
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KK
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( ) /

( ) [( ) / ]
[ ( )]

sin
sin sin

exp i d
k L

R k L
x k z

2
2

z
1

1
1# a x

x a x
x x

-

-
- .	 (23)

The first integral in (23) is the sum of plane waves into 
which the incident beam with a limited aperture can be 
decomposed. The second integral is the corresponding sum of 
the reflected plane waves. The influence of the aperture on the 
reflected wave leads to the distribution of the incident wave 
energy over waves in different directions in the vicinity of the 
angle a. 

Thus, the full field in the first medium can be represented 
as the sum of the incident and reflected fields:  ( , )x zE1 =
i r( , ) ( , )x z x zE E1 1+ . The expressions for the incident and 

reflected fields in the region z £ 0 and for the field passed to 
the third medium in the region z ³ d1 can be written in the 
form
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It follows from (25) that the amplitude of the field reflected 
at an angle b within the small angle db (given that x = k1sin b 
and dx = k1cos bdb) is 
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Expression (27) determines the angular distribution of the 
amplitude of the reflected field when a wave with a unit ampli-
tude is incident from the first medium on the boundary z = 0. 
The incident beam is limited by the aperture D = L cos   a. 

3. Field distribution at the film boundaries. 
Reflection nonlocality 

We consider the scheme for the excitation of Krechmann sur-
face plasmons (Fig. 1). We assume that the film is made of 
silver. As was shown, for example, in [21], with an infinite 
aperture of the incident beam, there is an optimal silver film 
thickness. For a prism with a refractive index n1 = 1.6, the 
optimum film thickness and its complex permittivity are listed 
in Table 1. It is assumed that the wavelength of the incident 
wave in vacuum is l = 633 nm. In this case, a beam with an 
infinitely large aperture, incident at an angle a, generates a 
wave that is reflected strictly at an angle a (the distribution 
over the angles of reflection is a d-function). The dependence 
of the reflection coefficient on the angle of incidence a for this 
case is shown in Fig. 3. In the case considered, the entire sur-
face of the interfaces is excited (the aperture of the incident 
beam is infinite).

If we now illuminate the film with a limited-aperture beam 
at an optimal angle a = aopt » 40.041°, then because of finite-
ness of L, the distribution of the reflected field over the reflec-
tion angles b will no longer be a d-function. We introduce the 
function:

Table  1. 

Medium 
number j

Layer 
name

Relative 
permittivity

Film  
thickness/nm

1 prism 1.62
semi-infinite 
medium

2 silver film e2 = –18.2 + i0.5 53.8

3
free space 
(air)

1
semi-infinite 
medium

0

0.25

0.75

0.50

R

39.5 39.7 39.9 40.1 40.3 a/deg

1.00

Figure 3.  Field reflection coefficient upon incidence of an infinite p-
polarised plane wave on a silver film as a function of the angle of inci-
dence a.
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The function F ( b) is proportional to the amplitude of the 
electric field strength of the wave reflected at an angle  b and 
determines the angular dependence of the reflection coeffi-
cient. Figure 4 shows the dependence F ( b) for L = 25, 50, and 
100 mm.

One can see from Fig. 4 that with an increase in L and, 
hence, in the apertures D = Lcos aopt, the angular spread of 
the spatial harmonics decreases. The angular spread up to a 
constant can be estimated by the function D b µ l1 /D, which 
is exactly determined by expression (28). Considering the 
dependences in Fig. 4 in terms of the sensitivity of the sensors, 
we can draw the following conclusion. If the sensor analyses 
the angular spectrum of the reflected waves as in [24], then at 
a diffraction width D b several times greater than the angular 
width of the minimum associated with the surface wave 
(Fig. 3), the diffraction broadening of the angular spectrum 
caused by the finiteness of the incident beam aperture will not 
affect the surface plasmon sensor sensitivity. In addition, 
Fig. 4 shows that the larger the L, the greater part of the wave 
energy is in the zone of strong interaction with the surface 
plasmon wave and the more efficiently it is excited.

We now consider how the finite size of the aperture affects 
the localisation of the reflected field at the boundary z = 0. 
Incident, 

i ( ,0)xE1 , and reflected, ( ,0)xE r
1 , fields at this bound-

ary are determined by formulas (24) and (25), respectively. 
Figure 5a shows the distribution of the amplitudes of the 
x-components of the incident, i| ( ,0)|E xx1 , and reflected, 
| ( ,0)|E xr

x1 , fields for L = 50 mm. It is seen that the region onto 
which the wave is incident, and the region from which it is 
reflected, are different. Near the discontinuity points of wave 
amplitudes, oscillations arise associated with the well-known 
Gibbs phenomenon in the case of Fourier transforms of dis-
continuous functions [25] (p. 91). However, this will not affect 
the physical results of the problem in question. 

One can explain the behaviour of dependences in Fig. 5a 
as follows. At point x = –L/2, the incident wave begins to 
interact with the film; at this point the amplitude of the sur-
face wave, which radiates into the prism, begins to increase. 
This wave interferes with the wave reflected from the bound-
ary z = 0 and forms a reflected wave, whose amplitude 

decreases with increasing x. To the right of point x = L/2, the 
incident wave disappears, as well as the wave reflected from 
the boundary z = 0, and only the wave emitted by the surface 
wave into the prism remains, the amplitude of which decreases 
exponentially as the surface wave attenuates due to this re-
emission. 

Note that the surface wave propagates at the free bound-
ary beyond the excitation region and at the same time radiates 
into the prism. The field of the surface wave decays here expo-
nentially, and, as calculations have shown, the decay constant 
is independent of L. 

The given explanation is confirmed by Figs 5b and 5c, 
which show the same dependences as in Fig. 5a, but for L = 
100 and 25 mm, respectively (i.e., for the twice as large and 
twice as small aperture of the incident beam). 

Figure 5b shows that within the region of incidence of 
the surface wave, its amplitude increases more than in Fig. 
5a. This leads to a greater decrease in the amplitude of the 
reflected wave at the boundary x = L/2 and a larger ampli-
tude of the wave radiated at x > L/2 by the surface wave into 
the prism. Figure 5c shows the reverse changes. Note that 
for all three apertures, the amplitude of the surface wave at 
x > L/2 decreases exponentially with the same decay con-
stant. 

This fact can be confirmed by considering the field at z = 
d1. This field is determined by the surface plasmon wave 
excited on the outer surface of the metal film. 

0
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0.75
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39.8 39.9 40.0 40.1 40.2 b/deg
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Figure 4.  Angular distribution of the reflected signal amplitude F(b ) in 
the case of incidence of a plane p-polarised wave with a limited aperture 
of the beam on a silver film at L = ( 1 ) 25, ( 2 ) 50 and ( 3 ) 100 mm. 
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Figure 6a shows the distributions of the amplitudes of the 
x-component, |E3x(x, d1)| [curve ( 1 )], and the z-component, 
|E3z(x, d1)| [curve ( 2 )], of the electric field at the interface of 
the film and free space at z = d1, calculated by formula (26) at 
L = 50 mm. For comparison, the distribution of the x-compo-
nent i| ( ,0)|E xx1  of the incident electric field at the interface of 
the film and the prism is also shown at z = 0 [curve ( 3 )]. At the 
boundary z = d1, there is only a surface plasmon wave. It can 
be seen that its amplitude increases to the right boundary of 
the excitation region and then decreases exponentially when 
the external feed of the surface wave stops. In the place where 
the incident wave disappears, the amplitudes of the compo-
nents of the surface wave have maxima. 

Figures 6b and 6c show the same dependences as in 
Fig. 6a, but for L = 100 and 25 mm, respectively. It is seen 
from Fig. 6 that the longer the length L, the greater the mag-
nitude of the electric field amplitude in the maximum on the 
right boundary of the excitation region. The characteristic 
length over which the amplitude of the surface wave decreases 
is the same for all three cases. The amplitudes of the fields are 
normalised to the unit amplitude of the incident wave. 
Knowledge of the maximum field regions and the amplitudes 
of the field components in the maximum may be important 

for such applications as optical emission of electrons from the 
surface of metal films [26, 27] and generation of high optical 
harmonics [28]. 

Let us return to the reflected waves in Fig. 5 [curves ( 2 )]. 
One wave is reflected to the right of the left boundary of the 
illuminated region (x = –L/2), and the second is reflected to 
the right of the right boundary of this region (x = L/2). 
Obviously, the contribution to the first wave of the surface 
wave is minimal (the amplitude of the surface wave is still 
small), and the second wave is entirely due to the radiation of 
the surface wave into the prism. Therefore, these waves, gen-
erally speaking, are reflected with a phase shift, which strongly 
depends on the influence of the medium on the surface wave. 
This phenomenon is usually called the Goos – Hänchen effect 
[29, 30]. The effect is used to design highly sensitive optical 
sensors [31 – 33]. Based on the above theory, we can use the 
amplitudes of the two waves reflected from the inner surface 
of the film (z = 0) to find the phase difference of the waves 
reflected far from the film, near the detector. As the calcula-
tions showed, the phase difference of these waves is close to p 
and is exactly equal to p in the far zone, where the deep mini-
mum of interference is observed at an angle aopt (see Fig. 4). 
From Fig. 5 it can be seen that the distance between the 
reflected beams in the near zone is D = L cos aoptt. 

Note that the results of calculations performed in this 
work are consistent with the experimental results of work [34] 
on the study of the Goos – Hänchen effect. However, in addi-
tion to the incident p-polarised wave, Moskalenko et al. [34] 
considered an s-polarised wave, which is reflected without a 
shift. A very narrow incident beam is also investigated. If we 
neglect the s-polarised wave and consider only the incident 
p-polarised wave, as in the present paper, one could noticed 
that the distance between the reflected beams is close to D = 
L cos aopt. 

4. Conclusions 

A theoretical method is proposed for studying diffraction 
phenomena arising due to reflection of a plane electromag-
netic beam with a limited aperture from a silver film in the 
Kretschmann scheme, which is easily generalised to the case 
of a multilayer metal – dielectric structure. It is shown that in 
the presence of a surface wave, the reflection of the wave 
occurs nonlocally, that is, the region of wave incidence on the 
film and the region from which the reflected wave is emitted 
do not coincide. The conditions for maximising the amplitude 
of the surface wave at the free boundary of the film and the 
absolute values of the field amplification are determined. The 
application of this theory to the description of the 
Goos – Hänchen effect is considered. The obtained results can 
be useful in the development of modern optical multichannel 
biological, chemical and physical sensor systems, as well as 
systems with optically stimulated electron emission and non-
linear optics systems.
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