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Abstract.  This paper presents a numerical study of the dynamics of 
a mode-locked, Q-switched laser whose cavity contains a travelling-
wave acousto-optic modulator (AOM) and a retroreflector which 
returns the zeroth- and first-order diffracted waves to the AOM. 
The reflectivity of the retroreflector depends on the order of dif-
fraction. If the AOM is switched on once or periodically, lasing is 
characterised by a pulse train frequency sweep. Keeping the AOM 
constantly switched on leads to self-oscillations. Their characteris-
tics can be controlled by varying the detuning of the operating fre-
quency of the modulator from resonance.

Keywords: laser, mode locking, Q-switching, acousto-optic modu-
lator, self-oscillations.

1. Introduction

Solid-state lasers that are both Q-switched and mode-locked 
(QML lasers) allow one to obtain trains of high-peak-power, 
short optical pulses. Owing to this, they have found applica-
tion in high-precision materials processing, optical tomogra-
phy, time-resolved spectroscopy, measuring tools and other 
areas [1 – 3].

Passive Q-switching methods (e. g. using saturable absorb-
ers) ensure QML laser operation [4, 5]. The insufficient stabil-
ity of emission parameters which is inherent in passive meth-
ods has been obviated in more complex configurations [6, 7], 
in which the repetition rate of pulse trains is controlled by an 
active Q-switch and the formation of mode-locked (ML) 
pulses in a train is ensured by a combination of passive and 
active Q-switching.

The most promising QML laser configurations are those 
in which both Q-switching and mode locking are brought 
about by a single device: travelling-wave acousto-optic modu-
lator (AOM). In such QML lasers, the AOM ensures that 
both the undiffracted wave (zeroth order) and the doubly 
first-order diffracted wave (whose frequency is hence shifted 
by 2f, where f is the operating frequency of the modulator) 
return to the cavity. To achieve mode locking, f should be 
about half the mode spacing. For effective experimental 

implementation of this approach, Donin et al. [8, 9] used a 
spherical mirror and placed an AOM at its focus.

According to a numerical model proposed previously for 
the QML laser [10], the diffraction coefficient is a governing 
parameter that can radically change the dynamics of the sys-
tem. In particular, it is shown that, in a rather wide range of 
parameters of a system, self-oscillations in the form of peri-
odic trains of short ML pulses are possible.

In this paper, using a modified numerical model we con-
sider a laser in which a retroreflector is used to return the 
transmitted and diffracted beams. One configuration of such 
a device is schematised in Fig. 1. The mirrors of the retrore-
flector are independent [11], and their reflectivity for the first 
order of diffraction (r2) far exceeds that for the zeroth order 
(r1). To reduce the sensitivity of the system to mechanical 
stimuli, a diffraction grating with a relatively low spectral 
resolution (a relatively small number of grating lines) can be 
used instead of mirrors. The plane of the grating corresponds 
to the plane of the mirror for reflecting the zeroth diffraction 
order in the AOM, and the plane of a line corresponds to the 
plane of the mirror for reflecting the diffracted wave. It is also 
possible to use a single spherical mirror whose reflectivity 
depends on one coordinate.

2. Model

The model builds on a modal approach based on balance 
equations [10]. In this work, not only the distinctive feature 
due to the optical scheme but also the stochastic field of spon-
taneous emission are taken into account, as was done by 
Kasahara et al. [12] and Stellpflug et al. [13] for describing a 
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Figure 1.  Optical scheme comprising an AOM and retroreflector.
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‘modeless’ laser. As above, a condition for an exact (reso-
nance) tuning of the operating frequency of the AOM, f, to 
the mode spacing frequency is f = dnc /2 (where dnc is the mode 
spacing). In all calculations, we take into account the nonzero 
detuning dn from the resonance frequency (dn = dnc – 2f).

Equations for the normalised field amplitudes Ej with 
allowance for their phases jj have the following form (in the 
case of the j = 0 mode, there is no second term):
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Here, time t is normalised to the cavity round-trip time Tc = 
2L/c (where L is the separation between the mirrors), and 
inversion n is normalised to the cavity loss q1 = |ln r1|. The 
ratio of the transition cross sections, sj /s0, takes into account 
the decrease in gain with increasing distance from the centre 
of a homogeneously broadened line (at j = 0): sj /s0 = (1 + 
j 2b2)–1, b = dnc/dng, where dng is the gain linewidth. The para
meter m1 = cTc q1/2L determines the rate of field attenuation in 
the cavity with no allowance for the diffraction loss. The anal-
ogous quantity for the loop containing the diffracted beam 
can be written as m2 = cTc q2 /2L (q2 = |ln r2| is the loss due to 
the incomplete reflection in the loop); m3 = Tc /T1 (where T1 is 
the inversion relaxation time). The loss due to diffraction in 
the cavity has the form g = – ln(1 – d

2k ), where kd is the diffrac-
tion coupling coefficient (the fraction of the optical field 
reflected from the acoustic wave in the AOM). The spontane-
ous field of each mode is E spj  = Esp sj /s0. We assume that the 
Esp of each mode varies randomly between zero and its maxi-
mum value and that the phase  jsp varies independently and 
also randomly from 0 to 2p in a time equal to the inverse of 
the gain linewidth. The total intensity I as a function of time t 
can be calculated as the absolute square of the sum of the 
complex mode fields:

I(t) = [ ( )]exp iEj j
j

2y t/ ,	 (2)

where yj (t) = j2pt + jj. Saturation of the medium is thought 
to be approximately determined by the sum of the average 
mode intensities:
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The balance equation for inversion n has the form
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Here, h is the pump parameter (the ratio of the pump rate to 
its threshold in the cavity in the absence of diffraction). The 
field amplitudes Ej in (1) – (3) are normalised to I0 , where I0 
is the steady-state intensity of the fundamental mode at h = 2.

In most computations, the following parameters were 
used: r1 = 0.1, r2 = 0.9, T1 = 2.5 ́  10–4 s, dnc = 100 MHz, 
dng = 100 GHz and h = 4. The maximum field of spontane-
ous emission to each mode Esp was estimated at 10 –8. The 

computations took into account up to 300 modes. High-
order modes whose fields were lower than the spontaneous 
emission level throughout the computation time were left 
out of account.

3. External Q-switching regime

In the case of external Q-switching, initial conditions corre-
spond to steady-state lasing with the AOM switched off. The 
laser operates only on the central mode with j = 0. The steady-
state lasing parameters are E0 = 1h-  and n = 1.

After the AOM is switched on, doubly diffracted light 
appears in the cavity, which experiences markedly lower 
losses because the reflectivity r2 considerably exceeds r1. This 
results in Q-switching, which shows up most clearly at a rela-
tively high value of kd (0.4 – 0.8). In the system under consid-
eration, this effect has a feature related to field injection into 
the next mode. Figure 2 shows the changes in mode intensities 
immediately after the AOM was instantaneously switched on 
(here and in what follows, the intensity of mode j is Ij = |Ej|2). 
The intensity of the j = 0 mode rapidly drops to zero, which is 
accompanied by a sequential increase in the intensity of each 
subsequent mode (Fig. 2, inset). Since the increase is predom-
inantly due to the drop in the intensity of the preceding mode, 
the intensity of each mode has the form of a pulse which 
reaches the highest intensity at a time t close to the number of 
the mode j. With decreasing inversion, the increase in pulse 
intensity Ij gives way to a decrease, so the average intensity 
( )I tr  also has the form of a pulse.

Partial overlap of pulses allows us to address locking of a 
relatively small number of modes. Figure 3 illustrates the 
effect of diffraction field injection on mode locking character-
istics at dn = 20 kHz. The modal composition for the average 
intensity ( )I tr  at the beginning of a pulse differs markedly 
from that at its end (this is consistent with the data in Fig. 2). 
In the beginning, a smaller number of modes with small j are 
locked, whereas in the end more modes with large j are locked. 
For this reason, individual mode-locked pulses, ( )I tr , turn out 
to be shorter in the end. At kd = 0.5 (Fig. 3a), the ( )I tr  dura-
tion is approximately 10 t and the duration of individual 
mode-locked pulses is about 0.1t.
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Figure 2.  ( Colour online ) Time variation of the mode intensity Ij after 
the AOM was switched on at a time t = 0. The mode numbers are indi-
cated at the curves. In the computations, we used kd = 0.5 and dn = 
20 kHz. 
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Increasing the diffraction coupling coefficient kd to 0.8 
(Fig. 3b) causes a larger number of modes to be involved in 
lasing, the mode-locked pulse duration decreases, and the 
pulse height rises twofold (even though the diffraction loss 
rises with kd). At the same time, inversion drops more rapidly 
and the ( )I tr  duration decreases to 5 t.

In the case of zero detuning (dn = 0), the phases of all 
modes remain equal to each other [jj (t) = 0] and, according 
to (2), the in-phase summation of mode fields occurs at time 
t = tm, when yj (tm) = 2pm, where m is an integer. Since m = 
j tm, tm should be an integer as well.

At dn ¹ 0, the jj (t) values are solutions to equations (1). 
The data presented in Fig. 4 demonstrate that the phase of 
each mode rises linearly with time, with a slope dn/dnc. In this 
case, in-phase summation of mode fields occurs at m = j tm(1 + 
dn/dnc). Therefore, tm is no longer an integer. At a relatively 
small detuning dn (20 kHz) and tm » 10, the yj values for the 
first nine modes differ little (Fig. 4, left inset).

When the AOM is switched off, the laser has relatively 
low efficiency because the reflectivity of the mirror of the ret-
roreflector, r1, is relatively small. Even though energy effi-
ciency is beyond the scope of this work, it is worth noting that, 
when the AOM is switched on, the energy output per unit 
volume of the gain medium is considerably higher because, in 
the loop containing the diffracted beam, the reflectivity of the 
mirror meets the relation r2 >> r1. At a sufficiently high kd, a 
laser with an analogous loop operates at r1 = 0 as well [13]. On 
the other hand, a low-finesse cavity has a considerable band-
width, which may be comparable to the mode spacing. This 
suggests the feasibility of mode locking at a considerably hig
her dn value. Calculations show that the mode-locked pulse 
amplitude does not decrease at dn up to at least 300 kHz.

The rather large amplitude of ( )I tr  pulses (the highest Ir  
exceeds the I0 of steady-state lasing by approximately 600 
times) leads to strong saturation of the medium, and the mode 
fields Ej decrease to the level of the spontaneous field (in 
Fig. 4, this occurs for t > 20). Note that, because of the sto-
chasticity of spontaneous mode fields, the j values differ from 
each other at any t (Fig. 4, right inset).

Subsequently (after the AOM is switched off), inversion 
returns to its original level and steady-state lasing on the j = 0 
mode reappears. Effective periodic external Q-switching is 
possible with a period approaching the inversion recovery 
time T1. Under such conditions, the number of locked modes 
is relatively small, so the pulse duration is shorter than the 
cavity round-trip time Tc by just about ten times. The rather 
large diffraction coefficient (kd » 0.8 and above) allows one 
to obtain peak pulse intensities about 104 times the steady-
state lasing intensity on the fundamental mode.

4. Self-oscillation regime

As shown earlier [9, 10], steady-state lasing in such a system is 
unstable for a rather wide set of parameters, which leads to 
excitation of average intensity self-oscillation at a relaxation 
frequency. Self-oscillation characteristics for the set of param-
eters chosen are presented in Fig. 5.

A distinctive feature of such a regime in the system under 
consideration is that lasing occurs at an inversion below 
threshold for any particular mode. This suggests that the self-
oscillation regime is due to injection from a spontaneous 
emission level of the modes. All modes operate in the regen-
erative amplification regime. The pulse separation of steady-
state self-oscillations is about a factor of 100 shorter than the 
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Figure 3.  ( 1 ) Intensity I and ( 2 ) average intensity Ir as functions of 
time for external Q-switching at kd = ( a ) 0.5 and ( b ) 0.8. Insets: modal 
compositions of the laser radiation at different instants of time t.

0.15

0.10

0.05

0

jj

10 20 t

0.8

0.6

0.4

0.2

0

yj

0.8

0.6

0.4

0.2

0

yj

10 10.02 t

9 9

5
5

4
4

3
3

2
2

1
1

22 22.02 t

I
-

103

9
87
6
5
4
3
2
1

Figure 4.  Mode phases jj, yj functions and average intensity Ir vs. time 
after the AOM was switched on at time t = 0 at kd = 0.8 and dn = 
20 kHz. The mode numbers are indicated on the lines.

I
-

20

10

0 0.01 0.02 T1

0.92

0.90

0.94

0.96

0.98

n

1

2

Figure 5.  ( 1 ) Average intensity Ir and ( 2 ) inversion n as functions of 
time T1 in the self-oscillation regime at kd = 0.7 and dn = 30 kHz.



	 O.E. Nanii, A.I. Odintsov, A.I. Panakov, et al.122

inversion recovery time T1, so saturation of the medium is not 
very strong.

Figure 6 shows a pulse in the self-oscillation regime. 
Comparison of its parameters with those in the external 
Q-switching regime attests to a shift of the intensity to higher 
order modes (Fig. 6, inset) and an increase in the number of 
modes involved in lasing (~ 100). At the same time, the maxi-
mum value of ( )I tr  decreased considerably and the pulse 
duration increased. The reason for this is that the growth of 
the fields is less effective because of the small injected field 
amplitudes in the case of low-order modes. As a result, high-
order modes have an advantage. The medium saturates more 
slowly, which allows a larger number of modes to be involved 
in lasing. The rise in the number of modes leads to narrowing 
of ML pulses, whose absolute width becomes of the order of 
10–10 s.

Mode locking in the external Q-switching regime is possi-
ble because jj is a linear function of time. As a result, the 
condition for in-phase summation of mode fields is met peri-
odically. Mode locking in the self-oscillation regime requires 
clarification. The field intensity between self-oscillation pulses 
can be comparable to the spontaneous field level and their 
phases jj can remain stochastic during the formation of a 
sequential self-oscillation. At the same time, calculations 
show that, after just ~ 10–3T1, the continuing field injection 
process gradually smoothens independent phase jumps of 
spontaneous emission in high-order modes because each mode 
‘imposes’ its phase on the next one. This process becomes 
more active with increasing inversion. With increasing field 
intensity, field phases become regular and vary almost lin-
early with time.

Figure 7 illustrates the behaviour of the yj (t) functions for 
the ten strongest modes. The data in Figs 7a and 7b corre-
spond to dn = 40 kHz, and the data in Fig. 7c, presented for 
comparison, correspond to dn = 0. The yj (t) functions are 
given at the instant roughly corresponding to the onset of a 
self-oscillation pulse (near t = 0 in Fig. 6). The arrows indi-
cate the instant of in-phase field summation (when the mode-
locked pulse has the largest amplitude). In-phase summation 
occurs periodically at an integer time tm (in units of Tc) and 
dn = 0 (Fig. 7c), whereas at dn ¹ 0 the values of t at such 
points are non-integers (Figs 7a, 7b). At these points, yj (t) lies 
in the interval [0, 2p].

Comparison of Figs 7a and 7b demonstrates that the 
injection process plays an important role in ‘imposing’ the 

phase. Injection is much more effective at high kd values 
(Fig. 7a), owing to which the phases remain linear functions 
of time. At lower kd values, there are only approximate linear 
relations (Fig. 7b) and the fields are not completely in phase.

The effectiveness of the injection process in ‘imposing’ the 
phase enables mode locking in a wide range of dn detuning 
values.

At the same time, dn influences the dynamics of the mode 
fields involved in the formation of a self-oscillation pulse and, 
for this reason, it controls laser output characteristics. Inter
ference of the injected field Ej – 1 with field Ej is determined by 
Fj = jj –1 – jj +2pdnTc t, which is zero at dn = 0. An increase 
in dn leads to an unfavourable increase in Fj, slowing down 
the growth of weak fields between pulses. Because of this, 
intensity Ir  rises only slowly, so the pulse separation increases, 
and every self-oscillation pulse appears at a higher inversion 
value. This is accompanied by an increase in average intensity 
Ir  and, accordingly, in mode-locked pulse amplitude. Calcu
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Figure 6.  Mode-locked pulses and average intensity Ir  ( solid line ) in 
the self-oscillation regime at kd = 0.7 and dn = 30 kHz. Inset: modal 
composition of the laser radiation.
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lations show that increasing dn from 30 to 300 kHz increases 
the Ir  pulse separation to about 0.05T1 (cf. Fig. 5). Con
currently, Ir  rises by an order of magnitude and the pulse 
duration drops to about 20 t. The peak intensity of the mode-
locked pulses rises to I = 1.5 ́  104 (i. e. to a level attainable in 
the external Q-switching regime), and the modal composition 
shifts to lower j values. Thus, varying the detuning, one can 
control self-oscillation parameters.

5. Conclusions

We have proposed a numerical model for a laser with an 
AOM that ensures a frequency shift by almost half the mode 
spacing. Light is returned to the cavity by a retroreflector 
which has high reflectivity for the frequency-shifted light and 
low reflectivity for the unshifted light. The model takes into 
account field injection from a given mode to the next one and 
the stochasticity of the amplitude and phase of spontaneous 
emission. The model has been used to analyse the effect of 
field injection on the dynamics of QML lasing. In particular, 
it has been shown that the injection process helps to maintain 
a linear time variation of the phases of individual modes. At 
a large cavity bandwidth, this allows mode locking to be 
achieved at an appreciable frequency shift detuning from half 
the mode spacing. The laser is capable of operating in two 
modes. In one mode, the AOM is periodically switched on 
with a period typically near the inversion recovery time (exter-
nal Q-switching). In the other, the system operates in the self-
oscillation regime, with the AOM switched on throughout. 
The characteristics of both modes have their own distinctive 
physical features.

In the case of external Q-switching, the pulses have high 
intensity and a variable frequency composition, with a total 
duration of the order of ten cavity round-trip times (~ 10Tc). 
During a pulse, the intensity of the fundamental mode drops 
rapidly and pulses at frequencies of about 20 higher order 
modes sequentially appear. With increasing diffraction coef-
ficient, the number of locked modes increases. One advantage 
of this regime is the possibility of generating pulse trains with 
a high peak intensity and duration tp ~ 0.1Tc.

The self-oscillation lasing regime is due to injection from a 
spontaneous emission level of the modes. A major contribu-
tion to the total intensity is made by high-order ( j > 100)
modes. Inversion does not reach threshold and all modes 
operate in the regenerative amplification regime. The number 
of locked modes in the self-oscillation regime is approxi-
mately ten times greater, which results in pulses of duration 
tp ~ 0.01Tc (tp ~ 10–10 s under our conditions), which are 
similar in peak intensity to those in the external Q-switch
ing regime. Another distinctive feature of the self-oscillation 
regime is that its characteristics can be controlled by varying 
detuning dn. This is due to the effect of dn on the relaxation 
frequency of the laser. An increase in dn leads to a reduction 
in the rate of the increase in the mode fields between self-oscil-
lation pulses, which allows inversion to be accumulated 
before the next pulse.
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