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Abstract.  A Fourier-holography scheme with superimposed holo-
grams and phase conjugation is considered. It is shown that the sub-
holograms, arising from the recording of superimposed holograms 
due to quadratic nonlinearity of the exposure characteristics of hol
ographic recording media, form the connections necessary for the 
realisation of the quantum-logic mechanism of sequential projec-
tion of the input vector onto the subspaces of the recorded images. 
A classical mechanism of the ‘Linda’ cognitive phenomenon belong-
ing to the category of quantum-like ones is described. An experi-
mental illustration of the self-sustained formation of sub-holograms 
due to the nonlinearity of the exposure characteristics of holo-
graphic recording media is given.

Keywords: superimposed holograms, multiplex hologram, Fourier 
holography, holographic memory, holographic recording medium, 
exposure characteristic, information processing, quantum logic, 
quantum-like phenomena, projection operator, noncommutativity.

1. Introduction

The method of superimposed holograms, i. e. holograms 
sequentially recorded on one section of the recording medium, 
is widely used in the development of content-addressable 
memory [1 – 3], in information processing systems [4 – 9], and 
in sensory and measuring systems [10 – 15]. One of the archi-
tectures often used to construct auto-associative memory 
(AAM) and information processing systems is the 4f-scheme 
of Fourier holography with phase conjugation [16, 17]. This 
scheme is often regarded as a realisation of the biologically 
motivated Hopfield AAM model; however, it also allows 
implementation of more complex models, for example, a lin-
ear predictor of random processes [18].

The properties of a holographic system and a model being 
implemented depend on the exposure characteristics of holo-
graphic recording media (EC HRM) used to record the super-
imposed holograms and in the phase-conjugate devices. For 
holographic AAM, of fundamental importance is the phase-
conjugate nonlinearity originally included into the model and 
providing the ‘cleanup’ of the restored image from noise and 
distortion [16, 17]. At the same time, the EC HRM nonlinear-
ity has only been analysed from the viewpoint of certain prop-
erties: signal-to-noise ratio [19, 20], sensitivity to distortions 
[21 – 24], additional diffraction orders [25], etc.

Currently, attention is being attracted to biological, phys-
ical, and socially-motivated models of information process-
ing, which, despite the difference in the nature of underlying 
processes, can be combined by the concept of ‘network’. The 
network character is determined by the key role of interde-
pendence and interaction of the elements uniting them into the 
ensembles possessing internal correlation as the most impor-
tant attribute of information. From this standpoint, network 
methods undoubtedly comprise laser and coherent optics 
[26,  27], including holography [4 – 9, 28 – 31].

In recent years, the mathematical apparatus of quantum 
physics, namely, quantum logic [32] and quantum probabil-
ity [33], has been increasingly used to describe a number of 
phenomena and processes previously considered as classical 
[26 – 31, 34 – 41]. The reason is that the problem of the inade-
quacy of their description by classical methods [41], for exam-
ple, by means of the classical Kolmogorov probability theory 
[42], was successfully solved using quantum logic and quan-
tum probability [34 – 40].

The global pendency of the interpretation problem in 
quantum physics [43, 44] in this case leaves room for a wide 
range of opinions on the fundamental causes and mechanisms 
stipulating the existence of analogies at the level of mathemat-
ical description of quantum mechanics and network processes 
[45]. It is important to note here that in some cases only those 
quantum physics tools are used which do not have a purely 
quantum specificity. For example, the property of noncom-
mutativity as an attribute of quantum logic [32] and probabil-
ity [33] made it possible to describe a number of experimen-
tally observed phenomena [37, 38, 41], but it does not yet pos-
sess any exclusively quantum nature. Therefore, proceeding 
from the principle of minimising the explanation complexity, 
it is in our opinion advisable, without denying in principle the 
possibility of the presence of quantum mechanisms in net-
work processes, to try to find out the classical mechanisms of 
such phenomena.

In this work, using the analysis of a Fourier-holography 
scheme with superimposed holograms and phase conjuga-
tion, it is shown, that the noncommutativity of logical-alge-
braic description operators can be caused by the nonlinearity 
of exposure characteristics of holographic recording media. 
Given the interdisciplinary aspect, the work is structured as 
follows. As a vivid example, Section 2 briefly describes the 
‘Linda’ cognitive phenomenon [41] and its formal quantum-
logical mechanism [37, 38]; then this mechanism is presented 
in the form of a network model. In Sections 3 and 4, model-
ling with the use of the method of superimposed Fourier 
holograms is considered. In Section 5, experimental confir-
mation of the formation of lattices with difference frequencies 
as a result of the EC HRM nonlinearity is presented. We have 
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adopted the terminology traditional for optics: ensembles and 
also the wave fields and images representing those ensembles 
in corresponding planes are considered according to the Huy
gens – Fresnel principle as a set of diffraction-limited point 
sources and are designated by the term ‘image’.

2. The ‘Linda’ phenomenon and its network 
model

The description of the ‘Linda’ cognitive phenomenon and 
representation of its formal quantum-logical mechanism by 
the network model allows us to formulate a key question of its 
implementation in terms of the system properties and proceed 
to its solution.

The essence of the phenomenon [41] is as follows. A sur-
vey was conducted: respondents were briefly told about a 
fictional person named Linda and then offered to choose 
from a list of answers – what is Linda? Three answers were 
analysed: ‘Feminist’ (F), ‘Teller’ (T), and ‘Feminist and 
Teller’ (F & T). The story was constructed in such a way as to 
evoke obvious associations with the answer ‘Feminist’ and 
none with ‘Teller’. These two options in works [37, 38] were 
treated as incompatible, although in reality this is not so – 
they are independent. Based on the results of statistical pro-
cessing of these responses, their probabilities were evaluated 
as P(F ) > P(F & T ) > P(T ).

The experimental result P(F & T ) > P(T ) contradicts the 
classical probability theory for independent events [42], but 
is justified in quantum physics [33], which stimulated a 
quantum-logical description of its hypothetical mechanism 
[37,  38].

In accordance with [37, 38], we represent three images of 
‘Linda’, ‘Feminist’ and ‘Teller’ by vectors L, F, and T, respec-
tively. In quantum logic [32], operations are formalised by the 
projection operator, in our example – by projecting the sys-
tem state vector L onto the subspaces F  and T  of the space 
of system states. Since the events F and T are independent, the 
vector L is sequentially projected onto F  and T , so that the 
result depends on the projection order as shown in Fig. 1 [37, 38]: 
if the vector L is at first projected onto the more probable 
subspace F  and then the vector describing the state in F  is 
projected onto T , then the ‘Teller’ answer probability is hig
her than that in projecting L directly onto the subspace T .

We represent the implementation of this mechanism in the 
form of a network model shown in Fig. 2. Each of the L, F, 
and T vectors describes the state of a certain image: L des
cribes the current state of the system upon the perception of 
the information (story) about Linda, vectors F and T reflect 
the previously stored information on the respective images 
stored in the network connections (matrices of connection 
weights in the neural networks, holograms in optics, etc., 
described in subspaces F  and T ). The independence of F 
and T means the lack of connection between these images in 
system training – each of them is independently recorded on 
its own hologram.

It is seen from Fig. 2 that, in order to implement sequen-
tial projecting of the state vector L onto the subspaces F  and 
T , first and foremost, a mechanism of self-sustained forma-
tion of the connection between F and T by the network is 
needed, as shown in Fig. 2 by the arc arrow. After that this 
connection should be used to project from T  onto the sub-
space F  a vector describing the result of projecting L onto F . 
Below we show that the sought connection can be obtained by 
a known mechanism for the formation of combinational fre-
quencies by a nonlinear system, which is also relevant in hol
ography [25].

3. Holographic implementation

3.1. Recording of superimposed holograms

In quantum mechanics, the probability of an event Bxy (for 
example, finding a particle at a point with coordinates x, y), 
according to the Born rule, is given by the formula

Py (Bxy) = y(x, y) y*(x, y),	 (1)

where y is the particle wave function or the probability ampli-
tude [46]. Expression (1) formally corresponds to the classical 
definition of intensity in wave physics; the wave function 
y(x, y) describes a field of complex amplitudes. This allows us 

L

¬T

T

F

¬F

Figure 1.  Principal scheme of conjunction applied to the ‘Linda’ phe-
nomenon as a succession of projections of the state vector L onto the 
subspaces F  and T  represented for simplicity by the corresponding 
axes; the ¬F  and ¬T  axes represent negation defined in quantum 
logic as an orthogonal complement [34].
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F

Figure 2.  Network model of the ‘Linda’ phenomenon, the stage of con-
junction: the line thickness between the images (ensembles) L, F and T 
correspond to the strength of associative connections arising upon sub-
mitting the image L to a system trained by reference images F and T; the 
arc represents a connection between F and T, required for the imple-
mentation of the model of successive projections and not explicitly 
specified in the training.
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to use the field intensity I (x, y) = y(x, y) y*(x, y) as an ana-
logue of the probability in a model of the phenomenon under 
study.

Consider the recording of two thin, i. e. possessing the 
property of angular invariance, superimposed Fourier holo-
grams in a 4f-scheme with spatial separation of off-axis point 
reference sources (Fig. 3). For simplicity, if possible, we will use 
the description of images as functions of only one variable x.

When recording superimposed holograms in the Fourier 
plane (the rear focal plane of the first Fourier-transforming 
lens L1) in accordance with the scheme shown in Fig. 3, the 
intensity distributions to be recorded on the HRM are formed:

IF (n) µ [RF exp( jwxF) + F(F (x))]

	 ´ [RF exp( jwxF) + F(F (x))]*,

IT (n) µ [RT exp( jwxT) + F(T (x))]	

(2)

	 ´ [RT exp( jwxT) + F(T (x))]*,

where n = z/lf is the spatial frequency; z is the spatial coordi-
nate in the Fourier plane H; w = 2pn is the circular spatial 
frequency; RF and RT are the amplitudes of plane wave fronts, 
proportional to the amplitudes of the point reference sources 
described by the delta functions dF (x) and dT (x); xF and xT 
are their coordinates, respectively; and F is the Fourier-tran
sform symbol.

We assume that nonlinear EC HRM can be represented 
by a power series, and we confine ourselves to the first two 
terms: linear and quadratic ones. If the formation of EC 
HRM nonlinearity occurs after the recording of all superim-
posed holograms, then the transfer function (for the ampli-
tude HRM, the dependence of amplitude transmission on 

spatial frequency) of the multiplex hologram H(n) = HF (n) + 
HT (n) can be represented as follows:

H(n) = h1{[RF exp( jwxF) + F(F (x))]

	 ´ [RF exp( jwxF) + F(F (x))]*

	 + [RT exp( jwxT) + F(T (x))]

	 ´ [RT exp( jwxT) + F(T (x))]*}

	 + h2{[RF exp( jwxF) + F(F (x))]

	 ´ [RF exp( jwxF) + F(F (x))]*

	 + [RT exp( jwxT) + F(T (x))]

	 ´ [RT exp( jwxT) + F(T (x))]*}2,	 (3)

where  h1 and h2 are the coefficients of linear and quadratic 
terms of the expansion, depending on the HRM properties. 
Hereafter, the components (3) described by the linear term 
will be for brevity called a linear hologram (as a special case 
of the linear system). Now consider the quadratic term. Its 
decomposition (we omit cumbersome calculations) contains 
two terms describing the sought-for connection (shown by the 
arc in Fig. 2) between the reference sources dF (x) and dT (x) 
being not related in recording the hologram (3), and, in the 
presence of angular invariance, the reference images F (x) and 
T (x):

HFT (n) = h2[F*(F (x)) F(T (x))RF RT exp( jw(xF – xT))

	 + F(F (x)) F*(T (x))RF RT exp(– jw(xF – xT))].	 (4)

Expression (4) describes a new hologram as part of the 
multiplex hologram (3), which emerges as a result of qua-
dratic nonlinearity in EC HRM [25] (we call it a sub-holo-
gram).

3.2. Multiplex hologram responses in direct light  
transmission

Upon presentation of the ‘Linda’ image L(x) in the input 
image plane in the scheme shown in Fig. 3, the multiplex 
hologram (3) constructed within the +1-st diffraction orders 
described by the linear term (3) restores the images of point 
reference sources in the P2 plane (rear focal plane of the 
Fourier-transforming lens L2):

R
F
2d (D) = h1(L(x) Ä F (x)),	 (5a)

R
T
2d (D) = h1(L(x) Ä T (x)),	 (5b)

where the superscript R2 means reconstruction in the P2 
plane; D is the coordinate in the P2 plane; and Ä is the symbol 
of correlation operation. Without loss of generality, we 
assume that the focal lengths of the lenses L1 and L2 are 
equal. Denote the amplitudes of the correlation functions at 
the points D = 0 as scalar products á ñ:

max[L(x) Ä F (x)] = áL(x), F (x)ñ,	 (6a)

max[L(x) Ä T (x)] = áL(x), T (x)ñ.	 (6b)

xF

xF

xT

xT

dF

dT

F,T,L

P1 P2L1 L2H

f f f f

FR2

TR2

–(xF – xT)

xF – xT

dR2
T

dR2
F

Figure 3.  Scheme of 4f Fourier holography for two superimposed holo-
grams: F, T are the ‘Feminist’ and ‘Teller’ reference images; L is the 
‘Linda’ image submitted to the recorded multiplex hologram;  dF and dT 
are the off-axis point sources shifted by xF and xT relative to the main 
optical axis, respectively; P1 is the plane of images; L1, L2 are the first 
and second Fourier-transforming lenses with focal lengths f; H is the 
hologram plane (rear focal plane of the lens L1); P2 is the rear focal 
plane of the lens L2 (the plane of hologram responses). Dashed lines 
show the path of rays diffracting on the superimposed ‘Feminist’ holo-
gram and restoring the image of the reference source R

F
2

d  in the P2 
plane; dotted lines show the path of rays diffracting on the sub-holo-
gram resulting from quadratic nonlinearity and restoring the ‘Teller’ 
image T R2(x). The path of rays for the superimposed ‘Teller’ hologram 
restoring the image of the point source T

R2
d  is not shown.
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We introduce the ratio of amplitudes, for which, according to 
the experimental conditions [41], we have the inequality

k = 
( ), ( )

( ), ( )

L x T x

L x F x
 > 1.	 (7)

The sub-hologram (4) also forms responses in the P2 
plane:

T ( )R2 4 (D) = h2F [F (L(x)) F*(F (x)) F(T (x))

	 ´ RF RT exp( jw(xF – xT))] = h2RF RT

	 ´ {T (x) * [L(x) Ä F (x)] * d(xF – xT)},	 (8a)

R ( )R2 4 (D) = h2F [F (L(x)) F(F (x)) F*(T (x))

	 ´ RF RT exp(– jw(xF – xT))] = h2RF RT

	 ´ {F (x) * [L(x) Ä T (x)] * d(xT – xF)},	 (8b)

where * is the convolution operation symbol; the designation 
(4) at the symbol R2 indicates the description (formula num-
ber in the paper) of the sub-hologram producing that resp
onse, and the sequence of records of the reconstructed images 
in (8a) and (8b) corresponds to the sequence of terms in (4).

For greater clarity, we neglect the diffraction broadening 
of the reconstructed images (8a) and (8b). This assumption is 
justified because of the fundamentally nonlinear subsequent 
phase conjugation in the P2 plane [16, 17]. Then expressions 
(8) take the form

T ( )R2 4 (D) = h2 RF RT áL(x), F (x)ñ{T (x) * d(xF – xT)},	 (9a)

F ( )R2 4 (D) = h2 RF RT áL(x), T (x)ñ{F (x) * d(xT – xF)}.	 (9b)

Given (7), we present (9a) as

T ( )R2 4 (D) = k h2 RF RT áL(x), T (x)ñ{T (x) * d(xF – xT)},

whence we obtain the ratio of intensities of the reconstructed 
sub-hologram (4) in the P2 plane of the images (8a) and (8b) 
(‘Teller’/’Feminist’):

V (4) = 
( ), ( )

( ), ( )

( ), ( )

( ), ( )

F F

T T
k

F x F x

T x T x
( ) ( )

( ) ( )

R R

R R

2 4 2 4

2 4 2 4
2

D D

D D
= .	 (10)

3.3. Back-propagation image reconstruction  
(linear hologram)

Consider the fields formed in the P1 plane by a linear holo-
gram on the main optical axis as a result of conjugation of the 
wavefronts in the plane P2 from the reconstructed images of 
point reference sources (5a) and (5b) (Fig. 4). We assume that 
there is no conjugation of the wavefront in the region of main 
optical axis in the P2 plane.

As before, we neglect the diffraction blurring of recon-
structed images and consider the passage of radiation from the 
point source ( )R

F
2d D ; for the point source ( )R

T
2d D  the analysis is 

similar. Linear hologram forms several diffraction orders in 
P1 (when choosing signs in pre-exponential expressions, the 

coordinate inversion in the P2 plane due to the nonrealisabil-
ity of the inverse Fourier transform hase been taken into 
account):

h1F[(R
R
F
2exp(jwxF)){[RF exp(jwxF) + F(F (x))]

	 ´ [RF exp(jwxF) + F(F (x))]* + [RT exp(jwxT)

	 + F(T (x))][RT exp(jwxT) + F(T (x))]*}] = 

	 = h1F[R
R
F
2RF RF exp(jwxF) + R

R
F
2RF F*(F (x))

	 ´ exp(2jwxF) + R
R
F
2RF F(F (x)) + RR

F
2F(F (x))

	 ´ F*(F (x)) exp(jwxF) + R
R
F
2RT RT exp(jwxF)

	 + RR
F
2RT F*(T (x)) exp(jw(xT + xF)) + R

R
F
2RT

	 ´ F(T (x)) exp(jw(xF – xT)) + R
R
F
2F(T (x))

	 ´ F*(T (x)) exp(jwxF)].	 (11)

The traditional holographic AAM [16, 17] uses the third 
term in (11) describing the field in the main optical axis region 
– the reconstructed reference

F R1(11.3)(x) = h1RF
R
F
2d * F (x) = h1RF F(x)áL(x), F (x)ñ

	 = h1kRF F (x) áL(x), T (x)ñ,	 (12a)

where the superscript (11.3) means that the described field is 
formed by the third term in expression (11), while dR2 (with-
out coordinate) is the real amplitude of the point source cor-
responding to the lower symbol, and (7) is taken into account. 
Similarly, for the source ( )R

T
2d D  in the same region around the 

main optical axis, we have

T R1(11.3)(x) = h1RT
R
T
2d * T (x) = h1RT T (x)áL(x), T (x)ñ

	 = h1RT T (x) áL(x), T (x)ñ.	 (12b)

Expressions (12a) and (12b) describe the operation of 
holographic AAM [16, 17]. The intensity ratio of the recon-

xF
xT

P1 P2L1 L2H

f f f f

FR2(4)

TR2(4)

–(xF – xT)

xF – xT

dR2
T

dR2
F

OR1

Figure 4.  Scheme of 4f Fourier holography for two superimposed holo-
grams at the stage of phase conjugation in the P2 plane: F R2(4) and 
T R2(4) are the ‘Feminist’ and ‘Teller’ images reconstructed by sub-holo-
gram (4); R

F
2

d  and T
R2

d  are the point sources formed by the phase-conju-
gate device (not shown in the diagram). The other symbols are the same 
as in Fig. 3.
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structed ‘Teller’/’Feminist’ images, superimposed on each 
other in the region of main optical axis [using the same order 
as in (10)], takes the form

V (11.3) = 
( ) ( )

( ) ( )

F x F x

T x T x
( . ) ( . )

(11.3) ( . )

R R

R R

1 11 3 1 11 3

1 1 11 3 2

e o

	 = 
( ), ( )

( ), ( )

( ), ( )

( , ( ))

( ), ( )

( ), ( )

F x F x

T x T x

L x F x

L x T x

k F x F x

T x T x1
2

2
=e o .	 (13)

The reconstructed image T R1(11.3)(x) is weakened corre-
lated to the image F R1(11.3)(x) that exactly reflects the condi-
tions for the formation of the ‘Linda’ image in the experiment 
[41]. In arranging the iterative procedure at the expense of 
phase conjugation in the P1 plane, only the ‘Feminist’ image 
(12a) will finally remain from the sum of images (12a) and 
(12b), while the ‘Teller’ image (12b) will be suppressed – thus 
we come to the classic AAM model [16, 17].

3.4. Back-propagation image reconstruction  
(quadratic sub-hologram)

Consider the result of diffraction on the sub-hologram (4) of 
conjugate wavefronts from images (9a) and (9b). For image 
(9a), the distribution of amplitudes in the plane P1 appears as

T R1(14)(x) = F{h2F(T R2(4)(x)) exp(jw(xF – xT))

	 ´ [F*(F (x))F(T (x))RF RT exp(jw(xF – xT))

	 + F(F (x))F*(T (x))RF RT exp(– jw(xF – xT))]}.	 (14)

Hereinafter, using the previously accepted assumption on 
the equality of the focal lengths L1 and L2, and taking into 
account the coordinate inversion, we replace the coordinate D 
in the P2 plane by x. We have three orders of diffraction:

1) zero diffraction order on the sub-hologram (4) is loc
alised in the P1 plane within a region centred at the coordi-
nate (xF – xT);

2) +1-st diffraction order is localised within a region cen-
tred on the main optical axis, i. e. superimposed onto the 
images F R1(11.3)(x) (12a) and T R1(11.3)(x) (12b):

T R1(14.2)(x) = F[h2F(T R2(4)(x)) F(F (x)) F*(T (x))RF RT]

	 = h2 RF RT T R2(4)(x) * (F (x) Ä T (x));	 (15a)

3) – 1-st order is localised within a region centred at the 
coordinate 2(xF – xT):

T R1(14.1)(x) = F[h2F(T R2(4)(x)) exp(jw2(xF – xT))

	 ´ F*(F (x)) F(T (x))RF RT] = h2 RF RT T R2(4)

	 ´ (x + 2(xF – xT)) * (T (x) Ä F (x)).

A similar situation also takes place in diffraction of the 
source F R2(4)(x) on the sub-hologram (4): in the region cen-
tred at the coordinate – (xF – xT) we obtain the image F R2(4)(x) 
that passes without diffraction and coincides with the image 
F R1(11.7)(x) reconstructed by the linear part of hologram (3), 
and also the first two diffraction orders: +1-st order centred 
on the main optical axis and – 1-st order located at a distance 
– 2(xF – xT) from it. We are interested in the +1-st order:

F R1(14.1)(x) = F[h2F(F R2(4)(x)) F(F* (x)) F(T (x))RF RT]

	 = h2 RF RT F R2(4)(x) * (T (x) Ä F (x)).	 (15b)

In the case of correct phase conjugation, all images are 
real; the resulting image in the region centred on the main 
optical axis takes the form

O R1(x) = F R1(x) + T R1(x),	 (16)

where

F R1(x) = F R1(11.3)(x) + F R1(14.1)(x),

T R1(x) = T R1(11.3)(x) + T R1(14.2)(x).

To estimate the ratio of intensities, we neglect the blurring 
of images T R1(14.2)(x) and F R1(14.1)(x) as a result of their con-
volution with cross-correlation functions [T (x) Ä F (x)], and 
replace the latter with scalar products.

Then we have

F R1(x) = h1kRF F (x)áL (x), T (x)ñ + h2F R2(4)(x)

	 * (T (x) Ä F (x)) = h1kRF F (x)áL (x), T (x)ñ

	 + R RF T2
2 2 2h áL (x), T (x)ñF (x)áT (x), F (x)ñ

	 = F (x)áL (x), T (x)ñ [k h1RF + R RF T2
2 2 2h áT (x), F (x)ñ],

T R1(x) = h1áL (x), T (x)ñ RTT (x) + h2T R2(4)(x)

	 * (F (x) Ä T (x)) = h1áL (x), T (x)ñ RTT (x)

	 + 2
2h [R RF T

2 2 áL (x), T (x)ñT (x)] * (T (x) Ä F (x))

	 = T (x)áL (x), T (x)ñ [h1RT + k R RF T2
2 2 2h áT (x), F (x)ñ].

Hence, the ratio of intensities in the resulting image is

V R1 = 
( ), ( )

( ), ( )

( ), ( )

( ), ( )

F x F x

T x T x

k R R R T x F x

R k R R T x F x

F F T

T F T

1 2
2 2 2

1 2
2 2 2 2

h h

h h

+

+
e o .

We introduce the ratio rh = 2
2h /h1 of diffraction efficiencies 

of the linear and quadratic holograms in the composition of 
the multiplex hologram (3), and, for greater clarity, we adopt 
the assumption on the equality of amplitudes of the reference 
beams in recording the superimposed holograms. Then,

V R1 = 
( ), ( )

( ), ( )

( ), ( )

( ), ( )

F x F x

T x T x

k r R R T x F x

kr R R T x F x1

T F

F T

2

2 2

+

+

h

hf p .

We are interested in a change in the balance of intensities 
‘Teller’ and ‘Feminist’ in the resultant image due to the action 
of the sub-hologram (4) with respect to their balance provided 
by the linear multiplex hologram, i. e. in the ratio

V = 
V
V
( . )

R

11 3

1

 = 
( ), ( )

( ), ( )
k
k r R R T x F x

kr R R T x F x1

T F

F T

2

2 2

+

+

h

hf p

	 = 
( ), ( )

( ), ( )

k
r R R T x F x

kr R R T x F x

1 1

1

T F

F T

2

2 2

+

+

h

h

f p .	 (17)
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It is easy to see that, since  k > 1 in accordance with exper-
imental conditions [41], V > 1 and increases with increasing k. 

We should note that the conjugation of wavefronts in the 
P2 plane was only considered above with regard to four ima
ges (5a), (5b), (9a), and (9b) localised outside the main optical 
axis. The field on the main optical axis in the P2 plane (zero 
diffraction order on the hologram with direct passage of light) 
is not subject to conjugation with the aim of interference elim-
ination.

4. Discussion

Thus, the sought-for connection between the images F (x)and 
T (x) in recording their superimposed holograms, indicated 
by the arc in Fig. 2, can be obtained at the expense of the EC 
HRM quadratic nonlinearity providing the self-sustained for-
mation of the sub-hologram (4). The mechanism of successive 
projections is realised by the phase conjugation in the plane of 
hologram responses.

The result P (F & T ) > P (T ) being observed in the experi-
ment [41] and contradicting the classical probability theory is 
due to a sigmoid EC of the sensor recording the resultant ima
ge (16). We obtain the intensity ratio (13) in linear recording 
of the superimposed holograms, – the coefficient k is fairly 
large under the conditions of the experiment, and when the 
sensor is optimised with respect to intensity difference in the 
brighter ‘Feminist’ image, the ‘Teller’” image falls into the 
deadband and is not recorded. If the sensor sensitivity is opti-
mised with respect to the ‘Teller’ image, the ‘Feminist’ image 
falls into the saturation range and is not recorded.

According to (17), the action of quadratic sub-hologram 
(4) ‘pulls’ the ‘Teller’ image into the operating range. As a 
result, both ‘Feminist’ and ‘Teller’ images are recorded, i. e. 
we have P (F & T ). Herewith, it follows from expression (17) 
that the greater the initial difference in the amplitudes of ima
ges (i. e., the larger the k), the more efficient the operation of 
the quadratic sub-hologram (4).

Thus, to obtain the discussed quantum-like phenomenon, 
the nonlinearities both of the EC HRM for recording the 
superimposed holograms and the sensor recording the image 
reconstructed by the holographic scheme are of importance.

5. Experimental part

The purpose of experimental illustration at this stage is to 
demonstrate the presence and operation of the sub-hologram 
(4) autonomously formed in the recording of superimposed 
holograms due to quadratic nonlinearity of the EC HRM. We 
used a PFG-03m HRM (‘Slavich’ Scientific Production Asso
ciation) processed with bleaching at a photo-layer thickness 
of ~ 7 mm and a recording wavelength of 633 nm. The super-
imposed holograms are recorded with a planar signal wave 
incident onto the plate along the normal (along the main opti-
cal axis in Fig. 3). Plane reference waves are directed at an 
angle of 33.3 ° to the reference wave (the main optical axis in 
Fig. 3) when recording the first superimposed hologram, and 
at an angle of 36.3 ° when recording the second one.

Figure 5 shows the multiplex hologram responses experi-
mentally obtained in illumination by a signal wave. The dif-
fraction efficiency was 27 % and 18 % for the first diffraction 
orders corresponding to the linear terms in expression (3) and 
representing the reconstrcuted reference waves used to record 
the superimposed holograms, and 8 % and 2.9 % for the res
ponses formed by the sub-hologram (4). Different diffraction 

efficiencies for the responses of the same orders are stipulated 
by different deviations from the Bragg condition: for a linear 
hologram, the illumination conditions coincided with the rec
ording conditions, i. e., the Bragg condition was fulfilled, while 
for the sub-hologram these conditions were significantly dif-
ferent.

6. Conclusions

Thus, the mechanism typical of quantum logic and consisting 
in sequential projecting of the input vector onto the subspaces 
in which logical rules (references) are stored can be imple-
mented by the classical method of superimposed Fourier 
holograms with phase conjugation due to quadratic nonlin-
earity of the exposure characteristics of holographic record-
ing media.

Information in network systems is stored in the form of a 
structure of connections of their elements, which always has a 
material carrier (in particular, for cognitive systems, this is a 
structure of inter-neuronal connections). Therefore, the result 
presented here gives a reason to believe that a number of net-
work phenomena treated as the quantum-like ones [34 – 40], 
in particular, the ‘Linda’ cognitive phenomenon [41], may be 
based on the classical mechanism due to the nonlinearity of 
material carriers of network connections.

We note that this conclusion correlates with the results of 
work [47] and a series of works [48 – 50]. In work [47], it is 
shown that the Fourier holographic scheme generates the alg
ebra of fuzzy-valued logic: the hologram stores the reference 
as a rule of logical inference, while the Fourier hologram 
response is described as the ‘Generalised Modus Ponens’ log-
ical inference. At the same time, it is shown in the series of 
works [48 – 50] that any measurement in both quantum mech
anical and classical systems can be represented as a form of 
the ‘Generalised Modus Ponens’ logical inference, i. e. an inf
erence in the class of fuzzy-valued logics. Herewith, the alge-
bra of fuzzy-valued logics does not address the possible quan-
tum nature of the described phenomena and mechanisms.

To sum it up, we should particularly emphasise that the 
conclusion about the classical mechanism of quantum-like 
logic generation (in particular, the noncommutativity of logi-
cal operators) in the Fourier holography scheme with phase 
conjugation and nonlinear recording of superimposed holo-
grams as a special case of network systems should not be 
treated as a denial of the possibility of the existence of quan-
tum effects or quantum nature of the processes under consid-
eration, stipulating these effects, but only as an attempt of a 
simple and minimally sufficient explanation in the frame of 
the known classical approaches.
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