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Abstract.  The nonlinear diffraction on periodic microdomain struc-
tures with different orientations of the spontaneous polarisation 
axis relative to the surface is theoretically considered. The possibil-
ity of reliable non-destructive diagnostics of the period, duty cycle 
and depth of domain structures, as well as of the shape of the 
domain walls under the crystalline surface is shown. 

Keywords: nonlinear light diffraction, periodic microdomain struc-
tures, domain walls. 

1. Introduction

Studies of microscopic domain structures are important both 
to clarify the peculiarities of the occurence and stabilisation 
of spontaneous polarisation in ferroelectric crystals and to 
understand the prospects for the use of these structures in 
photonics and nanoelectronics. Historically, structures with 
an alternating polar axis direction were considered primarily 
as nonlinear photonic crystals, in which the one-dimensional 
periodicity compensates for the phase mismatch of the inter-
acting waves, the so-called effect of quasi-phase matching, 
and can significantly improve the efficiency of nonlinear fre-
quency conversion [1]. 2D structures open up additional pos-
sibilities for matching nonlinear interaction of waves propa-
gating in different directions [2]. Much effort was made to 
increase the conversion efficiency [3], including taking into 
account the nonideality of the periodic structure [4] and 
related nonlinear processes, such as the formation of rapidly 
oscillating solitons [5].

In recent years, domain structures in ferroelectrics have 
turned out to be interesting for nanoelectronics due to the 
special electrical properties of domain walls, which make 
these structures promising for high-density nonvolatile mem-
ory [6]. Much attention is paid to various methods of control-
ling walls: both by point irradiation with a focused electron 
beam [7] and by optical methods [8]. In addition to domain 
walls, it is also proposed to use the form of the domains them-

selves for encoding information with a sequence of triangular 
electric pulses [9]. 

Domain structures with a characteristic scale of about ten 
micrometers can be fabricated by applying an electrical volt-
age to structured electrodes deposited on the surface of a fer-
roelectric crystal [10]. The formation of submicron-scale 
structures (so-called microdomain structures) requires quali-
tatively different approaches and can be carried out with an 
atomic-force microscope (AFM) by applying a high voltage 
to the nanoscale tip of the probe [11, 12]. By irradiating small 
areas of the crystal surface with a focused electron beam on a 
scanning electron microscope, it is possible to produce a spa-
tial charge localised in the near-surface region that will induce 
electric fields sufficient for local switching of the sign of spon-
taneous polarisation [13, 14]. 

In this regard, of particular importance is the problem of 
domain structure diagnostics [15]. Visualisation of domains 
during chemical etching of crystals with acids is quite infor-
mative, based on the fact that surface areas perpendicular to 
the spontaneous polarisation vector have an electric charge, 
whose sign depends on the polarisation direction, which pro-
vides etching rate selectivity of domains of different sign 
[16, 17]. The presence of a surface charge also makes it possi-
ble to non-destructively diagnose domains by decorating 
them with colloidal particles [16] and nematic liquid crystals 
[18, 19]. The precise reconstruction of domain structures by 
atomic force microscopy [12] is actively developing, which 
allows domains with spontaneous polarisation along the sur-
face to be distinguished [20]. Nevertheless, the above methods 
make it possible to identify the regions of emergence of 
domains to the surface, but do not provide information about 
the spatial arrangement of domain walls in the bulk of the 
crystal. In most cases, there is simply no reliable information 
about the depth and cross-sectional shape of microdomains 
formed in the near-surface regions of crystals. 

The possibility of optical visualisation of bulk domain 
structures is due to the fact that the spontaneous polarisa-
tion direction does not directly affect the linear optical prop-
erties of crystals, but determines the sign of the key con-
stants of quadratic nonlinearity. Thus, spatial changes in the 
direction of spontaneous polarisation are accompanied by 
the modulation of the sign of the components of the linear 
electro-optical tensor, making it possible to observe with an 
optical microscope the domains in a crystal to which a suf-
ficiently strong electric field is applied [21]. On the one hand, 
this method provides the possibility of continuous monitor-
ing of the movement and the switching of the sign of domain 
structures in an electric field, and on the other hand, the 
need to apply a field causes the measurement process to 
influence the result. 
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In fact, the only possibility of non-destructive diagnosis of 
domains in the bulk of crystals is provided by nonlinear 
optics. In the simplest version, the crystal is subjected to a 
strong pump wave, whose front is not distorted and the non-
linear polarisation, which acts as a radiation source at the sec-
ond harmonic (SH) wavelength, is phase modulated in space 
synchronously with the direction of the spontaneous polarisa-
tion vector. This allows one, in particular, to observe rela-
tively large domains directly in the SH confocal microscopy 
regime [22], in which domains with different polarisation 
directions acquire different apparent contrast at the SH wave-
length due to interference of the wave emitted by the polar-
ised domain and the wave outgoing from the homogeneous 
nonlinear substrate or from an unpolarised crystal volume 
[23]. Diagnostics of smaller domain structures is possible 
according to the patterns of the distribution of SH intensity in 
the nonlinear scattering regime. Randomly alternating micro-
domains give a characteristic conical pattern of diffuse scat-
tering [24], while periodic structures emit SH narrowly, in the 
form of peaks of nonlinear diffraction [25]. 

From general considerations it is clear that the intensity of 
the peaks of nonlinear diffraction contains valuable informa-
tion not only about the period, but also about the depth and 
shape of the microdomain structures in the bulk of the crys-
tal. In this paper, we solve the problem of nonlinear diffrac-
tion for two practically important cases of orientation of the 
polar axis of the crystal, i.e. parallel and perpendicular to its 
surface. The analysis of diffraction patterns is carried out and 
the possibility of reliable determination of the depth of micro-
domains, as well as of the restoration of the features of the 
shape of their cross section, is found.

2. Amplitudes of nonlinear diffraction 

Let us consider a crystal uniformly polarised in volume, in the 
near-surface layer of which domain structures with a period 
of 2d are formed (Fig. 1). We assume that the domains propa-
gate under the crystal surface to a certain maximum depth h, 
with the neighbouring domains having oppositely directed 
spontaneous polarisation. These assumptions correspond to 
two experimental realisations of the recording of planar 
(near-surface) domains: on a nonpolar surface under electron 
beam irradiation [14] and on a polar surface in an AFM probe 
field [11, 26], in which the depth of the formed domains does 
not exceed a few micrometres. In the two most practical cases, 
the vector of spontaneous polarisation is oriented perpendic-
ular or parallel to the surface of the crystal and can be 
expressed as p(r) = pez  f (x, z) (Fig. 1a) or as p(r) = pex  f (x, z) 
(Fig. 1b). In both cases, the function f is an integer, taking 
values of ±1 within the domain structure having a period 2d 
along the x axis and a constant value f = 1 away from the 
surface by more than some limit depth z > h. 

Consider the problem of nonlinear diffraction, schemati-
cally presented in Fig. 1. Due to the fact that the SH genera-
tion (at a frequency of 2w) is weak and occurs in a thin surface 
structure, we neglect its influence on the propagation of a 
plane pump wave at a frequency w, incident on the surface of 
the crystal at an angle q0. We also neglect the distortions of 
the linear optical properties of the crystal caused by its defor-
mation in the vicinity of the domain walls. From the point of 
view of symmetry, the SH generation is determined by the 
absence of a local centre of inversion in the crystal. In a fer-
roelectric crystal, the corresponding decrease in symmetry is 
directly related to the presence of a polar axis along the spon-

taneous polarisation vector p. The SH generation is deter-
mined by the components of the third-rank tensor of the qua-
dratic nonlinear optical susceptibility at the SH and pump 
frequencies, ( ; , )2( )

ijk
2c w w w , which is symmetric with respect 

the last two subscripts. The presence of three tensor combina-
tions,  pi  pj pk, pi  dik and (pi  dik + pk  dij), defined by spontaneous 
polarisation and satisfying the symmetry requirements, indi-
cates the existence of several independent nonlinear-optical 
coefficients. In practice, however, in the overwhelming major-
ity of uniaxial ferroelectric crystals, one of these coefficients – 
the coefficient d33, which is responsible for the interaction of 
light waves polarised along the vector p – far exceeds the oth-
ers. For the sake of simplicity, we will further assume that the 
spatially inhomogeneous nonlinear susceptibility in the 
microdomain structure follows spontaneous polarisation 

( ;2 ; , ) 2 ( , )d f x zr( )
ijk i j k
2

33 d d dc w w w = a a a ,	 (1)

where the index a = z, x denotes the orientations shown in 
Figs 1a and 1b, respectively. 

From relation (1), in particular, it follows that effective 
diagnostics of differently oriented domain structures requires 
different polarisation of the incident pump wave: Structures 
with spontaneous polarisation oriented perpendicular to the 
surface interact with the TM pump wave, and structures with 
planar oriented polarisation interact with the TE wave. Since 
the SH generation due to nonlinearity (1) does not change the 
polarisation state of light, for convenience we will further call 
the considered cases nonlinear TM or TE diffraction. 
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Figure 1.  Domains with a vector of spontaneous polarisation (a) per-
pendicular and (b) parallel to the crystal surface. 
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Let us examine in more detail the case of TM diffraction, 
presented in Fig. 1a. The components of the electric field of 
the pump wave inside the crystal have the form 

( , , ) ( )cosE x z t E k z k x tx x z x1 1 1 1 w= + - ,	

(2)
( , , ) ( )cosE x z t E k z k x tz z z x1 1 1 1 w= + - ,	

where ( / ) ; /sink c k c kx z x1 0 1 1
2 2

1
2w q e w= = - ; e1 is the permit-

tivity of the crystal at the pump frequency, the anisotropy of 
which we neglect; and E1x and E1z are the real amplitudes of 
the pump wave in the crystal, which are expressed through the 
amplitude E0 of the wave incident on the crystal from the out-
side, 

cos sin

cosE c k E2
x

z
1

1 0 1
2
0

1 0
0w e q e q

q
=

+ -
,	

cos sin

cosE c k E2
z

x
1

1 0 1
2
0

1 0
0w e q e q

q
=-

+ -
.	

(3)

Propagating into the crystal, this plane wave produces 
nonlinear polarisation along the z axis 

nl ( , , ) 2 ( , ) ( , , )P x z t d f x z E x z tz z33 1
2

= ,	 (4)

which emits waves at the SH frequency. The system of 
Maxwell’s equations for the SH fields contains a source in the 
form of a current distributed in a crystal, oscillating along the 
z axis at a frequency of 2w with amplitude 

( , ) ( , ) [2 ( )]expi ij x z d E f x z k z k xnl
z z z x2 33 1

2
1 1w=- + .	 (5)

The specific form of the SH fields can be found by solving 
the wave equations for the amplitudes of the magnetic field 
H2y in the crystal (i.e., at z > 0),

¶
¶( , ) 4 ( , )

c
H x z c x j x z4 nl

y z2

2

2 2 2
pw eD + =c m ,	 (6)

and above the crystal (at z < 0),

( , )
c

H x z4 0y2

2

2
wD+ =c m ,	 (7)

where e2 is the permittivity of the crystal at the SH frequency. 
The solutions of the equations satisfy the boundary condi-
tions of continuity of H2y and (1/e)¶ ¶/H z2y  at the surface of 
the crystal at z = 0. 

In the framework of the formalism of Green’s function, 
we find the magnetic field of the SH in the form

3

3 3

¶
¶( , ) ( , , ) ( , )d dH x z c x z G x x z z
x
j x z4 nl

y z2
0

2
p

= -
-

l l l l
l

l ly y ,	 (8)

where Green’s function G in the crystal satisfies the wave 
equation with a source in the form of an infinitely thin fila-
ment 

( , , ) ( ) ( )
c

G x x z z x x z z4
2

2

2 d dw eD + - = - -l l l lc m ,	 (9)

and outside the crystal, the homogeneous wave equation (7) 
and the same boundary conditions as the magnetic field. By 

representing Green’s function as a Fourier integral along the 
longitudinal coordinate, 

( , , )
2

[ ( )] ( , , )expd iG x x z z q q x x G q z z1
p- = -l l l ly ,	 (10)

and using the well-known general form of the dyadic Green’s 
function for the interface between two media [27], we find 
that the field produced above the crystal (z < 0) by a thin fila-
ment emitting from the depth of the crystal (z' > 0) has the 
Fourier transform

( , , )
( ) ( )

[ ( ) ( ) ]expi i iG q z z
q q

q z q z
0 2

0k e k
k k=-

+
-l l ,	 (11)

where ( ) /q c q40
2 2 2k w= -  and ( ) ( / )q c q4 2 2

2
2k w e= - .

Substitution of expression (11) into the Fourier integral 
(10) makes it possible to represent in general form the SH 
magnetic field (8) for current (5) corresponding to nonlinear 
scattering on an arbitrary domain structure defined by some 
function f  (x, z). To describe narrowly directed nonlinear dif-
fraction on a periodic domain structure, we consider a peri-
odic function f with a period 2d, which can be represented as 
a discrete Fourier series

3

( , ) ( )exp if x z f z n
d
x

n
n

p=
3

=-

` j/ ,	 (12)

where

( )zn
d

= ( , )exp i df
d

f x z n
d
x x

2
1 d

p-
-

` jy .

In this case, the SH magnetic field (8) also takes the form of a 
discrete sum of plane waves: 

3

3

( , ) [ ( ) ]exp i iH x z H q x q zy n n n
n

2 0k= -
=-

/ ,

emerging from the crystal and having a wave vector compo-
nent along the surface, qn = 2k1x + pn/d, i.e. emerging at a 
reflection angle of qn, satisfying the condition for nonlinear 
Bragg diffraction 

sin sin
d
n

n 0q q l
= + ,	 (13)

where l = 2pc/w is the wavelength of light in vacuum at the 
pump frequency. 

The magnetic field amplitude of a plane wave of the nth 
order of nonlinear diffraction is given by

4
( ) ( )

iH c d E
q q
q

n z
n n

n
33 1

2

2 0
p w

e k k=-
+

	 n

3

{ [ ( ) 2 ] } ( )expd iz q k z f zn z
0

1# k +l l ly ,	 (14)

and the intensity of this wave, In = (c/4p)| Hn  |2 is proportional 
to the square of the pump wave intensity I0  = (c/4p)| E0  |2.

Nonlinear TE diffraction on the domain structure shown 
in Fig. 1b is considered in a similar way. The nonlinear cur-
rent directed along the y axis acts as a source of the SH radia-
tion and reads as:

( , ) ( , ) [2 ( )]expi ij x z d E f x z k z k xnl
y y z x2 33 1

2
1 1w=- + ,	 (15)
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where the amplitude of the electric field of the pump wave in 
the crystal has the form 

cos sin

cosE E2
y1

0 1
2
0

0
0

q e q

q
=

+ -
.

The fields of the generated SH can be calculated by solv-
ing the wave equations for the amplitudes of the electric field 
E2y in the crystal (at z > 0),

-( , ) ( , )i
c

E x z
c

j x z4 8 nl
y y2

2

2 2 2 2
pw e wD + =c m ,	 (16)

and above the crystal (at z < 0),

( , )
c

E x z4 0y2

2

2
wD+ =c m ,	 (17)

with the boundary conditions of continuity of E2y and ¶ ¶/E zy2  
at the crystal surface at z = 0. The Fourier transform of 
Green’s function for this problem also follows from the gen-
eral form of the dyadic Green’s function for the interface 
between two media [27] 

( , , )
( ) ( )

[ ( ) ( ) ]expi i iG q z z
q q

q z q z
0 2

0k e k
k k=-

+
-l l ,	 (18)

and calculations completely analogous to the previous ones 
allow us to find the electric field amplitudes of a plane wave of 
the nth order of nonlinear diffraction in the form

( ) ( )
E

c
d E

q q
8 1

n y
n n

2

2

33 1
2

0
p w

k k=-
+

	 n

3

{ [ ( ) 2 ] } ( )expd iz q k z f zn z
0

1# k +l l ly ,	 (19)

which determine the intensities of the TE diffraction waves, 
In = (c/4p)|En|2.

3. Role of depth and width of domains 

As follows from the obtained amplitudes of nonlinear diffrac-
tion (14) and (19), for both considered geometries, the nth 
order diffraction intensity is proportional to the square of the 
modulus of the dimensionless complex structural factor

n =F
d c2
1 w

d

3

( , ) { [ ( ) ] / }expd d i iz x f x z q k z nx d2n z

d

0
1# pk + -

-
y y ,	 (20)

which contains information about the shape of the domain 
structure defined by the integer function f (x, z).

Let us consider the simplest case of a lattice of domains of 
rectangular cross section with a depth h and width 2w, less 
than the period of structure 2d. In fact, in the bulk of the crys-
tal, domains can be of completely different shapes: both semi-
ellipsoidal and conical, as follows from theoretical calcula-
tions based on minimising the corresponding free energy [28]. 
However, as will be shown below, in the case of a rectangular 
cross section, the nonlinear diffraction problem has an exact 
analytical solution that allows us to trace the main regulari-

ties, whereas consideration of domains of arbitrary shape 
requires the introduction of the function of profile deviation 
from the rectangular one. Thus, within the same period for  
| x | < d we obtain 

( , )
, ,
, | | , ,
, | | , .

f x z
z h
x w z h
x w z h

1
1
1

2

2

G G

G

= -* 	 (21)

This corresponds to the expression

2| |
[ ( ) ]

F
n c q
16

2
1

n
n z

2 2 2

2

0 1
2p

w
k k

=
+

	 ´  [ ( ) ]sin sinn
d
w h q k

2
2n z

2 2
1p k +` j ' 1,	 (22)

which determines the simple dependence of the nonlinear dif-
fraction intensity on the domain structure depth h and duty 
cycle w /d.

In particular, | Fn |2 = 0 when the condition

n
d
w l= 	 (23)

with an arbitrary integer l is fulfilled, which means the com-
plete disappearance of the nth order of diffraction, regardless 
of the angle of incidence of the pump wave, if the domain 
structure duty cycle w /d is equal to a certain rational number 
with denominator n. Since the ratio w /d is always less than 
unity, such a complete disappearance of a certain diffraction 
order is possible only for| n | > 1.

The last factor in expression (22) indicates the possibility 
of non-destructive diagnostics of the depth of the domains 
due to the fact that the intensity of the nth order of diffraction 
identically vanishes when the condition

[ ( ) 2 ] 2q k h mn z1 pk + = 	 (24)

with an arbitrary integer m is fulfilled. Taking into account 
the notations adopted above, this takes place at such an angle 
of pump wave incidence, q0, that 

1

sin sinh m n
d2 42 0

2

1
2
0

l e q l e q= - + + -

-

c m= G .	 (25)

Consequently, the depth of the domains of rectangular cross 
section can be found easily if we know the set of values of 
angles q0 at which a given diffraction order disappears. 

As a practical illustration, Fig. 2 presents the intensities of 
the first orders of nonlinear diffraction, I±1, on a periodic 
domain structure in a lithium niobate crystal. The pump and 
SH wavelengths are assumed to be 1064 and 532 nm, respec-
tively, and the weak anisotropy of the linear optical proper-
ties of this crystal makes it possible to describe it for simplic-
ity with isotropic permittivities equal to the values of ordinary 
components of the corresponding tensor at these wavelengths:  
e1 = 4.97 and e2 = 5.23 [29]. Among the known values of the 
three nonzero components of the nonlinear susceptibility ten-
sor for lithium niobate [30], d33 = – 98 ́  10–9 CGSE units, d31 
= 14 ́  10–9 CGSE units, d22 = 7.4 ́  10–9 CGSE units, the first 
component is dominant, which justifies the use of a simplified 
form of the nonlinear susceptibility tensor (1). The intensities  
I±1 for the geometries corresponding to TE and TM diffrac-
tions are shown in Figs 2a and 2b, respectively. In the case of 
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TE diffraction, there are clear minima in the regions of 
15° – 20° and 45° – 50°, corresponding to the angles of inci-
dence obtained from expression (25). For TM diffraction, the 
minima in the region of 15° – 20° are not visible because the 
intensity is close to zero at small angles due to the specificity 
of the geometry and the proportionality of the values of I±1 
and | E1z |4. In both cases, the intensity of the diffracted wave 
for n = 1 becomes zero when the angle of incidence is less than 
90°, which corresponds to a negative root expression in the 
formula for k0(qn), i.e., under total internal reflection. 

4. Role of the cross-sectional shape of domains 

The explicit dependence of the structural factor (20) on the 
cross section of the domains described by the function f (x, z) 
allows one to consider nonlinear diffraction as a way to diag-
nose the shape of the domain walls inside the crystal. For 
visual illustration, we use a set of cross sections of domains 
that have the same duty cycle w /d at the output to the crystal 
surface and the same maximum depth h, but differing in the 
shape of the walls. This shape is described at z > 0 within one 
period of the structure ( | x | < d  ) by the function 

( , )
, ,
, | | ( ), ,
, | | ( ), ,

f x z
z h
x w w z z h
x w w z z h

1
1
1

2

2

G G

G

D
D

= - -

-

* 	 (26)

where

( )w z w
h
z1 1

/N1D = - -` j8 B	 (27)

is the deviation of the domain walls from the vertical form; 
and N is a positive integer specifying various wall shapes: 
from triangular with N = 1 and smooth parabolic with N = 2 
to sharp rectangular in the limit N ® ∞. The corresponding 
structural factors (20) can then be represented as 

n =
( )

{ [ ( ) ] }sin expd iF c n z
d

w w z
q k z2 2n z

h

1
0p

w k
D

-
-

+; Ey ,	 (28)

and finding their numerical values allows us to calculate the 
intensities of various orders of nonlinear diffraction. 

As an example, Fig. 3 presents dependences similar to 
those shown in Fig. 2b, with identical geometrical parameters 
of the domain structure h, w and d, but for different cross-
sectional profiles. It can be seen that for small deviations of 
the shape of the domains (N = 20), the angular dependence of 
the diffraction intensity is almost equivalent to that in the 
case of ideal rectangular domains. For the shape of the 
domains corresponding to N = 5, the dips in the angular 
dependence of intensity are further smoothed, and its zeros 
become local minima; however, their position still corre-
sponds to expression (25) and allows the domain structure 
depth to be determined. In the case of both parabolic (N = 2) 
and triangular (N = 1) domains, there is a complete blurring 
of dips in the angular dependence of the diffraction inten-
sity, and the determination of their depth turns out to be 
impossible. 

5. Conclusions 

Thus, nonlinear diffraction allows one to reconstruct in detail 
the most important characteristics of periodic domain struc-
tures for different orientations of spontaneous polarisation 
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Figure 2.  Dependences of the relative intensities of the first orders of 
nonlinear diffraction, I±1, on the angle of incidence of the pump wave 
on a lithium niobate crystal with a rectangular domain structure having 
a depth of 2.5 mm, a period of 7 mm and a duty cycle of 1/7 for geome-
tries corresponding to (a) TE and (b) TM diffraction.
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relatively to the surface. Along with the simple condition (13), 
which makes it possible to determine the period of structures 
in the directions of propagation of nonlinearly diffracted 
waves, the dependences of the intensity of these waves on the 
angle of incidence of the pump wave allow one to accurately 
estimate the depth of the domain structure and even reveal 
the shape of the domain walls inside the crystal. 

The most accurate determination of the depth is possible 
for periodic domains of rectangular cross section, for which, 
at given angles of incidence of the pump wave, condition (25) 
is satisfied and some diffraction orders disappear. Being a 
consequence of the destructive interference of SH fields gen-
erated by nonlinear currents at different depths, the essence of 
the used SH interference suppression is the same as when con-
trasting individual large domains in the SH confocal micros-
copy regime [22, 23]. Nonlinear diffraction, however, makes it 
possible to measure the depth of periodically repeating 
domains, the width of each of which can be substantially less 
than the wavelength of light. 

The deviation of the cross-sectional shape of the domains 
from the ideally rectangular one leads to the violation of the 
conditions necessary for the complete interference supression 
of the SH. As shown above, the depth of the dips in the depen-
dence of the intensity of the diffracted waves on the angle of 
incidence of the pump wave turns out to be quite sensitive to 
changes in the shape of the domain wall, even with a constant 
two-dimensional pattern of the emergence of the domains on 
the surface. 

We also note that the theoretical formalism developed on 
the basis of simple domain structures is applicable to struc-
tures with a much more complex unit cell. The fabrication of 
such structures with arbitrary regular, including superperi-
odic, domain ordering is possible using modern atomic force 
and scanning electron microscopy devices. The obtained rela-
tions allow us to calculate the efficiency of nonlinear diffrac-
tion on such structures and, for example, to find out the con-
ditions for the suppression and amplification of its certain 
orders, which has an independent practical value. Thus, the 
formation of a narrowly directed SH, emitted in one direc-
tion, can actually be considered as nonlinear refraction of 
light.
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