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Abstract.  The wave functions of single-electron states localised on 
a system of single-level ideal quantum dots in a semiconductor 
matrix are constructed. The standard Kane theory, which 
describes the renormalisation of the effective mass of electrons in 
bulk III – V semiconductors, is transformed, for the first time as 
far as we know, for small-size quantum dots. The renormalised 
electron mass in a quantum dot depends on its ground state 
energy, which, in turn, depends on this mass. Thus, a self-consis-
tent problem is obtained for calculating the electron binding 
energy. The radius of the Debye screening of the Coulomb inter-
action in a system of quantum dots is calculated at room tempera-
ture. The Coulomb repulsion of electrons localised on dots limits 
from above the possible number of filled dots. The condition is 
formulated for the optimal concentration of quantum dots. A clas-
sical distribution function for the probability of quantum dot fill-
ing is constructed. It is found the state, where electrons fill exactly 
half the maximum possible number of filled dots, exhibits the 
minimal energy (and therefore the most stable), the condition 
being fairly universal. In particular, it can be used to estimate the 
limiting efficiency of quantum-dot diode lasers. 

Keywords: system of single-level ideal quantum dots, Coulomb 
interaction, binding energy, transformation of Kane’s theory for 
small quantum dots, critical size of ideal dots, Debye radius in the 
system of dots, distribution function over the number of filled dots, 
condition of optimal filling.

1. Introduction

The possibility of designing optical or optically controlled 
quantum computers, in particular, quantum-dot computers 
playing the role of qubits, has always been one of the most 
impressive problems of quantum electronics [1, 2]. Recently, 
however, it has become clear that the interaction in a system 
of quantum dots is more complicated than was previously 

assumed [3]. This is especially important for a system of quan-
tum dots immersed in a semiconductor matrix. In this case, 
the interaction with the environment can disturb the energy 
structure of the dot levels so much that the approximation of 
an isolated dot becomes unsuitable. On the other hand, the 
correct allowance for this interaction can make it possible to 
find new ways to increase the efficiency of electronic quan-
tum-dot devices (in particular, lasers).

As is known, zero-dimensional heterostructures that can 
localise free charges in their potential wells are called quan-
tum dots. They are considered ideal when they are able to 
localise only one electron [4]. In order for such dots to fail to 
bind holes, the energy structure of the heterosystem must be 
covariant [5], that is, both the bottom of the conduction band 
and the top of the valence band of the dot material must be 
lower than those in the matrix (in the barrier material). Due 
to its ‘pure’ spectrum, as well as the simplicity of its control by 
external fields, single-level ideal quantum dots will have many 
applications in nanoelectronics and spintronics, especially in 
connection with the problem of quantum information pro-
cessing [6, 7].

In our previous papers [8 – 12], we calculated critical sizes, 
various characteristics of electronic states and their behaviour 
in external fields for single isolated quantum dots. In this 
case, we, following the overwhelming majority of other 
authors, used the tabular value characteristic of this medium 
as the effective mass of the bound electron in the material of 
the dot. However, as a more thorough analysis of the stan-
dard Kane (k, p)-model showed [13 – 15], the effective electron 
mass in a small quantum dot is renormalised not in the same 
way as in a bulk semiconductor. The main difference is that 
the mass depends on the energy of the ground state of an elec-
tron localised on the dot. This energy, in turn, itself depends 
on the effective mass of the electron and the size of the dot. 
The main goal of this paper is to propose an algorithm for 
determining the level energy and critical sizes in a system of 
single-level ideal quantum dots, taking into account the ‘self-
consistency’ of the effective mass with the size of the dots, as 
well as to study the Coulomb interaction of such dots and 
their statistical distribution over filling probabilities at room 
temperature. We note right away that the obvious next (and, 
in our opinion, decisive) step in this direction is to take into 
account the exchange interaction of electrons in single-level 
ideal quantum dots. Physically it is clear what this will lead 
to. Therefore, in this work, we actually study the back-
ground, on which the spins of electrons localised on such 
dots will interact.

The paper has the following structure. In Section 2, we 
formulate and solve a transcendental equation for the energy 
of a single bound electron level in an ideal quantum dot. Its 
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solution is determined by the size of the dot, by the depth of 
the potential well (jump in the energy of the bottom of the 
conduction band at the heterojunction), by the effective 
masses of electrons in the materials used and, to a lesser 
extent, by the average concentration of dots. To calculate 
the effective mass, the standard Kane model has been modi-
fied (for the first time, as far as we know) for small-size 
quantum dots (that is, it is actually brought into line with 
the dimensional quantization rules). It is shown that the 
critical size of a dot at which it remains single-level, and the 
level energy itself depend in a complex way on the average 
concentration of dots. It is fundamentally important that 
unlike the case of an isolated dot, a system of dots has no 
limit on the size of dots from below, at which the first bound 
level appears.

Section 3 deals with the screening of the Coulomb interac-
tion of electrons localised on single-level ideal quantum dots 
by free charge carriers in the matrix. We confine ourselves to 
the case of semiconductors at room temperature. The screen-
ing under these conditions has a generally classical Debye 
character. We also calculated its effective radius in the system 
of dots.

In Section 4, we study the effect of the Coulomb repulsion 
of localised electrons on the probability of quantum dot fill-
ing. The energy of this repulsion (for a fixed size of dots) is 
proportional to the square of the total number of filled dots, 
and the total binding energy of electrons at points is propor-
tional to the first power of this number. Therefore, from a 
certain moment of time the electron is forced out of the poten-
tial well. Consequently, the Coulomb interaction leads to a 
limitation from above on the possible number of single-level 
ideal dots filled with electrons. The maximum possible num-
ber of filled dots is proportional to the sample volume, dielec-
tric constant of the matrix, electron binding energy, and is 
inversely proportional to the square of the Debye length. The 
most stable state of the system of such dots will be the state in 
which the number of filled dots will be exactly half the maxi-
mum possible number. This condition is universal in the sense 
that it does not depend on the properties of materials of the 
corresponding heterostructure and the concentration of dots. 
It is due only to the above-mentioned dependences on the 
number of filled dots of negative binding energy and positive 
Coulomb repulsion energy. Thus, it becomes meaningless to 
unnecessarily increase the concentration of single-level ideal 
quantum dots, because they will remain ‘empty’. This 
undoubtedly is directly related to the efficiency of semicon-
ductor quantum dot lasers. In this section, we also construct 
a classical (Maxwellian) distribution function for the number 
of filled dots.

2. Transcendental equation for the energy 
of a single level of an ideal quantum dot 
and its solution. Critical size of a single-level 
ideal point

Monographs [16, 17] considered electronic states in the 
d-potential system. Our situation is different only in the fact 
that we describe potential holes of finite size and depth. 
Nevertheless, both the Schrӧdinger equation for the single-
electron state and its solution (essentially Green’s function) in 
the external matrix (in a space between the potential wells 
produced by the dots) are written exactly in the same manner 
as in the mentioned monographs:
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Here D is the three-dimensional Laplace operator; E < 0 is the 
electron binding energy in an ideal dot, which, as usual, is 
measured from the bottom of the conduction band of the bar-
rier material; me

*
x is the effective electron mass in the barrier 

material; R is the dot radius; i = 1, ... , N is the number of a 
specific quantum dot; /'m E2 exk = - *  is the wave number 
of the bound electron in the material of the barrier; and A is 
the normalisation constant, which is insignificant.

In what follows, we will consider single-level ideal quan-
tum dots as spheres of radius R and concentration n, the 
depth of the potential well being determined by the energy 
jump ∆Ec of the bottom of the conduction band at the hetero-
junction:
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Consequently, in the interior of the dot, the Schro:dinger 
equation for single-particle states takes the form
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where the dependence min
* (R) of the effective mass of an elec-

tron inside a single-level ideal dor on the size of the dot is 
introduced.

Below we will proceed from the condition

R << / n1 3 ,	 (5)

that is, the dots are not too densely packed, so that the aver-
age distance between neighbouring dots is much larger than 
their size. Then, following [16], in the vicinity of a dot with a 
specific number j, the electron radius vector r can be ‘frozen’ 
in all terms (2), except for one relating to this dot. As a result, 
solution (2) transforms to
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where | | , | |a rr r r rj j ij i jr = - = -  is the distance between the 
centres of the dots. Following again [16], the sum in (6) can be 
estimated by replacing it with the integral:
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Now, similarly to [8, 10, 12], we write out solution (4) in the 
region inside the dot:

j
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In approximation (5), it is formally analogous to the solution 
inside an isolated dot.

For the closure of the problem, we only need to obtain an 
explicit dependence of the effective electron mass on the size 
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of the dot, min
* (R). As is known, the process of mass renor-

malisation in a bulk II – V semiconductor (of type InAs, AlSb, 
GaAs, etc.) is described by the Kane (k, p) theory [13 – 15]. We 
should transform it in accordance with the rules of dimen-
sional quantisation, that is, in fact, take into account the 
finite size of the quantum dot. We very briefly recall the main 
ideas of the Kane model, relating to our situation. The elec-
tron mass in the s-state in the vicinity of the minimum of the 
conduction band (doubly degenerate in spin) is renormalised 
due to the mixing of this state with the p-state of the hole in 
the vicinity of the maximum of the valence band (sixfold 
degenerate). Spin – orbit interaction splits this hole state into 
four-fold degenerate (heavy holes with a total angular 
momentum projection of 3/2 and light holes with a total 
angular momentum projection of 1/2) and doubly degenerate, 
separated from this maximum by the magnitude of the energy 
of the spin – orbit interaction D and also related with light 
holes (total momentum of 1/2). In the first order of the pertur-
bation theory, the mixing energy  –  the Kane energy ЕР – is 
proportional to the square of the matrix element of the 
momentum between the indicated states. Thus, the complete 
Kane equation is an equation for an eight-component ‘tetra-
spinor’ with the 8 ́  8 Hamiltonian. As a result, for the effec-
tive mass of an electron in the vicinity of the minimum of the 
conduction band, Kane’s theory gives the expression:
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where m is the free electron mass, and eg is the width of the 
forbidden zone; the coefficients in the right-hand side take 
into account the multiplicity of the degeneracy of the mixed 
states. [Formula (9) is the simplest expression, taking into 
account the contribution of only the valence band to the 
renormalisation of the electron mass at the bottom of the con-
duction band. Generally speaking, all zones contribute to the 
renormalisation, which is usually taken into account by intro-
ducing a small fitting parameter in (9).] The original equa-
tions (1), (4) with a renormalised mass are the coordinate part 
of the Pauli equation for the envelope of the electron wave 
function at the bottom of the conduction band, split from the 
original eight-component equation [13, 18].

How to bring this expression into line with the rules of 
dimensional quantization, that is, in fact, to take into 
account the ‘incompleteness’ of the band structure in a small 
size quantum dot? According to [15], the determining 
parameter in (9) is the band-gap energy eg. The type of the 
semiconductor – a narrow-gap or a wide-gap semiconductor 
– primarily determines the value of the effective mass (and, 
by the way, the Lande factor) of an electron at the bottom of 
the conduction band. It is well known that in narrow-gap 
materials electrons are most mobile. The energy of 
spin – orbit splitting is determined mainly by intra-atomic 
interactions, and the Kane energy is a parameter that is 
slightly different for different materials significantly exceed-
ing the band-gap enery.

Thus, the incompleteness of the band structure in a quan-
tum dot of small size should primarily affect the value of eg, 
that is, the actual distance (on an energy scale) between the 
top of the valence band and the bottom of the conduction 
band. But then the easiest way to take into account the size of 
a quantum dot is to replace eg with eg + ∆Ec – E, which is the 
energy gap between the top of the valence band and the 
ground state of the electron in the quantum dot. (We do not 

consider similar hole effects in the vicinity of the top of the 
valence band, because we assume the covariance of the het-
erostructure, which was discussed above.) As a result, for the 
effective mass we obtain (see also [19]) the equation
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Next, using the algorithm [16], we construct an auxiliary 
function rj y( rj) in the vicinity of the jth dot, where y(  rj) is 
determined from (6), (8), and set the continuity condition for 
the logarithmic derivative at the boundary of the dot, rj = R. 
This is leads to a transcendental equation for the electron 
binding energy
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which, together with equation (10), allows us to calculate it.
We can significantly simplify and clarify the physical 

meaning of the obtained equation by passing to more natural 
dimensionless units of length and energy:

e/ / , ( ) /R R l R m E E E E2 ex c c0" "' D D= = -* .

Here, l0 is the de Broglie length for an electron with energy 
DEc, and e  is the binding energy in fractions of the depth of 
the potential well. Equation (11) in the new units will take the 
form
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It is clear that mass renormalisation is in fact equivalent to a 
change in the scales of the electron localisation inside a dot.

The results of the calculation of the binding energy at var-
ious concentrations of quantum dots are shown in Fig. 1. In 
this case, we used the data for the covariant InAs/AlSb het-
erostructure from review [20]; the date are given in the figure 
caption. Figure 1 shows the starting concentration of quan-
tum dots at which its influence on the binding energy becomes 
noticeable.

The most important question is in what range of sizes a 
quantum dot remains single-level, that is, ‘holds’ no more 
than one bound electronic state. For the exact answer it is 
necessary to solve numerically equation (12) in the limit e 0" , 
when it reduces to the equation
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moreover, the value of n itself is not included directly in the 
formula. It immediately follows that the smallest critical size, 
that is, the minimum radius Rmin at which the first bound level 
appears in a potential well, is equal to zero, unlike the case of 
single isolated dots. This is in complete agreement with the 
results of paper [16].
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The largest critical size of a quantum dot is determined by 
the condition for the appearance of the second bound level, 
after which the dot naturally ceases to be an ideal single-level 
one. The problem of finding it for single isolated dots in an 
external magnetic field was solved in [8, 10], and in an exter-
nal electric field in [12], although in the approximation  min

* (R) 
= min

* (∞). For a system of dots, by approximating cotx in the 
vicinity of the second zero (x = 3p/2) by the linear function*, 
from (13) we can obtain
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The solution of this equation together with (12) and (10) 
determines the ideality range of spherical quantum dots. In 
particular, for the considered InAs/AlSb heterostructure, the 
radius Rmax » 4.976l0 » 1.64 nm and, again, practically does 
not depend on the concentration of dots.

Of interest are also the dependences of the energy of the 
bound level on the concentration of quantum dots. They are 
shown in Fig. 2. The concentration is given in dimensionless 
units nl 03. Note that in this form it enters the equation for the 
binding energy (12). The upper limit of the concentration 
range corresponds to n = 1018 cm–3. It would seem to follows 
from Fig. 1 that with an increase in the radius of a quantum 
dot and, accordingly, the modulus of the ground-state 
energy, the sensitivity to changes in concentration also 
increases, but this is not quite the case. Electrons in small 
quantum dots are more sensitive to the presence of neigh-
bouring dots (in fact, neighbouring potential wells) due to 
the large size of the electron cloud. This is most clearly illus-
trated by the following circumstance: single isolated dots 
with R < Rmin are not able to localise an electron at all, while 
in a system of dots (that is, for sufficiently large n), it is 
localised formally for arbitrarily small sizes of dots. In other 
words, the electron is ‘virtually present’ in a set of quantum 
dots. (It can be said this way: a set of dots forms a single 
‘multi-cell’ potential well.) In our opinion, this is directly 
related to the possibility of implementing quantum comput-
ing in the system under consideration.

3. Mechanisms for screening the charge 
of localised electrons

A quantum dot is, in essence, a potential well in which a nega-
tive charge can concentrate. There are two simplest mecha-
nisms for screening this charge in a medium with free carriers. 
The first is the conventional Debye mechanism, that is, the 
formation of an external, sufficiently extended and mobile 
screening cloud around a charge localised on a dot. The sec-

e

e

0.001

0.002

0.003

0.004

0.005

0.05

0.10

0.15

0.20

0.25

0.006

0.4 0.8 1.2 1.6 R/l00

2.0 2.2 2.4 2.6 2.8 R/l0

1

1

2

2

3

3

a

b

Figure 1.  Binding energy e  of an electron localised on a single-level 
ideal quantum dot as a function of the dot radius for an InAs/AlSb 
heterostructure with the following parameters [20]: ∆Ec = 2.2 eV, eg = 
0.42 eV, D = 0.39 eV, m in

* (∞) = 0.023m in InAs, and mex
* = 0.14m in AlSb. 

Concentrations are as follows: n = ( 1 ) 1016, ( 2 ) 1017 and ( 3 ) 1018 cm–3; 
the length is l0 » 0.33 nm.

* Such an approximation is possible with practically any realistic ratios 
of the effective masses. In review [20], for example, for a sufficiently 
large number of heterostructures considered there, we did not find any 
counterexamples.
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Figure 2.  Binding energy e  of an electron localised on a single-level 
ideal quantum dot as a function of the concentration of dots for an 
InAs/AlSb heterostructure, the parameters of which are given in the 
caption to Fig. 1, at R = ( 1 ) l0, ( 2 ) 2l0 and ( 3 ) 3l0.
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ond is the embedment of holes into the vicinity of a potential 
barrier at the dot boundary. Clearly, the hole repulsive bar-
rier potential* decreases under the action of a localised elec-
tron field, which distorts the structure of the barrier at the 
heterojunction. If the total potential in the vicinity of the dot 
boundary is above the top of the valence band in the matrix, 
this effect is classical, if below, we are dealing with quantum 
capture of holes into the potential barrier. A similar mecha-
nism is characteristic of stronger (than Debye) Reed screen-
ings and was considered in [21] for extended linear disloca-
tions. As a result, the first of the described mechanisms 
exponentially cuts off the potential of a quantum dot filled 
with an electron at some distance, and the second one reduces 
the effective charge of a localised electron.

The criterion for the applicability of the weak-screening 
(Debye) approximation is the condition that the kinetic 
energy of the charge exceeds the potential energy [15]:

( )
k T
e

B

j0j r
 < 1,	 (15)

where j0(rj) is the potential produced by an electron localised 
on a single-level ideal dot. Possible violations of this condi-
tion in the neighbourhood of the dot boundary provide the 
conditions for the implementation of the second screening 
mechanism. Below, we will consider this condition fulfilled. It 
is clear that consistent consideration of the strong screening 
mechanism requires self-consistent consideration of the 
reverse effect of localised particles on the initial potential of 
the heterostructure and distorts the simple solutions (6) and 
(8) which we used. The rough action of the second screening 
mechanism can be taken into account, implying that the elec-
tron charge e is some effective charge, less than usual.

The Poisson equation describing the distribution of the 
potential in the vicinity of the jth dot with a filled electronic 
state has the form
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Here qe is the charge density produced by a localised electron; 
qi is the induced charge density in the ‘Debye cloud’ of free 
carriers; n0 is the concentration of free charge carriers in the 
barrier material; and e is the dielectric constant of the barrier 
material. The expression for the induced charge density is lin-
earised by the potential according to (15). In other words, in 
the dot of the medium with potential j, the excess Dn of the 
concentration ne of free electrons by the concentration nh of 
free holes is estimated as

Dn = nh – ne
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Rewriting equation (16) in canonical form, we obtain
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is the Debye screening length. The presence of 2 in the denom-
inator is associated with the presence of two types of charge 
carriers in the intrinsic semiconductor producing a screening 
Debye cloud.

Equation (18) can be simplified if we take into account the 
fact that

1/k << LD.	 (20)

In fact, at typical room temperature free-carrier concentra-
tions of  n0 » 108 – 1011 cm–3, the screening length in intrinsic 
semiconductors is estimated to be LD » 3 – 300 mm. The 1/k 
value can reach such values only at the binding energies of the 
localised electron, e  » 10–8 – 10–10 eV. At such negligibly 
small energies, the bound state of an electron in a quantum 
dot, of course, will not be stable. Therefore, on the right-hand 
side of (18), one can make a replacement

j j j( 2 ) / ( )expA2 2
" dkr r r- .	 (21)

In fact, this is a transition to the approximation of a point 
charge in equation (18), the possibility of which is due to rela-
tions (5) and (20). As a result, solution (18) takes on a more 
familiar form:
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4. Coulomb interaction of single-level ideal 
quantum dots. Optimal number of filled dots. 
Maxwell distribution for the number 
of filled dots

The electrons localised on dots, although screened by the 
Debye clouds, will interact with each other. It is clear that the 
energy of this Coulomb repulsion is positive and proportional 
to the square of the number of dots filled with electrons. 
Therefore, at a certain concentration of quantum dots, the 
Coulomb repulsion energy compensates for the total negative 
binding energy of electrons at single-level ideal dots, and the 
level will be ‘crowded out’ of the potential well. Naturally, 
this limits the number of quantum dots filled with electrons 
from above. Accordingly, the initial concentration of the con-
sidered dots is limited.

The energy of the Coulomb interaction per one filled dot 
can be estimated using the same algorithm as in (7), by replac-
ing the sum with the integral:
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Given that the linear size of the sample is  L » 1 cm, the 
Debye length is LD » 3 – 300 mm and the radius of the single-

* For the mentioned InAs/AlSb heterostructure, this barrier (the en-
ergy jump of the top of the valence band at the heterojunction) is 
0.2 eV [20].
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level ideal dot is R » 1 – 3 nm, for the energy of the Coulomb 
repulsion we obtain the estimate:

D De
e nL e NL

Q
0

2 2

0

2 2

. e e e eW=
u

,	 (23)

where nu  is the average concentration of the dots filled with 
electrons (n nGu ); N nW= u  is the total number of these dots; 
and W » 1 cm3 is the characteristic sample volume.

It is clear that quantum dots will no longer be filled with 
electrons when it is energetically unfavourable, that is, under 
the condition

e e 0Q- = .

Therefore, the maximum possible number of filled dots is

D

e e2N
e L k T

n
max

B
2 2
0 0e eW W

= = .	 (24)

Taking into account the above values of the constants charac-
teristic of intrinsic semiconductors at room temperature, we 
have Nmax » 108 – 1011.

Naturally, the question arises of how justified the initial 
one-particle approximation (6) – (11) is for determining the 
binding energy in the presence of neighbouring dots and the 
Coulomb interaction of localised electrons. Estimate (24) a 
posteriori justifies it. One can see from Figs 1 and 2 that for 
a tangible effect on the binding energy, a much larger con-
centration of single-level ideal quantum dots is needed than 
that given by the estimate of Nmax. As for the Coulomb 
interaction, the approaches used in obtaining estimates 
(23) and (24) are similar to the pseudopotential approxi-
mation [16].

The most stable state of a matrix with single-level ideal 
quantum dots will, of course, be a state with minimal energy. 
The total energy of a system of dots with the Coulomb inter-
action will be N(e eQ- ), and the condition for its minimisa-
tion will determine the most probable number of dots filled 
with electrons:

D

e /2N
e L

N
2

max0 2 2
0e eW

= = .	 (25)

The latter condition is independent of the specific parame-
ters of the heterostructure used and, in this sense, is univer-
sal. It is due, in essence, only to the fact that the total nega-
tive binding energy is proportional to the number of filled 
dots, and the positive Coulomb repulsion energy is propor-
tional to the square of this number. This completely deter-
mines the position of the minimum energy. (A very interest-
ing analogy with the energy of the ground state of a heavy 
nucleus is seen here. The total negative nuclear energy is 
proportional to the total number of nucleons, and the posi-
tive energy of the Coulomb repulsion is proportional to the 
square of the number of protons. Moreover, the strong inter-
action energy per one nucleon, as well as the localised electron 
binding energy, is considered to be independent of the 
Coulomb repulsion energy.)

Let us now construct the distribution function (of the 
Maxwell – Boltzmann – Gibbs type) with respect to the num-
ber of dots filled with electrons. It is easy to see that the mini-
mum total energy of a system of dots is

D

eE
e L4

min 2 2
0

2e eW
=- ,

and its fluctuations due to a change in the number of dots 
filled with electrons is

D ( )
E

e L N N
0

2 2
0
2

e e
D

W=-
- .

Thus, the distribution function for the number of filled single-
level ideal quantum dots (or the probability of filling the dot 
with an electron) has the form:

p(N) µ D ( )exp
T

e L N N
B0

2 2

0
2

e eW- -k
; E .

Note in conclusion that in our work [8 – 12], we investi-
gated some methods for controlling the wave function and 
spin states of electrons localised on single-level ideal quantum 
dots using external electric and magnetic fields. All this, in 
combination with the pure spectrum of single-level ideal dots, 
makes the systems described in the work extremely attractive 
for solving a whole range of microelectronics problems in 
general and spintronics and quantum information processing 
in particular. Regarding the evaluation of the maximum effi-
ciency of diode quantum dot lasers, we intend to devote our 
next work to this issue.
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