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Abstract.  We consider the physicomathematical model for the 
simulation of the angular laser flux distribution in a spherical 
target with the inclusion of radiation refraction in the corona. The 
irradiation uniformity is simulated using the target irradiation 
scheme on a megajoule multiple-beam laser facility. Calculations 
are made of the time-dependent angular distribution of absorbed 
flux and of the angular distribution of the time-integrated charac-
teristic – the absorbed energy with allowance for the temporal shape 
of laser pulses – as well as of the time dependence of absorption 
efficiency. Different versions of target irradiation are considered. 
Under conventional irradiation it is assumed that the axes of all 
laser beams of equal energy pass through the target centre and the 
irradiation nonuniformity is due to its geometry only. Also exam-
ined are three unconventional irradiation versions: when there is a 
small spread of beam energies, when the target is displaced from 
the common beam pointing centre, and when the beam axes have 
small random deviations from the target centre. It is shown that the 
nonuniformity of the angular distribution of absorbed flux is great-
est when the target is displaced from the beam pointing centre. 

Keywords: target irradiation nonuniformity, absorption and refrac-
tion of radiation, angular distribution of absorbed flux, beam energy 
spread, beam pointing errors, target displacement from beam pointing 
centre.

1. Introduction

At present, different target compression and ignition schemes 
are under consideration in laser fusion research (for a review 
of the schemes, see, for instance, Refs [1, 2]). One of the 
schemes, which permits the most efficient use of laser energy 
for the compression and heating of a thermonuclear target, is 
the scheme of direct target irradiation by a multitude of laser 
beams. To achieve a close-to-spherically symmetric target 
compression, the number of beams should be rather high and 
the target-irradiating beam directions must somehow be uni-

formly distributed in space. Considered early in the research 
was the irradiance problem of the spherical target irradiated 
by the set of laser beams [3 – 5]. These works were primarily 
aimed at studying the effect of different irradiation geometries 
on the irradiance symmetry. Scannapieco and Brysk [6] con-
sidered the uniformity of laser energy deposition in a spheri-
cally symmetric plasma corona assuming that the charac-
teristic plasma nonuniformity length Lcr = (de' /dr|rcr)

–1 is much 
shorter than the critical radius rcr (here, e' = e'(r) = 1 – wp2(r)/w2; 
wp and w are the plasma and laser frequencies; e'(rcr) = 0). 
As shown in Ref. [7], for Lcr /rcr << 1 it is possible to neglect 
refraction and consider the problem of critical surface irradia-
tion by introducing a factor to take into account the efficiency 
of absorption. 

The authors of Ref. [7] considered a model which described 
the angular distribution of absorbed laser flux in a spherically 
symmetric plasma corona with the inclusion of radiation 
refraction. The optical axis of a laser beam was assumed to 
pass through the target centre and the intensity dependence 
was assumed to be axially symmetric over the beam cross sec-
tion. Then, the function W1( m, t), which describes the angular 
distribution of the absorbed flux for one laser beam (a single-
beam function), depends only on m = cos q and time t, where 
q is the spherical angle measured from the optical axis of the 
beam (the origin of the reference frame is at the target centre). 
The problems arising in the selection of the model for calcu-
lating function W1( m, t) were considered in Ref. [7]. As shown 
in Ref. [7], when the laser energy deposition in the corona is 
integrated over the radius and the dependence on m remains, 
for m = 1 the greatest contribution to this function is made 
by the vanishing energy deposition with the radius tending to 
infinity ( r ® ¥). Specifically, consider a ray segment of length 
Dl. The flux fraction DQa related to this ray and absorbed 
over a length Dl tends to zero for r ® ¥, since the plasma 
density tends to zero. However, the solid angle DW = DmDj, 
which corresponds to the ray element Dl, also tends to zero, 
because there vanishes the angle Dm, at which the element Dl 
is seen from the target centre. In this case the ratio DQa /DW 
has a maximum at infinity. 

The model of calculating the function W1 considered in 
Ref. [7] consisted in that the real dependence DQ(l) (l is the 
coordinate along the ray) of the ray-related differential flux 
was replaced by a step function with a step from the incident 
flux DQ0 to the flux DQr emerging from the plasma at a ray 
point l*, prior to which a half of the radiation flux is absorbed, 
i.e. (DQ0 – DQ*)/DQ0 = da/2, where da = (DQ0 – DQr)/DQ0 is 
the fraction absorbed. This is the model of d-like flux absorp-
tion on the surface consisting of points l* on the rays. This 
model makes it possible to avoid the contribution made to the 
function W1 by the weak absorption away from the critical 
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surface near the optical axis ( m » 1). However, in the perpen-
dicular direction to the optical axis ( m » 0) this model is not 
always applicable. Away from the critical surface the family 
of points l* falls on a straight line passing through the target 
centre perpendicular to the optical axis. This has the effect 
that the greatest contribution to function W1 in the vicinity of 
m » 0 can be made by the distant low-density plasma. On the 
other hand, the transverse beam size, unlike the longitudinal 
one, is limited by values of the order of the critical radius, and 
this feature is ‘clipped’ by the transverse beam profile. 
However, when the beam radius is varied over a wide range 
and its effect on the angular distribution of absorbed flux is 
investigated, the contribution of remote domain may lead to 
the results that inadequately show the distribution in the 
domain of the main energy deposition. In reality, in the vicin-
ity of m » 0 it is required to take into account the distributed 
nature of absorption. 

The aim of our work is to generalise the model for calcu-
lating function W1 so as to take into account the distribution 
of the energy deposition along the ray. Furthermore, we con-
sider the cases when the optical beam axis does not pass 
through target centre and deviates to some extent from it 
(a miss). In this case, the one-beam function W1 does not 
possess axial symmetry despite the axial symmetry of the inci-
dent beam intensity. 

The nonuniformity of absorbed laser flux distribution has 
the effect that the ablation pressure on the target ablation 
surface also becomes nonuniform. However, the ablation pres-
sure depends not only on the laser flux density, but also on the 
plasma density at which the bulk of absorption takes place. 
In the stationary corona model [8, 9], for instance, it depends 
on the critical density (or the wavelength of laser radiation), 
whereby there occurs the d-like energy deposition from the 
laser flux. When the absorption and refraction of rays in the 
corona are taken into account, the peak of energy deposition 
is in the subcritical plasma and not on the critical surface. In 
this case, the plasma density in the domain of peak energy 
deposition depends on the angle m. Apart from the single-
beam distribution function W1( m, t) it is therefore necessary 
to consider the single-beam function r1*( m, t) for the charac-
teristic density, whereby the bulk of absorption of the laser 
flux takes place. 

2. Absorbed laser flux distribution function  
over the solid angle and characteristic plasma 
density at which energy deposition takes place

At first we consider the case when the optical beam axes pass 
through the target centre. The general simulation scheme of 
the angular distribution of the flux absorbed in the target is as 
follows. The one-dimensional hydrodynamic RAPID code [10] 
is used to calculate the angular distribution function W1( m, t) 
for absorbed laser flux from one laser beam at several pre-
scribed points in time t between the onset of the pulse and the 
instant of target collapse. Also calculated is the characteristic 
density function r1*( m, t) (measured in units of the critical 
density) whereby there occurs absorption of the energy flux of 
one beam. Then, for a given geometry of target irradiation by 
a set of beams we calculate the total angular distribution of 
absorbed flux and energy as well as the angular distribution 
of the characteristic density at which the energy deposition is 
greatest (this calculation is performed with a separate code). 

Consider the model used for the calculation of W1 and 
r1*. The absorption and reflection of laser radiation of laser 
radiation in the RAPID code is considered on the basis of the 
combination of ray and wave approaches. The ray trajectory 
in the plasma corona is constructed with the inclusion of 
refraction, and in a small neighbourhood of the turning point 
of the ray we solve the Maxwell equations for oblique wave 
incidence on a plane layered plasma for s- and p-polarised 
wave components. Calculated in the issue are the dependences 
of the absorption fractions das and dap for s- and p-polarised 
radiation on the ray coordinate p in the plane perpendicular 
to the optical axis. For a beam of parallel rays, p is the impact 
parameter of the ray. The fraction of resonance absorption is 
determined by the difference dap – das. Under the conditions 
of hydrodynamic target compression mode the total resonance 
absorption fraction turns out to be small, since Lcr /l >> 1, 
where l is the wavelength of laser radiation. In this case, only 
a very small fraction of the laser flux confined near the optical 
axis (the resonance absorption fraction is given below) par-
ticipates in the resonance absorption, and so only the inverse 
bremsstrahlung mechanism may be considered in the simula-
tion of absorbed flux uniformity. 

Consider the energy deposition model for the calculation 
of absorbed flux nonuniformity. We replace the real distributed 
energy deposition along a ray by a model one with the use of 
the following scheme. At a ray point l*, ahead of which a half 
of the radiation flux is absorbed, the derivative [d(DQ)/dm]* is 
calculated along the ray. We replace the dependence DQ( m) in 
the neighbourhood of point l* by a linear dependence with the 
slope equal to the calculated derivative to determine the char-
acteristic angular dimension Dml = DQa /[d(DQ)/dm]* over 
which the absorbed flux DQa = DQ0 – DQr is distributed in the 
motion along the ray. Furthermore, the incident flux DQ0 = 
2pI(p)pdp, where I( p) is the beam intensity, at point l* has its 
own angular dimension Dm*, because the rays with impact 
parameters pi and pi + 1 = pi + Dpi have different mi

*, and con
sequently Dmi

*
 + 1/2 = mi

* – mi
*
 + 1. The total angular dimension 

over which the absorbed flux DQa is absorbed is written as the 
sum Dm = Dml + Dm*. The term Dml is absent in the d-like 
energy deposition model and Dm = Dm*. The function W1( m) 
summarised over all differential incident fluxes DQ0 is found 
by integration: 

W1( m) = 2p
1p

0

max

Tmy h[( m – m1)( m2 – m)] das(p)I(p)p dp,	 (1)

where h is the Heaviside function (h(x) = 0 for x < 0, h(x) = 1 
for x ³ 0); m1 = m* + D m/2; m2 = m* – D m/2; m*, m1, m2 and Dm 
are function of parameter p. In expression (1) we omitted the 
time t for simplicity of notation. In reality, as noted above, 
integrals (1) are calculated for a sequence of points in time 
and all quantities that appear in the integrand are time-depen-
dent. For the characteristic density r1* it would be natural to 
take the density at the ray point l*, at which m = m*. Thus 
we  obtain the single-beam characteristic density function 
r1*( m, t), at which there occurs the main absorption due to 
inverse bremsstrahlung mechanism. 

When the function W1( m) is known, the total energy 
deposition for N beams is determined by summing at a given 
point (q, j) the energy depositions of all beams, which requires 
calculating the cosines of the angles between the direction 
(q, j) and the optical beam axes (qn, jn): 
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mn(q, j) = sin qn cos jn sin q cos j 

	 + sin qn sin jn sin q sin j + cos qn cos q.	 (2)

The angular distribution function of N beams 

( , ) ( ( , ))W W n
n

N

1
1

q j m q j=
=

/ .	 (3)

Unlike the energy deposition, the characteristic densities 
are not summed. Taken for r*(q, j) is the density r1*( mn(q, j)) 
of the beam which makes the greatest contribution to the 
energy deposition, i.e. the beam whose term in the sum (3) is 
greatest. 

We note that expression (3) sums the beam intensities. 
In  reality, even in one beam the wavefront may be partly 
coherent, and in this case there appears correlation between 
the partly coherent portions of the wavefront, which gives rise 
to narrow spikes in the intensity distribution in the focal 
plane. Here we consider only the statistically average intensity 
distributions, which overlap in the target irradiation by a 
large number of beams to give an energy distribution close 
to  the spherically symmetric one. An investigation of the 
problem of the effect of intensity spikes does not call for the 
summation over all beams. This is a separate problem of 
whether a sharp intensity spike will have time to be smooth 
out in the target or how to vary these spikes in time and space 
to smooth out their effect in the corona without a significant 
pressure transfer to the target shell under acceleration. When 
the focal spot size far exceeds the diffraction limit l(F/D), 
where F is the focal distance and D is the beam aperture 
diameter, this signifies that the size dcoh of coherent portion 
of the wavefront is much shorter than D. In this case, for an 
elementary beam one has to consider the beam of aperture 
dcoh and perform averaging of the single-beam distribution 
function over the entire aperture of the laser beam (the 
averaging procedure was considered in Ref. [7]). 

Now let us dwell on the case when the optical beam axis 
OF passes some distance d from the target centre (d is the 
impact parameter, or axis miss distance) (Fig. 1). This case 
emerges in two problems: first, when each of the beam axes 
exhibits a random miss distance dn relative to the target centre 
and, second, when all axes converge at one pointing centre 
but the target is somewhat displaced from the pointing centre. 
We draw a new axes O' F through the focal point F and the 
target centre, as shown in Fig. 1. The plasma density and 
temperature distributions about the O' F axis possess axial 
symmetry, and therefore the ray paths in the plasma are also 
axially symmetric around this axis. The dependence of energy 
deposition on the angle j' measured from the O' F axis 
appears, because in this coordinate system the incident beam 

intensity is not axially symmetric and depends on r' and j'. 
The angle j' is measured from the perpendicular to the 
O' F axis drawn in the plane OFO' (Fig. 1). When the beam 
intensity distribution relative to the OF axis 

I(r) = I0 exp A
r p

-` j8 B	 (4)

(r is the distance from the OF axis and A is the characteristic 
beam radius in the plane of the focusing device), the depen-
dence I'(r', j' ) relative to the O' F axis is obtained from 
formula (4) by expressing r in terms of r' and j'. The depen-
dence r(r', j' ) is found from the triangle two sides of which, 
r' and b, form the angle j' (Fig. 1) (b = Fd/D, D is the focal 
spot displacement from the target centre): 

( ) ( )cos sinr r b b2 2j j= - +l l l .	 (5)

The single-beam absorbed flux distribution function is 
calculated similarly to the case when the beam axis passes 
through the target centre (1), with the inclusion of the depen-
dence of incident intensity on the j' angle: 

W1n( m', j' ) = 
max 1p

0 Tml

l

y  h[( m' – m'1)( m'2 – m' )]

	 ´ das( p' ) I'n( p', j' ) p' dp'.	 (6)

All quantities in the integrand are the same as in expres-
sion  (1). When the differential flux I'n( p', j' ) p' dp' dj' is 
divided by the solid angle Dm' d j', the factor dj' cancels out. 
Since the dependence of the intensity I'n( p', j' ) contains the 
optical axis miss distance dn for the nth beam and, conse-
quently, the quantity bn should appear in formula (5) for the 
nth beam (the miss distances are different for all beams), each 
beam has its own single-beam distribution function (6) [this 
is  indicated with subscript n in expression (6)]. Of interest 
usually are short miss distances dn , which are much smaller 
than the characteristic beam radius at the target, because the 
beam radius and the target radius should be close. In this 
case, the amount of calculations in expression (6) may be 
greatly reduced. Considering b in expression (5) as a small 
parameter and using formula x1-  » 1 – x/2, which holds 
good for small x, expression (5) may be rearranged to the 
following form: 

cosr r
r b
r b

0 2 2
j- =

+l

l l,	 (7)

where ,( )r r r b r b0 0
2 2

= = +l l . We replace the intensity I(r) 
in the neighbourhood of point r0 with the linear function of 
the form 

I(r) » I(r0) + d
d
r
I

r0
(r – r0) ,	 (8)

to obtain

I' (r', j', b) = I(r0(r', b)) + 
d
d
r
I

r b
r b

2r 2
+0 l

l  cos j'.	 (9)

As follows from expression (9), for small value of parameter b 
the single-beam function (6) contains a term proportional to 
cos j'. Furthermore, this term depends linearly on parameter b 

F

D

d

O

O'

r

r'

j' b

Figure 1.  Diagram explaining the introduction of a new optical axis in 
the case of a small miss of the laser beam relative to the target centre.



127Uniformity simulation of multiple-beam irradiation of a spherical laser target

in the neighbourhood of point b = 0. The algorithm of calculat-
ing W1n( m', j' ) in this case is therefore as follows. Three func-
tions are calculated: W0( m' ) is the function for b = 0 (this the 
axially symmetric case, when m' = m); WB0( m' ) is the function 
for the greatest parameter bmax = B and j = 0; and WBp( m' ) 
is the function for bmax = B and j = p. For other values of bn 
and j' the function W1n is calculated by the formulas

W1n = W0(bn) cos2 2
jl
 + Wp(bn) sin2 2

jl
,	 (10)

W0(bn) = W00 + (WB0 – W00) B
bn ,	 (11)

Wp(bn) = W00 + (WBp – W00) B
bn .	 (12)

The sum function of absorbed flux angular distribution 
from N beams is written in the form 

W(q, j) = W n
n

N

1
1=

/ ( m'n(q, j), j'n(q, j)),	 (13)

where m'n is the cosine of the angle between the direction (q, j) 
considered in the target and the direction of ‘corrected’ optical 
axis O' F (Fig. 1); j'n is the angle made with the OFO' plane 
by the direction (q, j) considered in the target (Fig. 1) for nth 
beam. 

3. Simulation of the angular distribution  
of absorbed laser flux for experimental  
conditions on a megajoule laser

Calculations were made for the following conditions. A pulse 
of the second harmonic of Nd-laser radiation has an energy 
of 2 MJ. The temporal pulse shape is depicted in Fig. 2. The 
target consists of a 34-mm thick CH shell with an outer radius 
of 1597 mm and a 150-mm thick DT ice shell adjoining it on the 
inside. Inside of the shell is a DT gas at a density of 10–3 g cm–3. 
The number of laser beams is equal to 48. The optical beam 
axes are directed along the generatrices of cones, whose vertices 
are at the target centre (at the origin) and whose base centres 

coincide with the Cartesian axes x, y, z. In all, there are six 
cones arranged with cube symmetry. The cone half-angle is 
equal to 30°. Each cone comprises eight beams, and the angle 
Dj between the directions at the cone base is equal to 45°. 
If we consider the cone on the z axis, the angles jn relative to 
the x axis in the (x, y) plane begin with 22.5° and next increase 
by 45° each relative to the previous one. The beams in the 
other cones are arranged in a similar way. The beam aperture 
diameter D = 80 cm and the focal distance F = 660 cm. The 
radiation intensity distribution in the target plane (the plane 
passing through the target centre perpendicular to the optical 
axis) is as follows: 

( ) expI r I a
r p

0= -` j8 B,	 (14)

where r is the distance from the optical axis and a is the charac-
teristic beam radius. The value of a was varied in the simula-
tions, the ratio a /R (R is the initial target radius) varied from 
0.5 to 1.3. We considered a Gaussian beam with p = 2 and a 
super-Gaussian beam with p = 4. Since the absorption effi-
ciency depends on the electron temperature in the corona and 
this temperature depends on the electron thermal conduction 
flux limiter f, we considered both the case of limited thermal 
conduction with f = 0.06 and the case of Spitzer conductivity 
(without thermal flux limitation). The electron thermal flux We 
= WSWmax /(WS + Wmax), where WS is the Spitzer flux; Wmax = 
fneTe uTe ; and ne , Te and uTe = (Te /me)1/2 are the electron den-
sity, temperature and thermal velocity, respectively. 

At first we consider the conventional irradiation case, 
when all beam axes pass through the target centre and all 
beam energies are equal. Figure 3a shows the distributions 
W1( m) produced by one beam at different points in time for 
p = 2, a/R = 1, and f = 0.06. The angle q ( m = cos q) is mea-
sured from the optical beam axis. The distributions are nor-
malised to the peak of the function W1( m). One can see the 
‘broadening’ of the function W1( m) at later points in time. 
This is due first to a shortening of the critical surface radius in 
the shell motion towards the centre for an invariable beam 
radius at the target, and second, to an incident flux redistribu-
tion over the beam cross section arising from refraction of the 
rays in the corona. The refraction is responsible for a lower-
ing of the intensity on the optical axis (in the region m » 1) 
and for its increase at some distance from the optical axis 
( m < 1). This effect was discussed at length in Ref. [7]. Shown 
in Fig. 3b for the same version are the dependences of the 
characteristic density r1*/rcr (in units of the critical density) 
on m for one beam at different points in time. As is clear in 
Fig. 3b, the characteristic density, at which there occurs the 
main energy deposition, is lower than the critical density. This 
is because the optical thickness of plasma along the rays close 
to the optical axis ( m » 1) is high and the radiation experi-
ences significant absorption prior to the critical density 
region. This density is especially low at the points in time 
when the laser intensity is low (t = 4.5 ns, Fig. 3b) and, accord-
ingly, the optical thickness near the optical axis is high. For 
rays distant from the optical axis ( m < 1) the density r1* is 
lower than rcr due to ray refraction in the corona, since the 
radiation reaches only the turning point, at which the plasma 
density is lower than rcr. 

For the irradiation geometry considered above we calcu-
lated the angular distribution function W(q, j, t) for the flux 
absorbed at different points in time as well as the angular 
distribution for the absorbed energy E(q, j) with the inclusion 
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Figure 2.  Time dependences of the laser flux Qlas and its absorption effi
ciency da in the plasma corona.
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of the time dependences of the incident laser flux Qlas(t) and 
the absorption fraction da(t): 

t
( , ) ( , , ) ( ) ( )dE W t Q t t tlas a

0

las

q j q j d= y .	 (15)

The dependences Qlas(t) and da(t) are plotted in Fig. 2. The 
functions W and E are so normalised that their values averaged 
over the entire solid angle of 4p are equal to unity. Figure 4 
shows the dependence E(q, j). In this case, the degree of 
uniformity hE = Emin /Emax  is equal to 0.9663 and the differ-
ence between the maximum and the minimum of the function 
E(q, j) is eE » 1 – hE = 3.4 %. The W(q, j, t) distributions are 
of the same shape as the E(q, j) distribution, and the degree of 
uniformity hW = Wmin /Wmax varies with time and lies in the 
range 0.934 – 0.968. The maxima and minima of the W(q, j, t) 
function move in the plane (q, j) with time, with the conse-
quence that the time-integrated value of E(q, j) exhibits a 
higher degree of uniformity. 

Figure 5 shows the map of relative densities D* = r*/rcr at 
which there occurs the greatest energy deposition under target 

irradiation be all 48 beams. This map was plotted for the point 
in time 8.5 ns (the middle highest-power part of the pulse). 
As  noted above, at each point (q, j) we selected the r*/rcr 
value of the beam with the greatest contribution to the energy 
deposition W. Since, according to Fig. 3a, the function W1 
peaks near the optical beam axis, the peaks (white areas) 
in  the density (D*) map coincide with the positions of the 
optical beam axes, i.e. show the target irradiation symmetry. 
As is clear in Fig. 5, the characteristic density r*(q, j) is lower 
than the critical density and depends, like W and E, on angles 
q and j. This dependence makes a contribution to the non-
uniformity of ablation pressure in the target. To estimate the 
effect of W and r* perturbations on the ablation pressure, 
advantage can be taken of the stationary corona model 
[8, 9]. According to this model, the ablation pressure pabl = 
2(2 – f )rscs

2, where f = 1.22 is the factor, which defines the 
position of Jouguet point Rs relative to the ablation surface: 
Rs = fR. The model is characterised by the dimensionless 
parameter g0 ~ Q/ra7/4 (we take into account only the depen-
dences on the laser flux Q and the density ra, at which this 
flux is absorbed). According to Ref. [9], rs ~ ra g00.479 and cs ~ 
(1/g00.214)(Q/ra)1/3. Then the ablation pressure 

p p
Q
Q

abl
a

0
0 0r=

a b
arc cm m ,	 (16)

where p0 is the spherically symmetric pressure for Q = Q0 
and ra = ra0; a = 0.718; b = 0.244. When the flux Q and the 
density ra exhibit deviations, Q = Q0 + dQ and ra = ra0 + dra, 
for the ablation pressure perturbations we obtain: 

p Q
Q

0

abl

a

a

0 0

d d d
a b r= +

p r
.	 (17)
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Figure 3.  (a) Single-beam angular distribution function for absorbed 
flux at the time moments ( 1 ) 6.5, ( 2 ) 7.5, ( 3 ) 8.5, ( 4 ) 9.5, and ( 5 ) 10 ns, 
as well as (b) angular plasma density dependences at the ray points prior 
to which a half of the differential flux is absorbed at the time moments 
( 1 ) 4.5, ( 2 ) 6.5, ( 3 ) 7.5, ( 4 ) 8.5, and ( 5 ) 9.5 ns; m is the cosine of the 
angle measured from the optical axis of the beam.
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Figure 4.  Angular distribution function for the energy absorbed from 
all beams under conventional irradiation conditions. 
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The ratio a/b = 2.94, and therefore the ablation pressure 
deviations are 2.94 times more sensitive to flux deviations dQ 
than to density deviations dra. 

The degree of absorbed flux uniformity depends on the 
ratio a /R of the beam radius at the target to the target radius. 
For a narrow beam the uniformity is lower but the absorbed 
fraction is higher. The fraction da absorbed due to the inverse 
bremsstrahlung mechanism, the resonance absorption fraction 
dar (of the incident laser energy) and the degree of uniformity 
hE in relation to the ratio a /R are collected in Table 1 for 
p = 2 and f = 0.06. As follows from Table 1, with increasing 
a /R from 0.5 to 1.3 the absorbed fraction lowers from 0.755 
to 0.465. In this case, the degree of uniformity rises from 
0.9396 to 0.9741. It is noteworthy that, beginning with a/R = 1 
and above, the degree of uniformity increases only slightly, 
while the absorbed fraction decreases. Since the resonance 
absorption fraction is very small (4.49 ́  10–4 for a /R = 1), it 
was not taken into account in the calculations of absorbed 
flux uniformity. The low values of dar are due to the large 
target dimension and, accordingly, the long plasma nonuni-
formity length in the vicinity of the critical point. In this case, 
only a very small fraction of the flux confined near the optical 
axis participates in the resonance absorption. For the Spitzer 
conductivity and p = 2 the absorption efficiency due to the 
inverse bremsstahlung is higher. For instance, for a /R = 1 we 

have da = 0.754, and it is higher for other a/R values, too. 
In this case, the degree of uniformity hE changes slightly: for 
a/R = 1 it amounts to 0.9661 (versus 0.9663 in the case of 
limited thermal conduction). Also considered was the version 
with p = 4 and f = 0.06. The degree of uniformity hardly 
changes and amounts to 0.9661 for a/R = 1. The absorbed 
fraction is somewhat higher in this case and for a/R = 1 is 
equal to 0.642 (versus 0.57 for p = 2). This is because for p = 4, 
in comparison with p = 2, a part of the radiation with long 
impact parameters is ‘transferred’ to the domain of shorted 
impact parameters, for which the absorption efficiency is 
higher. 

To determine the characteristic nonuniformity wavelengths 
for the angular distributions E(q, j), the deviations dE = E – 1 
were expanded in spherical harmonic series: 

( , ) ( , )E a Yk
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00

d m j m j=
==

// ,	 (18)

where Yk
m( m, j) = Pk

m( m) exp(imj); Pk
m( m) are associated 

Legendre functions; ak
m are expansion coefficients (complex 

quantities). Figure 6 shows the absolute values of the expan-
sion coefficients Ak

m = |ak
m| in relation to number k for m = 0 

(Fig. 6a) and m = 1 (Fig. 6b). One can see that the harmonic 
with k = 8 and m = 0 (A8

0 = 9.8 ́  10–3) is the leading harmonic. 
For m > 1 the coefficients Ak

m do not exceed the coefficient 
A8
0. The greatest of them is coefficient A4

4 = 1.2 ́  10–5, which 
is smaller than A8

0 by almost three orders of magnitude. The 
spherical harmonic expansion is usually used for investigating 
the linear stage of Rayleigh – Taylor instability. In the case 
of a shell target, which is under consideration here, this stage 
is ‘forgotten’ in the course of the shell’s flight to the target 
centre. Since shell’s velocity far exceeds the sound velocity in 
it, the shape of shell distortions prior to the onset of DT-sub
stance compression is determined by the ballistics of different 
portions of the shell, which fly independently of each other. 
This approach was considered in Refs [1, 2, 11, 12].

Now let us consider the effects of different unconventional 
irradiation: beam energy disbalance, random misses of the 
beam axes relative to the target centre, and the target dis-
placement from the common beam pointing centre. Figure 7a 
shows the dependence of beam energy on the beam number 
with the inclusion of random deviations according to Gaussian 
statistics with an error of eb = 8 %. Figure 7b shows the random 
scatter of the beam axis misses in the plane d cos jd, dsin jd, 
where d is the axis miss relative to the target centre and jd is 
the angle measured in the XY plane relative to the X axis. The 
miss distance d is defined by the Gaussian random number 
distribution with a characteristic value d0 (shown in Fig. 7b is 
the case d0 = 160 mm), with a uniform distribution in angle jd. 
We note that the positions of points in Fig. 7b are not the 
positions of the axes in the XY plane, since the distance of the 
origin from a point in the XY plane is greater than the miss 
distance due to the beam axis inclination relative to the XY 
plane. The values of the degree of nonuniformity hE and the 
difference between the maximum and the minimum eE = 1 – hE 
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Figure 5.  Map of the plasma density corresponding to the peak energy 
deposition under conventional irradiation conditions. 

Table  1.   

Parameter
a /R

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

da 0.755 0.722 0.686 0.648 0.609 0.570 0.533 0.498 0.465
dar 2.44 ́  10–3 1.60 ́  10–3 1.10 ́  10–3 7.93 ́  10–4 5.86 ́  10–4 4.49 ́  10–4 3.57 ́  10–4 2.93 ́  10–4 2.45 ́  10–4

hE 0.9396 0.9593 0.9566 0.9525 0.9554 0.9663 0.9678 0.9725 0.9741
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for different disbalance values eb are collected in Table 2. 
From Table 2 it follows that disbalance growth by 8 % results 
in an increase in nonuniformity eE by only 1 %. This low 
responsivity of the nonuniformity to the disbalance of beam 
energies is attributable to the fact that eight significantly over-

lapping beams are incident on the target from the side of each 
cube face, and the difference in the total energy of each of 
these six beam groups is approximately eight times smaller 
than the difference of separate beam energies. This merely 
confirms the high quality of the random number sample used 
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Figure 6.  Spherical harmonic expansion coefficients for the deviation of absorbed energy distribution function from the average value (a, b) under 
conventional irradiation conditions and (c, d) for a target displacement by 80 mm along the X axis. Given are the dependences on harmonic number 
k for m = (a, c) 0 and (b, d) 1. 
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to determine the beam energy spread. Collected in Table 3 are 
the values of hE and eE for different d0 values and random 
beam axis misses depicted in Fig. 7b (d0 = 160 mm corresponds 
to d0 /R = 10 %). In the variation of d0, use was made of the 
same random beam distribution depicted in Fig. 7b, the family 
of points was only expanded or compressed in the radial 
direction. Also given in Table 3 are the absorbed fractions Da 
for different d0 /R ratios, whence it follows that the effect on 
Da produced by the beam misses under consideration may be 
neglected. Table 4 gives the values of eE for different absolute 
values of target displacement from the common beam pointing 
centre D/R and its three directions: eEX for a displacement 
along the X axis; eEXY for a displacement in the XY plane, 
whereby the displacement direction makes equal angles with 
X and Y axes; eEXYZ for a displacement between the X, Y, 
and Z axes, whereby the displacement direction makes equal 
angles with the X, Y, and Z axes. From Tables 2 – 4 it follows 
that the nonuniformity of absorbed energy is most sensitive 
to  the target displacement from the common centre. In this 
case the relative nonuniformity eE is approximately two times 
greater than the relative displacement. This is attributable to 
the following fact: in the displacement of the target, one of its 
sides enters the zone of higher irradiance, while the other side, 
by contrast, leaves it, which makes a double contribution to 
the increase in nonuniformity. Among the three unconven-
tional irradiation cases, the case of beam misses occupies an 
intermediate position from the standpoint of increasing the 
nonuniformity (for a 10 % miss, eE = 6.79 %). 

The angular absorbed energy distributions E(q, j) for the 
three unconventional irradiation cases considered above are 
depicted in Figs 8 – 10: for beam energy disbalance in Fig. 8 
for eb = 8 %, for random beam misses for d0 /R = 10 % in 
Fig. 9, for the target displacement along the X axis in Fig. 10 
for D/R = 5 %. In the case of beam energy disbalance the 
angular distribution is little different from the case of conven-
tional irradiation (see Fig. 4). A special feature of E(q, j) in 
the case of random beam misses is the appearance of low 
modes in the distribution function. The reason is that owing 
to the Gaussian distribution of miss distances d the point 
density in Fig. 7b, which characterises these misses, is maximal 

Table  2. 

Parameter
eb (%)

0 4 8 16

hE 0.9663 0.9612 0.9562 0.9462
eE (%) 3.37 3.88 4.38 5.38

Table  3. 

Parameter
d0 /R (%)

5 10 20

hE 0.9501 0.9321 0.8864
eE (%) 4.99 6.79 11.36
Da 0.568 0.566 0.562

Table  4.   

Parameter
D/R (%)

2.5 5 10

eEX (%) 7.87 12.86 20.60
eEXY (%) 7.12 10.89 18.88
eEXYZ (%) 6.89 11.08 19.46
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Figure 8.  Angular distribution function for absorbed energy for a beam 
energy disbalance with a characteristic deviation eb = 8 %.

j/deg

300

240

180

120

60

0 30 60 90 120 150 q/deg

E
1.0300
1.0228
1.0156
1.0083
1.0011
0.9939
0.9867
0.9794
0.9722
0.9650

Figure 9.  Angular distribution function for the energy absorbed in the 
case of random beam misses with a characteristic ratio d0 /R = 10 %. 
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at the drawing centre and lowers with increasing d. In this 
case, only a small number of beams exhibit large misses, 
which results in the appearance of low modes in the E(q, j) 
distribution. When the target is displaced from the common 
beam pointing centre, there appears the first harmonic in the 
E(q, j) distribution. Figures 6c and 6d show the absolute 
values of coefficients Ak

m = |ak
m| in expansion (18) for the 

distribution depicted in Fig. 10 (target displacement). This 
drawing suggests that the harmonic with k = 1, m = 1 is the 
leading one. 

The angular absorbed flux distributions W(q, j, t) obtained 
in the present work were employed for one- and two-dimen-
sional simulations of compression and burning of a laser 
fusion target [1, 2, 11, 12]. These simulations made it possible 
to determine the measure of lowering of the fusion target gain 
under the above irradiation conditions in comparison with 
the case of spherically symmetric compression. 

4. Conclusions

We have proposed a physicomathematical model for calcu-
lating the angular distribution of absorbed laser flux in the 
corona of a spherical target with the inclusion of radiation 
refraction. Considered by way of example is the target irradi-
ation geometry of cube symmetry corresponding to a mega-
joule laser facility. Under conventional irradiation conditions, 
when the energies of all beams are equal and their axes pass 
through the target centre, the difference between the maximum 
and minimum of the angular distribution function of absorbed 
energy amount to 3.37 %. In this case, the leading spherical 
harmonic is the harmonic with k = 8 and m = 0. Several 

versions of unconventional irradiation were considered: when 
the beams have a random energy spread (disbalance), when the 
optical beam axes randomly miss the target centre, and when 
the target is displaced relative to the centre of beam pointing. 
The smallest uniformity impairment appears in the case of 
beam energy disbalance. A disbalance of 8 % impairs the uni-
formity by about 1 %. The case of beam misses occupies an 
intermediate position. For a characteristic miss distance of 
10 % of the target radius the nonuniformity increases by 3.42 % 
in comparison with conventional conditions. The most severe 
impairment of uniformity occurs when the target is displaced 
from the beam pointing centre. When the target is displaced 
along the X axis by a distance of 5 % of the target radius, the 
nonuniformity increases by 9.49 %. In this case, in the angular 
distribution function for the absorbed flux the first harmonic 
in angle j (k = 1, m = 1) has the highest amplitude. 
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Figure 10.  Angular distribution function for the energy absorbed in the 
case of target displacement from the beam pointing centre by 80 mm 
(5 % of the target radius) along the X axis.




