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Abstract.  A new method is proposed for modulating radiation in 
collinear acousto-optic (AO) spectrometers, which is based on the 
sequential diffraction of incident polarised optical radiation using 
two sound packets with the same frequencies and initial phases. A 
theory of diffraction of optical radiation on two successive packets 
of sound waves propagating in a crystal is constructed, and the 
instrumental function of the AO spectrometer is found. It is estab-
lished that the instrumental function of such a spectrometer 
becomes time-dependent, and the modulation frequency of this 
dependence, in turn, depends on the intensity of the sound wave and 
on the detuning from the phase-matching conditions. The frequency 
dependence of the measured photocurrent for some finite number of 
sound packets is obtained explicitly, and it is shown that its mea-
surement allows the spectral composition of the incident optical 
radiation to be determined with greater accuracy.

Keywords: acousto-optics, diffraction of light on sound, methods of 
diffracted optical radiation modulation.

1. Introduction

Modern acousto-optic (AO) methods for measuring the spec-
trum of optical radiation are based on diffraction of incident 
light (often polarised) on an acoustic wave propagating in a 
crystal, with the amplitude and phase of this wave having a 
nonuniform spatial and/or temporal distribution [1 – 8]. 
Taking into account the fact that the characteristic time of a 
sound wave travelling through a crystal in an AO cell is usu-
ally a few microseconds, and also that existing electronic 
devices are able to quickly change the amplitude and phase 
of a high-frequency electrical signal exciting a sound wave, it 
is possible to state that AO spectrometers can be used to 
develop new methods for measuring the spectrum of optical 
radiation, inaccessible to conventional diffraction grating 
spectrometers.

The spectral distribution of the optical radiation charac-
teristics using AO spectrometers, in contrast to diffraction 
grating devices, is measured in series rather than in parallel, 
which requires more time to perform measurements. However, 

this disadvantage is compensated for by a much larger lumi-
nosity, since the entrance pupil of a collinear AO spectrome-
ter is determined by the cross section of the sound beam 
rather than by the width of the entrance slit, as in a grating 
spectrometer, and, moreover, AO spectrometers also allow 
for electronic (software) control of the shape and bandwidth, 
and provide a free choice of the measured wavelength. These 
properties of AO spectrometers allow one to develop various 
spectral measurement methods characterised by a large sig-
nal-to-noise ratio and by optimal characteristics for a specific 
measurement task. Many of the above capabilities of AO 
spectrometers have been implemented as measurement con-
trol programmes, in particular, in choosing the radiation 
wavelength of a tunable dye-based laser with an AO filter 
inside the resonator [9], in a special ‘Kvarts-4T’ system for 
monitoring the chemical composition of plasma in the pro-
cess plasma chemical etching of silicon wafers during the 
manufacture of microelectronic products [10, 11].

Presently, AO spectrometers use various techniques for 
modulating a sound wave: amplitude [12], ‘sharp’ phase [13], 
linear frequency [14, 15] and two-frequency [16] methods. 
These methods solve various problems of spectral measure-
ments: increasing the signal-to-noise ratio; isolating a weak 
signal against the background of strong illumination; chang-
ing the instrumental function (IF) of an AO spectrometer, 
such as expanding the spectral transmission window of an AO 
spectrometer or producing an ultra-narrowband optical filter 
[17]; temporal compressing (or stretching) of a light pulse 
with a linear frequency modulation [18, 19]; etc. All these 
modulation methods lead to a change in the photocurrent 
during the registration of the diffracted optical radiation and 
have both advantages and disadvantages.

The method of amplitude modulation is the most com-
mon technique in which two states are produced in a medium: 
the first one arises in the presence of a sound wave when the 
photocurrent from the diffracted radiation and the parasitic 
signal are measured, and the second one arises in the absence 
of a sound wave when only the photocurrent of the parasitic 
light is measured. Then, to eliminate the influence of parasitic 
illumination, one value of the photocurrent is subtracted 
from the other. This method can be used only in conditions 
when the level of illumination by parasitic radiation does not 
change during the measurement; otherwise, this technique is 
not applicable.

The use of the modulation method based on a ‘sharp’ 
change in the phase of a sound wave during its propagation 
through a crystal, proposed for the first time in [13], leads not 
only to a change in the effective interaction length, but also to 
a change in the amplitude of the diffracted radiation, in par-
ticular to its time dependence, which ultimately results in a 
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controlled change in the IF of the AO spectrometer itself. 
Specialised spectrometers fabricated with the help of this 
modulation method turn out to be very convenient for mea-
suring weak signals at high illumination.

The diffraction of a linear frequency modulated light 
pulse on a linear frequency modulated sound wave, which 
was proposed in [18] and allows this pulse to be compressed in 
time, is widely used today in various applications [19].

In this paper, we consider another, apparently not studied 
by anyone, modulation method based on the phenomenon of 
sequential collinear diffraction of the light on two (or a series 
of) sound packets with the same frequency, separated by a 
small interval of space in which there is no sound wave. The 
polarised light successively passes through the first section, 
where the incident radiation is collinearly diffracted on a 
sound packet and a new orthogonally polarised light wave 
appears, and then two light waves with different and mutually 
orthogonal polarisations pass through the gap in which there 
is no sound wave and fall into the second region where col-
linear diffraction is also performed. At the output of the AO 
cell there is a polariser, which emits the diffracted part of the 
radiation. It is significant that in the gap the light waves 
acquire some phase shift, which, due to the optical anisotropy 
of the medium, is different for the waves with different polar-
isations, and therefore it is clear that the subsequent diffrac-
tion on the second sound packet for both waves will depend 
on the phase shift in the gap. From a mathematical point of 
view, this situation corresponds to different initial conditions 
for the equations describing the diffraction process. Since this 
intermediate region moves across the crystal at the speed of 
sound, the amplitudes of the diffracted and nondiffracted 
light waves will depend on time. The appearance of this time 
dependence means the emergence of the corresponding time 
dependence of the IF of the AO filter and in fact represents 
another type of modulation of the diffracted part of the radia-
tion. The analysis performed in the work shows that the fre-
quency of this modulation depends on the phase  of the phase-
matching conditions and that for each value of this  the mod-
ulation frequency is different, which opens up new possibilities 
for more accurate spectral measurements.

2. Collinear diffraction on sound wave packets

A schematic of a collinear AO filter with the above modula-
tion type is shown in Fig. 1. The polarised light beam is inci-
dent on the AO cell on the left and diffracts on the sound 
wave (the first sound packet), resulting in a new orthogonally 
polarised light wave. Then both (incident and diffracted) 
waves fall into the region of the crystal, where the sound wave 
is absent, and acquire a phase shift. After that, these waves, 
falling into the crystal region with a sound wave having the 
same frequency (the second sound packet), again diffract and 
then leave the crystal. Since the frequencies of the sound 
waves in the two packets are the same, the phase-matching 
conditions in both parts of the crystal will also be the same, 
and therefore when the condition

kin – kd – qs = Dk	 (1)

is met, collinear diffraction is possible. Here, kin = wno /c is 
the wavenumber of the incident light wave; kd = wne /c is the 
wavenumber of the diffracted light wave; w is the frequency 
of the light wave; c is the speed of light in vacuum; no and ne 
are the refractive indices for the incident ordinary and dif-

fracted extraordinary waves; and qs is the wavenumber of 
the sound wave. The phase-matching condition (1) is written 
for a uniaxial negative crystal, when no > ne and the wave 
vector qs is directed in the same direction as the vectors kin 
and kd; if diffraction in a uniaxial positive crystal (no < ne) is 
considered, then the wave vector of the sound wave, qs, is 
directed along the kin direction and in relation (1) the sign in 
front of qs should be replaced with the opposite one. The 
amplitude of the diffracted wave in the case under consider-
ation will be maximal if the value of the wave  Dk is close to 
zero.

The presence of a sound wave in two regions of the crystal 
leads to the exchange of energy between the light waves, the 
polarisation directions of which are mutually orthogonal. 
The truncated equations describing this process in the approx-
imation of the theory of coupled modes propagating along 
the x axis for each region have the form [20]
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where Eo(x) and Ee(x) are the amplitudes of ordinary and 
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are the coupling coefficients, which are expressed in terms of 
the characteristics of the crystal and the sound wave ampli-
tude S(x); and p is the photoelastic constant corresponding to 
the interaction geometry in question. The coefficients G and 
G  * differ somewhat from each other due to the difference in 
the refractive indices no and ne, but the final formulae, as we 
will see below, always include the product GG  *, the root of 
which will be denoted simply G º *G G , hoping that it will 
not cause misunderstandings.

Equations (2) strictly describe only the collinear type of 
diffraction, their use for describing the quasi-collinear case is 
possible only if the angle between the wave vectors of the inci-
dent and diffracted radiation is small and, moreover, with a 
special choice of the coordinate system such that the depen-
dence on the transverse components in equations (2) has dis-
appeared [20]. Below, we assume that these requirements are 
satisfied, and then system (2) can also be applied to describe 
the case of quasi-collinear diffraction. Equations (2) deter-
mine the interactions between the light waves in each of the 
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Figure 1.  Schematic of a collinear AO filter with the modulation type in 
question. The duration of the sound packet t = L/us and the time inter-
val d/us between the packets satisfy the relation t > d/us.
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regions of the crystal, where moving packets of sound waves 
are present, but the boundary conditions for each of the 
regions will be different:

Eo(x = 0) = Eo(ko),    Ee(x = 0) = 0

and

Eo(tus, ko) = exp(ifo)Eo
(2)(tus, ko),	 (4)

Ee(tus, ke) = exp(ife)Ee
(2)(tus, ke)

for the left boundaries of the first and second regions, respec-
tively. It is assumed in (4) that radiation with ordinary polarisa-
tion is incident on an AO cell, and the diffracted light has an 
extraordinary polarisation. Here, t is the time counted from the 
moment the sound wave packet enters the AO cell; us is the 
speed of sound; ko and ke are the wavenumbers of ordinary and 
extraordinary light waves; Eo

(2)(x) and Ee
(2) (x) are the ampli-

tudes of the ordinary and extraordinary light waves in the sec-
ond region; fo = kod and fe = ked are the phase shifts; and d is 
the distance between the sound wave packets. It is also assumed 
that the initial phase of the sound wave in the second region 
coincides with the initial phase of the sound wave in the first 
region. If this condition is not met, then the initial phase of the 
sound wave in the second region should be added to the above 
phase shifts (for more details, see [13]).

The general solution of equations (2) is well known; there-
fore, the procedure for obtaining a solution for the entire 
wave interaction region is as follows. For each of these 
regions, this solution must be ‘sewed’ on the boundary mov-
ing with the speed of sound, satisfying boundary conditions 
(4). As a result, the solution for the diffracted light wave, 
describing sequential diffraction at the exit of the crystal, will 
have the form
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where Df = fo – fe is the phase shift difference of optical radi-
ation incident between the packets of the sound waves; L is 
the interaction length; and x º 1 /( )k 42 2D G+ . It is impor-
tant to note that the obtained solution of the system of equa-
tions (2) with boundary conditions (4) belongs to the time 
interval 0 £ t £ L/us, and it is assumed that the condition 
L >> d is satisfied with a large margin. The nondiffracted por-
tion of the radiation can be described as
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If the values of the phases coincide, then the well-known 
expression for the amplitude of the diffracted radiation, given 
in a number of papers [1 – 4], follows from formula (5):
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The phase factor exp(ife – iDkL/2) in formula (7) describes the 
phase change during radiation diffraction, but does not affect 
the IF of the AO filter.

It can be seen from formulae (5) and (6) that the ampli-
tudes of the extraordinary (5) and ordinary (6) waves at the 
exit from the AO cell depend significantly on time, with the 
characteristic frequency of this dependence having the from 
W (Dk, G ) = W º 2Gxus. It is important that this frequency 
depends on the wave  and the sound wave power. With a con-
stant sound power, this frequency is determined by the value 
of the detuning. This means that measuring the photocurrent 
of a receiver at frequency W gives the amplitude of the radia-
tion field at a given wavelength, since the values of the fre-
quency W (Dk, G ) for different wavelengths of optical radia-
tion turn out to be different.

From formula (5), one can obtain the relation for the IF 
of the AO filter, expressed, for the sake of convenience, 
through trigonometric functions:
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where F º GLx is the phase. In the general case, the phase dif-
ference Df, which needs to be substituted into formula (8), 
has the form 

Df = fo – fe = (ko – ke)d = qsd + Dkd 

	 = Wsd/us + Dn(w/c)d, 	 (9)

where Ws is the frequency of the sound wave and Dn = no – ne. 
The dependences of the IF (8) at different points in time are 
shown in Fig. 2. When the phase difference is equal to zero, 
which is equivalent to the absence of a gap between the sound 
wave packets, i.e., continuous emission of sound waves, for-
mula (8) gives a known result for the IF of the collinear AO 
filter [20]:
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2

2

x
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The temporary structure of the IF, described by formula (8), 
can also be represented as

T(Dk, t) = T0 + C1cos(Wt) + C2cos(2Wt) +
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	 + S1sin(Wt) + S2sin(2Wt), 	 (11)
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The dependences of the coefficients (12) – (16) on the detuning 
Dk are shown in Figs 3 – 6, with the values of the parameters 
for which they are obtained indicated in the figure captions. 
Each figure also shows the IF (10), which allows us to com-
pare the values of the coefficients that determine the temporal 
behaviour of the IF (11) with its known value. Since the val-
ues of the coefficients (13) – (16) decrease rapidly with increas-
ing Dk, all dependences are represented near the region in 
which the phase-matching conditions are satisfied, as a rule, 
near Dk » 0.

Formulae (12) – (16) completely determine the time 
dependence of the IF; in this case, ( , , , )T k0 f xD D G  describes a 
constant, time-independent, part of the IF, ( , , , )C k1 f xD D G  
and ( , , , )S k1 f xD D G  determine the temporal ‘amplitude’ of 
IF changes at frequency W, and ( , , , )C k2 f xD D G  and 
( , , , )S k2 f xD D G  – at doubled frequency, i.e. 2W. One can see 

that when the phase-matching conditions are satisfied, the 
coefficients C1 and S1 vanish and the dependence of the IF on 
frequency W disappears; in this case, only the dependence on 
the doubled frequency 2W persists.

3. Limiting IF values 

Consider some features of the behaviour of the IF defined by 
the general expression (8).

1. It follows from formulae (8) and (9) that when the exact 
phase-matching condition is met, i.e., when Dk = 0 and x = 1, 
for the IF (8) we obtain the expression
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Figure 2.  IF (8) at times t = ( 1 ) L/uss, ( 2 ) 0.5L/us and ( 3 ) 0.25L/us.
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Figure 3.  Averaged values of T0(Dk) for the intervals d = ( 1 ) mLs (m is 
an integer), ( 2 ) (39/7)Ls and ( 3 ) (39/3)Ls with the parameters L = 
12 cm, G = p/(2L) and the sound wavelength Ls = 2 ´ 10–3 cm.
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Figure 4.  Dependences of ( 1 ) the IF (10) and ( 2, 3 ) the coefficient C1 
on the detuning Dk for the intervals d = ( 2 ) (11/2)Ls and ( 3 ) (11/4)Ls 
with the parameters L = 12 cm, G = 0.35p/(2L) (sound wave power 
equal to 35 % of the optimal value), and Ls = 1.5 ´ 10–3 cm.
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on the detuning Dk for the intervals d = ( 2 ) (17/2)Ls and ( 3 ) (17/4)Ls 
with the parameters L = 12 cm, G = 0.1p/(2L) (sound wave power equal 
to 10 % of the optimal value), and Ls = 1.5 ´ 10–3 cm.
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2 2p
L
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where Ls is the sound wavelength. It can be seen that if the 
distance d between the packets is equal to an integer number 
of the waves of the sound, the time dependence of the IF dis-
appears. At GL = p/2, the value of the IF is equal to unity, as 
in the case of diffraction without phase modulation. If the 
condition d = mLs (m = 1, 2, 3, . . .) is not satisfied, then there 
appears a time dependence of the IF at frequency W at any 
value GL. Examples of this IF behaviour are shown in Fig. 3.

2. It follows from formulae (8) and (11) that the time-aver-
aged IF will have the form

áT ñ º ( , ) ( , , , )lim dT k t t T k1
0

0q
f xD DD G=

"3q

q
; Ey . 	 (18)

In the absence of a gap between the packets, that is, when 
d = 0, the averaged IF value áT ñ, as it should be, coincides 
with the well-known expression for IF (10) in the collinear 
case [20]; if d ¹ 0, then the stationary value of the IF (18) 
changes significantly; in particular, the symmetry of the IF 
with respect to the replacement Dk ® – Dk disappears. The 
latter is due to the fact that diffraction of an ordinary optical 
wave in a crystal on a sound wave and the appearance of an 
extraordinary wave, when the initial phase is dependent on 
Dk, is not equivalent to the inverse process: diffraction of an 
extraordinary wave with the appearance of an ordinary wave. 
This asymmetry is due to the dependence of the phase shift on 
the value of the detuning. When the condition for the phase 
factor

2 2k d m
s

p pD
L+ =c m ,   m = 1, 2, 3, . . . 	 (19)

is met, expression (18) coincides with expression (10) for a 
collinear case in which the value of the detuning Dk is deter-
mined by condition (19). If
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Then from expression (11) we obtain the relation
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and if the phase-matching condition is satisfied, we have 
áT ñ = 1/2. Thus, it follows from (19) and (20) that, by chang-
ing the distance d between the packets, it is possible to control 
the IF.

3. The condition Df = 0, as is easy to see, is equivalent to 
the absence of a gap between the sound wave packets, that is, 
to the continuous emission of these waves, and therefore 
result (10) follows from (8). If the phase difference is not zero, 
and the time interval between the packets is greater than the 
transit time L/us, i.e., diffraction occurs only on one packet, 
then for the IF of the AO filter we obtain from (8) the expres-
sion
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Thus, the IF also becomes a periodic function of time. From 
a physical point of view, result (22) is quite understandable: If 
the duration of a sound wave packet coincides with the transit 
time through the crystal, then the characteristic interaction 
length will increase as the sound packet ‘enters’ into the AO 
cell and at the time t = L/us the packet will fill the entire region 
of interaction of the light with the sound wave and the IF will 
reach a maximum. Then, as the packet ‘leaves’ the interaction 
region, the IF, as can be seen from formula (22), will decrease.

4. If the distance between the sound wave packets is zero 
(d = 0), and the difference between the initial phases of sound 
oscillations of the packets d is not equal to zero (which can be 
done using electronic methods for exciting sound waves), 
then, as shown in [13], the expression for the IF will be 
expressed as
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It is seen that the presence of the phase difference of the 
initial oscillations of the sound wave packets also leads to the 
time dependence of the IF, but this dependence differs from 
(11) and, more significantly, the initial phase difference d does 
not depend on the phase detuning Dk. It follows from expres-
sion (23) that the time dependence is determined by the value 
of the frequency Wd º G xus = W/2 [cf. (22)]. Naturally, for d = 
2pm (m = 0, 1, 2, 3, . . .) expressions (10) and (23) coincide.

5. One can see from formulae (8) and (11) that at the time 
t = L/us the IF of the AO filter is independent of the phase 
difference and coincides with the IF (10), but at other times 
the IF will depend on time, phase difference, sound wave 
power and interaction length. The latter property is a conse-
quence of the condition L >> d, which must be satisfied with 
a large margin. This condition means that at a distance d the 
change in the amplitude of the diffracted radiation is very 
small and can be ignored.

Obviously, to complete transition processes under excita-
tion of the sound wave packets, it is necessary that the time 
interval between the sound packets be greater than the period 
of the sound wave, and therefore the interval d must satisfy 
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Figure 6.  Dependences of ( 1 ) the IF (10) and the coefficients ( 2 ) 
C2 and ( 3 ) S2 on the detuning Dk with the parameters L = 12 cm, 
G = p/(2L), and Ls = 1.5 ´ 10–3 cm.
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the requirement d >> Ls. For example, when d = 50 mm, Ws = 
2p ´ 85 MHz, us = 6 ´ 104 cm s–1 and Dk = 0, we have the 
phase difference Df = 2p ´ 7.08, which is equivalent to Df = 
2p ´ 0.8. (The chosen value of the sound wave frequency Ws 
for paratellurite crystals corresponds to an approximate ful-
filment of the phase-matching conditions at the optical radia-
tion wavelength close to 1 mm [15].) It is important that this 
phase difference depends on the sound wave frequency and, 
when the AO filter is tuned to a different wavelength, one 
needs to take this dependence into account. Similarly, the 
behaviour of the limiting values of the coefficients C1, S1, C2 
and S2, determining a temporal change of the IF, can be con-
sidered. The latter does not present any difficulties, and there-
fore it is advisable to carry out the examination for a specific 
experimental situation.

4. Measuring the optical radiation spectra

Unlike conventional collinear AO filters based on diffraction 
on a sound wave continuous in time, the case of diffraction on 
sound packets considered in this paper is characterised by an 
additional parameter, i.e. the distance between the packets, 
which can vary during the measurements. As was shown 
above, the presence of even a small, of the order of several 
wavelengths of sound, gap between sound wave packets leads 
to a significant change in the initial phases of the light waves 
[see formula (4)] and, as a result, to a change in the IF of the 
AO filter. Moreover, the dependence of the initial phase on 
the detuning causes the appearance of the time dependence of 
the IF, which can be used to implement new methods of spec-
tral measurements.

Consider in more detail the process of spectral measure-
ments using AO filters. Mathematically, it is reduced to solv-
ing the inverse problem: finding the spectral distribution of 
the intensity S(k) of the incident optical radiation with a 
wavenumber k for the case of the known IF of the AO filter 
(or spectrometer), T(Dk, t), and the measured photocurrent of 
the receiver, J(t). This problem is reduced to solving an inte-
gral equation for the function S(k) with known functions 
T(Dk, t) and J(t):

( ) ( ) ( , ) .dJ t S k T k t k
k

k

min

max

D= y  	 (24)

Here it is assumed that the spectral sensitivity of the photo-
detector does not depend on the radiation wavelength and 
is included in the value S(k); and kmin = 2p /lmin and kmax = 
2p /lmax are the wavenumbers of optical radiation in vacuum, 
which determine the measurement range. A photodetector is 
considered to be sufficiently fast, so that the characteristic 
time tp of its response to a time-varying radiation flux satisfies 
the relation tpW(Dk, G ) << 1; therefore, there is no time inte-
gration in formula (24). Since the IF of the AO filter with 
exact fulfilment of the phase-matching conditions, i.e., when 
Dk = 0, contains a sharp maximum [see formulae (10), (22)], 
the appropriately normalised delta function is usually used as 
this function, considering such that T(k, t) µ T(k', t) d(k – k' ), 
where d(k – k' ) is the Dirac delta function, and k'  is the value 
of the radiation wavenumber corresponding to the exact ful-
filment of the phase-matching conditions and, therefore, to 
the IF maximum. Then the integral equation (24) is greatly 
simplified, and a simple relation follows from it, which allows 
one to determine the intensity S(k' ) of the optical radiation 
with the wavenumber k' :

J(k', t) = AS(k' )T(k', t), 	 (25)

where A is the normalisation constant. The linear dependence 
of the photocurrent on the intensity of the incident radiation, 
in which the coefficient is determined by the maximum IF 
value, i.e. T(k', t), makes it possible to implement a simple 
method of measuring the spectral distribution of the radiation 
intensity S(k' ) and in some cases also to take into account the 
effect of the parasitic illumination and some noise. As men-
tioned above, the usual practice is to modulate the intensity of 
the sound wave, thereby producing two states in the measure-
ments: useful signal and parasitic illumination or only para-
sitic illumination. Subtracting the result of the second mea-
surement from the result of the first one, we can exclude the 
contribution of the parasitic illumination, considering that its 
level has not changed during the measurement. At the same 
time, the duration of the sound packet is chosen, as a rule, to 
be much longer than the transit time of sound through the 
crystal of the AO cell. This method is widely used in many AO 
spectrometers [12].

Another approach to determining the spectral distribu-
tion of the radiation intensity S(k) is also possible if we take 
into account that the IF of a conventional AO filter (11), 
when the phase-matching conditions are fulfilled (i.e. at 
Dk = 0), has a sufficiently sharp maximum. Then, using the 
saddle-point method, it is easy to show that integral (24) can 
be found explicitly:

( ) ( )
| ( ) |

( )
cot
sin

J k S k
n L L

L
1

2
/1 2

2

-
p

D G G
G G

-
l l , 	 (26)

where k' º qs /Dn. Expression (26) is given only for one maxi-
mum, when Dk = 0, i.e. for a relatively smooth spectral distri-
bution of the radiation intensity; if it is necessary to take into 
account the influence of side maxima, for which Dk ¹ 0, it is 
necessary to proceed as follows. The entire region of integra-
tion is divided into sections near each maximum, and the inte-
gral is written as the sum of the integrals for each section, 
calculated by the saddle-point method. Assuming, as before, 
the spectrum of the incident radiation to be sufficiently 
smooth compared with changes in the IF, we determine the 
positions of the maxima km from the equation

( )
d
d
k
f k

0= ,

where
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1 2

1 2
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+" ,
.

The solution of the last equation leads to the following 
sequence of maxima:

( ) [ /( )]k n q r L2 1sm m
1 2!D G G= -- 6 @,

where rm are the roots of the transcendental equation rcot r 
= 1. Since the ‘width’ of the function f (k) for each maximum 
km is determined by the expression

¶| ( ) / |df k k2 k
2 2

m
p ,

for integral (26) we obtain the final expression
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where 1 [ /(2 )]km m
2x D G= +  and the values of the first three 

roots rm near the main maximum will be r1 = ± 4.49, r2 = ±7.25 
and r3 = ± 10.90.

Thus, the calculation of integral (24) by the saddle-point 
method reduces it to an infinite system of linear algebraic 
equations, and since the contribution to the photocurrent of 
the secondary maximum decreases with increasing its num-
ber, the indicated chain of equations (27) can be terminated at 
a certain value of m. Then the problem of determining the 
values of S(km) becomes closed and it is possible to construct 
its solution. The position of each side maximum Dkm is deter-
mined by the specific value of the sound wave frequency, and 
therefore it is clear that the measurement strategy, more pre-
cisely, the choice of the set of frequencies of the acoustic 
waves at which the photocurrent measurements are made, 
must correspond to Dkm values.

Formula (27), in contrast to formulae (25) and (26), makes 
it possible to take into account the contributions of side max-
ima to the measured spectral distribution of the radiation 
intensity and, moreover, the nonuniformity of the distribu-
tion of the intensity of the sound wave at different values of its 
frequency. Note also that the position of the side maxima also 
depends on the sound wave intensity, which should be taken 
into account when interpreting the measurement results. This 
measurement method can also be used for the IF of the AO 
filter in the form of (22), when diffraction occurs on only one 
sound packet and the interaction length is time dependent. 
Since the position of the main maximum of the IF in this case 
does not change, instead of (26) we obtain the expression

J(qs, t) » ( )
| ( ) |

( )
cot
sin

S k
n t t

t
1

2
/

s s

s
1 2

2p
u u

u
D G G

G G
-

l ,  0 < ust < L, 	 (28)

in which there is an explicit dependence of the photocurrent 
on time, which can be used, in particular, to exclude parasitic 
illumination.

Let us consider the possible methods of spectral measure-
ments using the IF in the form of (8) or (11), when there is its 
explicit time dependence. Note that the IF in the form of (8) 
or (11) is implemented for a pair of sound packets with a 
small gap between them, and the spatial gap between the pairs 
of the packets themselves exceeds the interaction length L, so 
that each pair of sound packets ‘lives’ independently, without 
affecting each other. In this case, by choosing different com-
binations of the phase Df and the sound packet power (coef-
ficient G  ), one can obtain different values of the IF. 
Substituting (11) into equation (24), we obtain a time-depen-
dent photocurrent, and, in accordance with the choice of the 
problem of measurements to be solved and the method of fre-
quency selection, we can implement various measurement 
algorithms. The dependence of the coefficients C1, S1, C2 and 
S2 on the value of detuning is shown in Figs 4 – 6 and suggests 
the choice of the most convenient measurement algorithm.

We will now consider the procedure for measuring the 
spectral distribution of the radiation intensity under condi-
tions of signal accumulation, which makes it possible to 
obtain a larger signal-to-noise ratio. The IF in the form of 
(11) describes the intensity of the light diffraction on a sound 
wave in a time interval that is close in magnitude, but some-

what less than the transit time of a sound wave in the crystal 
of the AO cell. However, in practice, of more interest is often 
the case of diffraction of light on a large number of packets of 
sound waves during a sufficiently large time interval, when it 
is possible to provide signal accumulation and thereby 
increase the accuracy of spectral measurements.

Consider this case in more detail. Let N be the number of 
sound packets with the same frequency, d be the spatial inter-
val between the packets, and t be the duration of each sound 
packet. Then the IF TN (Dk, t), which describes the diffraction 
on N such packets of sound waves, will obviously have the form

( , ) ( , ) ( ) (( 1) )T k t T k t n t n n tN
n

N

0

t t tD D Q Q= - - + -
=

/ ,

	 0 < t < Nt, 	 (29)

where Q (x) is the Heaviside step function. Writing the IF in 
the form of (29) means that diffraction on N sound packets 
occurs independently, with the initial phases of the sound 
wave at the input of each packet being the same, which 
ensures that all N sound packets are identical. Therefore, the 
photocurrent in terms of signal accumulation has the form
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	 0 < t < Nt. 	 (30)

Substituting the IF (11) in the formula for the photocurrent 
(30), we obtain

( ) ( )J t J J t J ( )C S C S t0 1 1 2 2= + + , 	 (31)
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Here, J0 is a time constant value of the photocurrent in the 
interval 0 < t < Nt; and ( )J tC S1 1  and ( )J tC S2 2  are the photocur-
rent values at frequencies W and 2W, respectively. Summation 
in formulae (32) can be done using the relation

( )exp in
n

N

0

tW
=

/  º ( ) ( )cos sin N
2 2

1 11c t t tW W W= +- c m 8 B	
(33)

( )cos cos sin siniN N N
2 2 2 2

1 11
#

t t t tW W W W+ +-c c cm m m 8 B' 1.

Then for ( )J tC S1 1  and ( )J tC S2 2  we obtain the expressions
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The dependence of the function c(W t) on the argument 
W t is presented in Fig. 7. It can be seen that the real part of 
this function is a series of consecutive maxima at points W t = 
2pl, where the integer l is the number of the maxima measured 
from the value l = 0. Since t = L/us is the transit time of the 
sound wave along the packet length, it is clear that the maxi-
mum number at reasonable values of sound power can only 
take the value l = 1. In other words, the function c(W t), in 

addition to the maximum with an argument value equal to 
zero, which is of no interest to the problem in question, can 
only have one maximum at W t = 2p. The values of the wave-
number of optical radiation, corresponding to the position of 
this maximum, have the form

k
n
q

n L
2 1,

s
1 2

2
!

p
D D

G
G= -` j , 	 (36)

with the ‘plus’ sign corresponding to the negative crystal that 
we are considering, and the ‘minus’ sign – to the positive one. 
It is easy to show that the real part of the function c(W t) at 
the maximum has the form

( ) |Re N 12c tW = +ptW = . 	 (37)

Such a simple value is a direct consequence of the chosen 
measurement method – signal accumulation. To determine 
the width of the maximum near the value of km, we expand 
the function Re c(W t) into a Taylor series near this maximum:

Re c(W t) » N + 1 – 1/12(N + 3N 2 + 3N 3)(W t – p)2 + . . . , 	(38)

and for the width of the maximum along the direction of the 
wave vector k of the optical radiation we obtain the expres-
sion

L N N L
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2 1 2p pD
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+
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-

` j . 	 (39)

Thus, when the signal is accumulated, that is, when N >> 1, 
the function  c(W t) has a sharp maximum. This makes it pos-
sible to estimate integral (34), assuming that the region near 
the maximum makes the largest contribution to it:
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Figure 7.  Dependences of (a) real and (b) imaginary parts of the function c(Wt) on its argument.
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We take into account that in the maximum
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Integral (34) was calculated using the mean value theorem, 
provided that the function  c(W t)  has sharp maxima with a 
width of D1, and the measured spectrum of optical radiation 
is sufficiently smooth. Expression (40) means that integral 
(34) is approximately equal to the sum of the values of the 
integrand near each maximum multiplied by the width of 
each maximum (in the case under study, only for the maxi-
mum at W t = 2p). Thus, the time dependence of the photo-
current turns out to be periodic with a period equal to the 
transit time of the sound wave packet in the interaction 
region. As can be seen from (39) and (40), with increasing N, 
the amplitude of oscillations of the photocurrent tends to 
saturation. Reasoning, as above, we find the estimate for inte-
gral (35):
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are the positions and full width of the maximum, respectively.
Thus, the final expression for the measured total photo-

current will be expressed as
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where Df1 º Dnk1d and Df2 º Dnk1 ¢d.
Formula (44) describes the temporal behaviour of the 

photocurrent during diffraction on N sound packets, sepa-
rated by a small gap, under conditions of signal accumula-
tion. In the absence of a phase difference, i.e., at d = 0, for-
mula (42) reduces to the well-known expression for a photo-
current during diffraction on a continuous sound wave for a 
time (N + 1)t. The accumulation of the signal increases its 
constant component and has relatively negligible effect on the 
variable components of the photocurrent. However, signal 
accumulation, as can be seen from formulae (36) and (43), 
leads to a narrowing of the region around the maxima, which 
allows the resolving power of the AO spectral devices to be 
enhanced.

5. Conclusions 

The problem of diffraction of a light flux on two (or more) 
packets of sound waves propagating in an anisotropic crystal 
with a small spatial gap between them has been solved, and it 
has been shown that, due to the phase shift, a time depen-
dence of the IF appears in this gap. In essence, this is another 
new modulation method, the control parameter in which is 
the spatial distance between the sound wave packets. It is sig-
nificant that the phase shift due to the anisotropic properties 
of the crystalline medium arising in the gap between the pack-
ets depends on the wavenumber of the incident optical radia-
tion, and therefore the amplitude of the measured alternating 
photocurrent signal also becomes dependent on the wave-
number of the incident radiation. A distinctive feature of this 
approach is that the experiment measures not only the con-
stant component of the photocurrent signal, as it happens in 
conventional AO spectrometers, but also the amplitudes of 
the photocurrent signal at frequencies W and 2W, which, as 
shown, depend on the wavenumber of the light wave. The fact 
that the characteristic values of the modulation frequency of 
the photocurrent depend on the sound wave power makes it 
possible to take into account its possible changes in the mea-
surement process itself. It is obvious that this modulation 
method is less sensitive to the noise level, because measure-
ments are performed in a frequency band whose width is 
obviously smaller than that of noise.

In the case of collinear diffraction on two packets, an 
exact expression for the IF of the AO filter has been found 
and some of its possible changes have been analysed, which 
can be used to modify the methods and algorithms of spectral 
measurements. Expressions for the measured photocurrent 
are obtained, which, unlike the known expressions, provide 
more accurate spectral measurements of the characteristics of 
the incident radiation. In particular, for the classical case of 
diffraction on a time constant sound wave [20], it has been 
shown that the use of the saddle-point method in calculating 
integral (24) makes it possible to reduce the inverse measure-
ment problem to a system of linear algebraic equations, which 
allows (for smooth spectra) spectral distributions of the radi-
ation intensity to be determined with greater accuracy. The 
case of signal accumulation often used in practice under con-
ditions of a new modulation method is considered and expres-
sions for variable components of the photocurrent at differ-
ent frequencies are found explicitly, the measurement of 
which makes it possible to obtain more detailed information 
about the spectral distribution of the radiation characteris-
tics. It is shown that an increase in the total signal accumula-
tion time, i.e. an increase in the number of identical packets of 
sound waves, leads to a narrowing of the spectral region in 
which the signal accumulation is effective [see formulae (39), 
(43)], and this allows the spectral resolution of AO spectrom-
eters to be enhanced without increasing interaction length.

Note that the proposed modulation method is particularly 
interesting for AO systems of object vision and recognition, 
since it makes possible to construct new algorithms for detect-
ing ‘colour’ objects with different polarisation.
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