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Abstract.  The paper examines the operation of an optical system 
forming an image of an incoherent source object under conditions of 
atmospheric noise. The effect of atmospheric turbulence is consid-
ered. The calculations are performed in the Fresnel – Huygens 
approximation. The characteristics of the image for ‘long’ and 
‘short’ exposures are investigated. The issues related to the adap-
tive correction of the general light wavefront slopes are discussed. 
The limits of applicability of phase adaptive correction using a ref-
erence source are shown. 

Keywords: turbulence, image, adaptive correction, reference 
source, strong fluctuations. 

1. Introduction 

One of the tasks of optics is to observe objects with extremely 
high angular and spatial resolutions, determined only by the 
radiation wavelength l and the telescope aperture diameter 
D. The most important distorting factor is atmospheric tur-
bulence. This factor, which determines in the optical range 
the so-called correlation radius of phase atmospheric distor-
tions r0, or Fried radius, can vary over a fairly wide range. 
Therefore, in ordinary observations, practically any telescope 
will produce an angular resolution, specified by the parameter 
l/r0 and independent of the size of the telescope, while the dif-
fraction resolution of the telescope, equal to l/D, is usually 
much higher. At present, the problem of increasing the angu-
lar resolution during image formation is solved by several 
methods, including those based on wavefront correction, i.e., 
adaptive phase [1] and digital post-detector [2 – 4] methods 
(for example, aperture synthesis methods) as well as methods 
based on purely engineering solutions. 

Usually, the problem of improving the quality of image 
formation is solved under the following initial conditions: the 
object of observation lies in a small angle, 5'' – 10'', i.e. the 
condition of isoplanatism is met [1]; the recording time is 
shorter than the time of the atmosphere ‘frozenness’ (the con-
dition of statistical independence of atmospheric distortions); 
recording is carried out in a narrow spectral range Dl near the 
selected wavelength: Dl = lr0 /D (quasi-monochromaticity 
condition). In a real situation, the object is illuminated by 
sunlight; a variant of incoherent optical illumination of the 

object is possible, in which no speckles appear in the field 
formed on the object. 

2. Formulation of the calculation problem 

We set the task to write the expression for the distribution 
of the average image intensity of an incoherent source 
object observed through a layer of a turbulent medium. 
Consider the following scheme. Let an incoherent radiat-
ing object or an object illuminated by sunlight be located 
inside a turbulent atmosphere at a distance L from the 
receiving telescope (lens). The telescope has an aperture 
with a diameter D and a focal length F. The image forma-
tion will be described in the approximation of the 
Fresnel – Huygens method [5, 6]. Then the distribution of 
the instantaneous power density of the radiation in the 
sharp image plane Ximg can be expressed as 

( ) ( / ) ( / )dI W R W Rr ,
*

img a a
4
1 2 1 2r r r=

S
yy

(0, ; , ) (0, ; , )exp iG X G X k Fr r r*
img img0 1 0 2

1 2r r
r r

# - - -
-` j

( ) ( ) ( , ;0, ) ( , ;0, )d r U U G L G Lr r r r,
* *

ob ob
4
1 2 1 2 1 1 2 2r r# yy ,	 (1)

where W( r1/Rа) is the aperture function of the telescope; S is 
the receiving aperture; G0(0, r1; –Xing, r) is Green’s function of 
free space (inside the telescope); G(L, r1; 0, r1) is Green’s func-
tion of the turbulent medium in the space between the object 
and the telescope; k is the wave number of radiation; r1,2 and 
r1,2 are two-dimensional vectors; and Rа is the radius of the 
telescope aperture. 

First of all, in expression (1), we perform averaging over 
the fluctuations of the radiation source, and assume that the 
radiation field Uob(r1) is incoherent; therefore, for the coher-
ence function we use the approximation: 

áUob(r1)U *ob(r2)ñ = Iob(r1)d(r1 – r2),	 (2)

where Iob(r1) is the surface brightness of the source; and 
d(r1 – r2) is the Dirac delta function. 

As a result, expression (1) is rewritten as 
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which somewhat simplifies calculations. 
Expression (3) corresponds to the instantaneous value of 

the power density distribution in the image of an incoherent 
source having a brightness function of form (2). The, using 
the phase approximation [7] of the Fresnel – Huygens method 
generalised for randomly inhomogeneous media, we have
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where ( , ;0, )S L r1 1r  and ( , ;0, )S L r1 2r  are phase fluctuations of 
an elementary spherical wave propagating from a point with 
coordinates L, r1 to a point with coordinates 0,  r1; and 
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Analysis of expressions (1), (3) and (4) shows that phase 
adaptive correction of turbulent distortions requires the use 
of a signal from the reference source. The reference source of 
a spherical wave located in the plane of the observed source 
object within the range of isoplanatism of phase fluctuations 
is optimal [8 – 10]. Below, we will use such a point reference 
source located on the optical axis at point (L, 0). As a result, 
we obtain that the correction signal generated from the 
reference source is the phase of a spherical wave of form 
( ,0;0, )S L 1r . In this case, the size of the most incoherent 

object should be less than the size of the isoplanatism region 
[10, 11] cause by the turbulent medium. 

If the object is located far enough from the turbulent 
layer, then at the entrance to it the wavefront of the optical 
wave from the object is almost flat. This situation takes place 
in astronomy and in the observation of satellites. In this case, 
expression (1) can be rewritten as 
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where (0, )S 1r  is the phase fluctuations in a plane wave caused 
by the action of atmospheric turbulence. In this case, the opti-
mal reference wave [1] is a plane wave incident on the aperture 
within an angle not exceeding the angular size of the isopla-
natic region. 

In the following, we will consider only the case when the 
incoherent source object is located inside a turbulent medium. 
The object itself is illuminated by sunlight, and to produce a 
reference source, one can use additional lighting. For exam-
ple, radiation back-reflected [1, 11] by an angular reflector 
can be used as a reference wave. The size d of the corner 
reflector must be chosen from the condition d < Ll  (here 1 
is the radiation wavelength of the backlight), i.e. it should not 
exceed the size of the first Fresnel zone. 

As a result of substitution of expression (4) into (3) we 
obtain 
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To pass from an instantaneous value to an average value of 
the received intensity of an object image, we perform averag-
ing in (6), assuming that the phase fluctuations ( , ;0, )S L r1 1r
are a Gaussian random field. Then, as a result of averaging 
over random turbulent fluctuations, expression (6) takes the 
form (angle brackets denote averaging) 
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It is easy to show that the fluctuation phase term 
i{ [ ( , ;0, ) ( , ;0, )]}exp S L S Lr r1 1 1 2G Hr r- , calculated for ‘long’ 

exposure [12], is expressed in terms of the structural phase 
function as:
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In addition, for the Kolmogorov turbulence model [5], the 
structural function of the phase DS ( r1 – r2) is written in the 
form 
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where r0 is the coherence radius (Fried parameter) for a spher-
ical wave, which is calculated [5, 6] using the formula 
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If in (7) we make the replacement of variables ( r1 – r2 = 
r,  r1 + r2 = 2R), and also use the thin lens formula (F  –1 = L–1 
+ X img

1- ), then the distribution of the average image intensity 
under the conditions of long exposure [12] will have the form
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Next, we introduce the overlap function [12] of the receiving 
aperture, Ka( r), which characterises the first internal integral 
in (10), in the form 
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As a result, from (10) we obtain
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3. Spatial spectrum of the image 

If now in the final expression (12) we make a transition to the 
corresponding spatial Fourier spectrum

( , ) ( , ) ( 2expd iJ X r I Xf r fimg ob img
2 G H p= )ryy ,	 (13)

then in the approximation of long exposure [12], according to 
Fried’s definition, the spatial spectrum of the image is 
obtained in the form:
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Here f is the spatial frequency modulus and the condition 
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is used.
Next, we introduce the function
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which is an optical transfer function (OTF) caused by the 
action of turbulence. 

Thus, the spatial Fourier transform of the distribution of 
the average intensity (13) for an incoherent source object is 
the product [13] of three factors: 
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is the spatial (angular) emission spectrum of an incoherent 
source. 

It should be noted that only for an incoherent source 
(object) one can one pass from the expression for the distribu-
tion of average intensity (10) to the spatial spectrum in such a 
way that the spatial spectrum of the image (17) will be the 
product of the following three factors: the angular emission 
spectrum of the object with the scaling of the spatial fre-
quency Job(Ximg  f /L), Fourier transform of the point spread 
function (PSF) y for the atmosphere, i.e., OTF of the form 
exp[– 3.44( lXimg  f  )/r0 )5/3], and the spatial transmittance spec-
trum of the aperture telescope, Kа( lXimg  f /Ra), which is the 
Fourier transform of Kа( r) (11). 

For a distance L >> F , expression (17) can be simplified:
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For the expression for the spatial spectrum to look like (17) 
and (18), it is necessary that the PSF of the turbulent atmo-
sphere [12] depend on the coordinates of the points ( r1,  r2) 
within the aperture S only through their difference, i.e. be of 
form exp[–3.44(| r1 – r2|/r0)5/3]. For long exposure, this condi-
tion is met, but only if the atmospheric turbulence is described 
by the isotropic Kolmogorov – Obukhov model. 

Moreover, in describing the spectrum of an image of an 
incoherent source in the form of (18), it is possible to improve 
the quality of the formed image by an inverse correction filter 
[3, 4]. In this case, such a correction filter [14] can be calcu-
lated by the formula
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Then, using a high-speed video camera and a computer, 
one can implement one of the methods for improving image 
quality, for example, the inverse filtering method [14, 15] for 
the image spectrum. 

4. Comparison of cases of short  
and long exposures 

It is known that the operation of transition from the instanta-
neous value of the intensity distribution of an image of form 
(6) to its average value can be performed with other observa-
tion regimes, including, according to Fried’s classification 
[12], with the so-called short exposure. In this case, as a rule, 
the PSF or its Fourier transform – the spatial spectrum 
(frequency-contrast characteristic) – is written in the Fried 
approximation. It should be noted that the expression for the 
PSF under short exposure was obtained by Fried [12] with 
well-defined approximations. By itself, Fried’s short exposure 
is, in fact, the result of calculating the average image intensity 
during the correction of random slopes of the wavefront [1]. If 
we use Noll’s notation [13], then the expression for the resid-
ual phase distortions after correction of the wavefront slopes 
will be written as
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where a2 and a3 are the expansion coefficients (slopes along 
the x and y axes) of phase fluctuations in the Zernike polyno-
mials. 

In [1] we showed that as a result of this correction, the 
structural function of residual phase fluctuations can be writ-
ten, using only the first eight Zernike polynomials in the 
expansion of phase fluctuations, in the form:
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where the notations from [13] are used. 
Expression (21) was written for the case when a a2 2G H G H=2 3  

and a a a a2 8 3 7G H G H= , and this corresponds to the condition of 
isotropy of the turbulence spectrum [1, 5]. For further analy-
sis, we use the results of calculations [13, 16] for the dispersion 
a2
2G H and correlation a a2 8G H:

1.42( / )a R r /2
0
5 3G H=2 ,    0.045( / )a a R r /

2 8 0
5 3G H=- .	 (22)

First of all, it is interesting to compare expression (21) 
with other results. Thus, in papers [12, 15, 16], the OTF for an 
optical system operating through a layer of a turbulent atmo-
sphere was analysed in the absence of correlation between 
corrected wavefront slopes and higher phase fluctuations. In 
the notations used in this paper, this corresponds to the fact 
that áa2 a8ñ º 0 and áa3 a7ñ º 0. Under these assumptions, 
Fried’s formula for the structural function of the residual 
phase (20) with short exposure [12] is expressed as:
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This expression is slightly different from the widely used 
expression [17]
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However, the reduced Fried expression (23) gives correct 
results only for Ra £ 2r0.

It should be noted that often expressions for the structural 
function of the residual phase with short exposure are written 
in the form

( ) 6.88
| | | |

D
r R1/

/ /

a
S 1 2

0
5 3

1 2
5 3

1 2
1 3

ar r
r r r r

- =
-

-
-

D c m; E, 

where the parameter a takes values in the range of 0.5 – 1.0. 
If we calculate the ( , )D S 1 2r rD  more precisely, for exam-

ple, taking into account all the terms in (21), including corre-
lations of type áa2 a8ñ, then we obtain 
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It is easy to see that according to expression (25), the 
structural function of the residual phase ( , )D S 1 2r rD  depends 
not only on | r1 – r2|, but also on r1, r2, i.e., anisotropy of the 
properties of this function takes place. This means that the 
transition from the PSF to the spatial spectrum will no longer 
give such a simple result as formula (18).

Let us analyse the consequences of using formula (24) 
instead of formulas (23) and (25). We rewrite the expression 
for the structural function of the residual phase in the sim-
plest form:
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for long exposure, and in the form
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for a short exposure according to Fried’s model. At the same 
time, instead of formula (27), formula (24) is usually used. 

We now write the resulting formula (25) in the form
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Let’s compare expressions (24), (26)--(28), by calculating the 
ratio of the structural functions of the residual phase for short 
exposure (24), (27), (28) to the structural function of the phase 
for long exposure (26); finally, we obtain a set of functions 
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D

D
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S
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where the variable x = r/Ra changes in the region of its deter-
mination from 0 to 2. In these notations, according to the 
(correct) Fried calculations, from (27) and (26), we have

j1(x) = 1 – 0.826x1/3, 	 (30)

and using the widely used scheme (24) with regularisation 
[14,  15], we obtain 

j2(x) = 1 – x1/3,	

(31)
j3(x) = 1 – 0.5x1/3.

Finally, our refined formula (28) gives

j4(x) = 1 – 0.974x1/3 + 0.055x7/3 + 0.33x1/3 (R/Ra)2. 	 (32)

It should be clarified that the formulae for the functions 
j2(x) and j3(x)) differ only by a factor. This is due to the fact 
that for large distances in a turbulent atmosphere, amplitude 
fluctuations appear along with phase fluctuations. It is con-
sidered [18] that in this case it is more correct to use formula 
(31) for j3(x). 

The results of calculations by formulae (30) – (32) are pre-
sented in Fig. 1, with the ratio D/r0 being the parameter deter-
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mining the ‘force of turbulence’. Comparison of the curve 
shown in Fig. 1 gives the opportunity to draw some conclu-
sions, namely:

– according to formula (31), the curve j2(x) in the region 
x > 1  lies in the negative region; this is, generally speaking, 
non-physical, since it means that the effect of atmospheric 
turbulence on the path leads to distortions that increase the 
field amplitude to values greater than that when the field 
propagates in a vacuum;

– according to formula (31), compared with the curve 
j2(x) the curve j3(x) preserves a lot of distortion as a result of 
filtering and thus provides a low correction efficiency;

– according to formula (32), the curve j4(x) in the entire 
range of x values provides a high correction efficiency and 
remains physical, without going into the negative region; and

– according to the ‘correct’ Fried formula (30), the curve 
j1(x) lies in the negative (non-physical) region only at the 
very end of the interval of x values and describes the correc-
tion much more correctly compared to the j2(x) curve.

In many ways, similar results were obtained by 
Vitsekhovich [19], but he used an approach to similar calcula-
tions without a transition to the phase description. In this 
work, another alternative approach was implemented to cal-
culate the intensity distribution of the image during the cor-
rection the wavefront slopes. Random slopes are corrected 
using the measurement data on the position of the centre of 
gravity of the image within the aperture of a certain radius 
R , which is consistent with the level of turbulence. It was 
shown that the structural function of residual phase distor-
tions (25) now has the form
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where RR aG .

If we compare this expression with (28), then, as shown in 
[1], we arrive at almost the same results from the point of view 
of correction. In this case, the optimal size of the aperture R  
depends on the ratio of Rа and r0. So, for Rа < 6r0 the optimal 
size is R  » r0 /2. 

Thus, to ensure optimal correction, the aperture must cor-
respond to the propagation conditions on the path and ‘fol-
low’ the coherent part of the phase front. 

5. Change of coherence radius during correction 

The process of image formation at different exposures and in 
using adaptive phase correction can be viewed in terms of 
increasing the coherence radius. In the case of the formation 
of an incoherent image, one should of course speak of an 
increase in the coherence of the receiving atmosphere – tele-
scope path. We investigate this feature of applying phase cor-
rection as the possibility of increasing the coherence region as 
a result of even partial phase correction. Moreover, speaking 
of the size of the isoplanatism zone of a system that builds an 
image, it is certainly more accurate to calculate it using the 
Fried radius value obtained by correcting the wavefront 
slopes, i.e., for short exposure [12]. This is primarily due to 
the fact that the total wavefront slope does not affect the 
quality of the instant image, but only leads to its displace-
ment. In addition, the value of the total wavefront slope for 
the system is significantly larger than the correlation radii for 
higher wavefront aberrations [1, 13, 16 – 18]. The size of the 
isoplanatism zone for the wavefront slope (sometimes this 
area is also called the isokinetic zone) depends not only on the 
parameters of turbulence, but also on the size of the receiving 
aperture (telescope aperture) [16 – 18].

Thus, if we use short exposure [12], then for the resulting 
field we obtain the actual change in the radius of radiation 
coherence. Let us estimate the effect of the correction of the 
wavefront slopes using, for example, formulae (26) and (27) 
for the structural function of the phase, which yield the rela-
tion 

6.88( / ) 6.88( / ) . ( / )r r R1 0 826/ / /
a0

5 2
0
5 2 1 3r r r= -u 6 @ 	 (34)

(here r0u  is the coherence radius of the field after correction of 
the slopes), which leads to the formula

. ( / )r r R1 0 826 / /
a0 0
1 3 3 5r= -

-u 6 @ . 	 (35)

Formula (35) shows that an increase in the coherence radius 
depends on the observation point, namely: 

– on the axis of the system (at r = 0), the coherence radius 
after correction of the slopes coincides with the coherence 
radius without correction (r r0 0=u ), i.e. there is no increase;

– at r = Ra, we obtain .r r2 80 0=u ; and
– at r = 2Ra, the value of r0u  is not defined. 
From the above refined calculation by formula (28) for 

the structural function of the residual phase in the case of 
short exposure, according to formulae (32) and (26), we have

1 0.97( / ) 0.55( / )r r R R/ /
a a0 0
1 3 7 3r r= - +u 6

	 . ( / ) ( / )R R0 33 R/ /
a a
1 3 2 3 5r+

-
@ . 	 (36)

Then, by analogy with the previous one, we obtain:
– on the axis of the system (at r = 0), the coherence radius 

does not change, r r0 0=u , i.e. there is no increase;
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Figure 1.  Ratio of the structural functions of the residual phase during 
short exposure to the structural function of the phase during long exposure.
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– at r = Ra, we have .r r1 70 0=u ; and
– at r = 2Ra, we have 1.r r920 0=u .
Such an increase in the coherence radius actually takes 

place, since the correction of the slopes has the greatest effect 
on the periphery. We obtain that on average the use of short 
exposure, or, equivalently, the use of wavefront slope correc-
tion actually increases the effective size of the coherent zone 
by about 1.8 times. 

If we use an adaptive system that performs a partial phase 
correction of, say, several Zernike modes, then we can simi-
larly estimate the increase in the coherence radius using Noll’s 
formulae [13]. 

6. Range of applicability of phase correction 

Of course, like any other method, phase adaptive correction 
requires determining the range of its applicability from the 
point of view of the parameters describing turbulence. It has 
already been shown [20, 21] that for horizontal paths, the 
adaptive phase correction becomes ineffective with increasing 
fluctuations. This occurs when the coherence radius due to 
turbulence becomes smaller than the size of the first Fresnel 
zone, which corresponds to the condition

/kr L 10
2 1 . 	 (37)

As a rule, it is on horizontal atmospheric paths that one 
has to deal with small Fried radii and the manifestation of 
strong phase fluctuations. The level of turbulent distortions 
on the atmospheric path is characterised by the Fried radius 
r0 or the ratio D/r0. This parameter can be measured, for 
example, directly in the experiment with the help of a wave-
front sensor operating according to the differential tech-
nique [22].

It should be noted that there is no generally accepted con-
cept of ‘strong’ fluctuations. Let us try to introduce it. Using 
the results of the theory of image formation under turbulent 
distortion, the maximum achievable angular resolution is esti-
mated as

Q » D r /2
0
2 1 2l +- -^ h . 	 (38)

It follows from this formula that when D < r0, the resolution 
corresponds to the diffraction resolution, but if the situation 
is reversed, then Q »  l /r0. In reality, when performing a cor-
rection, the most that can be done is to obtain r0 = D.

Below, we can use the following classification of levels of 
turbulence:

– at D/r0 < 4, the distortions are ‘weak’;
– at 4 < D/r0 < 10, the distortions are ‘moderate’;
– at D/r0 > 10, the distortions are ‘strong’; and
– at D/r0 > 15 – 20, the phase fluctuations are ‘’very 

strong’.
The question arises of how large D/r0 should be to trigger 

a strong turbulent broadening. Naturally, if D < r0, then the 
turbulent broadening is weak. It is also necessary to clarify 
why we use D/r0 < 4 to determine the boundary of ‘weak’ 
fluctuations. At this level of fluctuations, all phase fluctua-
tions are reduced only to the wavefront slopes; therefore, only 
the image position is shifted, which can be easily eliminated 
by correcting only the wavefront slopes (these are Zernike 
polynomials with numbers 2 and 3). In the range D/r0 = 
4   – 10, correction of only the lowest modes is needed (these 
are slopes, defocusing and coma). Calculations show that at 

D = 4r0 the best result is reached by correcting the slopes 
(lower modes); the same effect should be expected from the 
post-detector correction. If 4 < D/r0 < 10, then the correction 
no longer leads to full recovery, and the resolution of the sys-
tem increases approximately by two to three times. 

In addition, as is well known, any adaptive optical system 
is a dynamic system with its own operation frequency. Also, 
according to theory, the required frequency of the adaptive 
system for carrying out a full phase correction is determined 
by the formulae [23, 24], similar to the following:

fG » 0.43 r0
u= , 	 (39)

where u=  is the transverse wind speed. 
At the same time, if any adaptive correction phase system 

is implemented, a positive result can be achieved only when 
certain conditions are met in the atmosphere. One of them is 
the following condition: on the path, the angle of isoplana-
tism must be greater than the angular resolution of the sys-
tem. This is formulated as the fulfilment of inequality

r0 /L > l/r0. 	 (40)

It is easy to show that condition (40) corresponds to the reali-
sation of condition (37). In this case, the Hartmann sensor 
gives the correct values of the phase and the influence of 
amplitude fluctuations in the system can be neglected. At the 
same time, phase systems of adaptive optics have high effi-
ciency.

On vertical atmospheric paths, condition (40) is easily 
realised, but on horizontal paths the situation changes to the 
opposite, i.e., the Fried coherence radius becomes smaller 
than the size of the first Fresnel zone:

r L0 1 l . 	 (41)

It turns out that the violation of condition (40) indicates the 
appearance of ‘strong’ intensity fluctuations on the path, i.e. 
the dispersion of intensity fluctuations calculated by the for-
mula of S.M. Rytova [5]

2 k C L/ /
int n

7 6 2 11 6s = 	 (42)

becomes higher than 1.
Under these conditions, phase systems of adaptive optics 

lose their effectiveness [20, 21] and it is no longer possible to 
achieve any improvement with the use of phase correction.

7. Conclusions 

We have performed simple calculations of the intensity distri-
bution of the image of an incoherent source object. Known 
errors in the evaluation of the image under short exposure 
have been considered. The increase in the coherence radius of 
the optical field has been calculated for various methods of 
phase correction. It is found that the emergence of ‘strong’ 
fluctuations deteriorates the efficiency of phase correction, 
and the wavefront sensor suffers first, i.e. with the appearance 
of intensity fluctuations, the focal spots will flicker apart from 
shifts, which greatly distorts the measurement data on the 
phase profile. This makes adaptive correction ineffective. At 
high wind speeds or when the Fried radius decreases, the cor-
rection may even lead to poor vision. Under such conditions, 
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the effective operation of the adaptive optics system is impos-
sible. 
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