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Abstract.  We demonstrate the possibility of estimating in a simple 
way the expected frequency of the resonant response to an external 
electromagnetic field in a thin golden nanoantenna having a rectan-
gular cross section. The paper considers nanoantennas with a thick-
ness smaller than the thickness of the skin layer or comparable with 
it. Analytical expressions for estimating the resonance response are 
presented, and full-wave simulation is performed. The algorithm 
for obtaining such estimates is important, in particular, for plan-
ning experiments without using full-wave simulation, which is often 
rather resource consuming. To obtain analytical expressions, a ref
ined LCR circuit model is used. The analytical estimates obtained 
for the characteristics of the resonant response are in good agree-
ment with the results of the full-wave simulation.

Keywords:  nanoantennas, nanobar, broadband resonance, resonant 
response, LCR circuit model.

1. Introduction

The resonant frequency response of metallic and dielectric 
micro- and nanoparticles is known to be determined by the 
material, characteristic dimensions, and geometry of such a 
particle. In this paper, we consider metal particles with a reso-
nant response in the visible and near-IR regions. As a res
ponse, both absorption and scattering of light can be consid-
ered. Important characteristics of any resonance are the reso-
nant frequency and quality factor (the reciprocal of the 
resonance relative width). In a number of practical applica-
tions, the broadband response of nanoparticles is of interest, 
i. e., a resonance with a large width and a low Q-factor. These 
are, for example, problems of broadband filtering in telecom-
munication technologies and tasks of sensorics, in which 
complex absorption spectra are recorded against the back-
ground of a broad plasmon resonance. Research in the field 
of producing a broadband response is being conducted inten-
sively; in particular, several interesting works have recently 

been published, focused on developing a concept (geometry) 
for obtaining a broadband response for various technological 
applications, such as a polarisation converter, a broadband 
absorber, and control of chromatic aberrations [1 – 4].

As is known, plasmon resonances are inherently broad 
ones; therefore, in this paper we explore the possibilities of 
constructing an adequate assessment of plasmon resonances 
for nanoparticles having the shape of a nanobar with a rect-
angular cross section (Fig. 1). This shape is of interest due to 
the simplicity of the deposition of nanoparticles on a solid 
substrate, in particular, using the method of nanolithography 
in the course of manufacturing ordered meta-surfaces. This 
geometry of individual nanoblocks was used in Refs [1 – 4]. 
Note that if both sides of a rectangular section of a nanobar 
are sufficiently small (a wire), then for such particles the cross 
section shape is not important and there are other methods of 
approximation (cylinders of equivalent section [5]).

It should be noted that full-wave, especially three-dimen-
sional, modelling of the resonant response of meta-surfaces 
requires large computational resources, and so it would be 
useful to be able to have plausible estimates for the resonance 
characteristics, such as resonance frequency and resonance 
width (Q-factor), i. e., a simple and adequate model. Such a 
model based on a quasi-static approximation for particles 
much smaller than the wavelength of the incident light was 
constructed in classical papers [6, 7], where simple analytical 
expressions for the nanoparticle response were derived. Par
ticles of various geometry are analysed in detail, in particular, 
when a nanoparticle is a triaxial ellipsoid. In this paper, we do 
not limit ourselves to the quasi-static approximation and ana
lyse the possibility of applying the LCR model of an oscilla-
tory circuit [8, 9] for a more general case. In particular, as will 
be shown below, the use of the LCR circuit model makes it 
possible to obtain analytical evaluation formulas for the reso-
nance frequency.

The advantages of this form of nanoantenna include the 
fact that, in the case of a rectangular antenna, there are three 
independent parameters for adjusting the resonant frequ
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Figure 1.  Golden nanoantenna ( nanobar ).
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ency: length, width, and thickness. By fixing, for example, the 
length and width and varying the antenna thickness, we can 
adjust the resonant response frequency, in particular, as 
shown in Ref. [10], where the optical response of a cylindrical 
nanoantenna was studied depending on the form factor, 
which is the ratio of cylinder length to its diameter. A signifi-
cant change in the response frequency depending on such a 
form factor was shown [10]. For the geometry considered in 
this work (Fig. 1), we can introduce two form factors: the 
ratio of length to thickness (l/h) and the ratio of length to 
width (l/d). Another independent coordinate appearing in the 
considered geometry provides an additional degree of free-
dom for the selection of the resonance width. In this paper, 
we study the normal incidence of an external electromagnetic 
field on a gold nanoantenna up to 20 nm thick, which corre-
sponds to the upper limit of the skin layer for the IR spec-
trum. In the future, considering a rectangular nanoantenna, 
for brevity, we will call it a nanobar.

2. LCR-model as applied to micro-nanoparticles

In this paper, we intend to compare the results of a full-wave 
calculation of the characteristics of scattering of light by a 
gold nanobar and the estimate of the scattering parameter in 
a model where the nanobar is considered as an electrical cir-
cuit, namely, a series oscillatory circuit. For the first time, the 
idea of considering a nanoobject as an oscillatory circuit was 
proposed in Ref. [9] to describe the resonance scattering of 
light by a gold nanosphere. In addition, the use of this app
roach is described in Ref. [8].

In Ref. [11], a nanorod with circular cross section was 
considered as a light scatterer, the electric field strength vec-
tor being directed along the axis of the nanorod. A good 
agreement with the experimental results was obtained for the 
resonance wavelength of the scattered light in the LCR circuit 
model, but taking into account the adjustable multiplier and 
for the lengths corresponding to the quasi-static approxima-
tion. In the same paper, a simple analytical formula was pro-
posed for the resonance wavelength by replacing the circular 
nanorod with a nanobar of rectangular cross section. The cal-
culation using the formulas of Ref. [11] is in good agreement 
with the results of other works for a nanorod with circular 
cross section. However, as will be shown below, for nanobars, 
the results of such calculations are noticeably different from 
the results of full-wave calculations, especially for cases bey
ond the quasi-static model.

We decided to refine the corresponding formulas, remain-
ing within the framework of the LCR circuit model, but not 
only within the quasi-static approximation, and obtain a sim-
ple analytical approximation for them. The main refinement 
is related to the mode composition of the resonances, which is 
particularly important beyond the quasi-static case. In the 
simplest model [11], it was assumed that at each instant of 
time the current density is the same at all points of the nano-
rod volume and is directed along its axis; in particular, it is the 
same along the entire length. However, as indicated by many 
authors, the current density at each time point is proportional 
to sin x, where x is the coordinate along the axis of the nano-
rod (or nanobar). In particular, the possibility of a complex 
mode composition inside the nanoantenna is already appar-
ent for particles that are much smaller than the wavelength. 
For the quasi-static case, a detailed full analysis is given for 
spheroidal particles in Ref. [6]. At the ends of the nanorod, 
the sinusoid should go to zero (for the dipole mode) in the 

case of a rectangular cross section. Accordingly, for the lower 
(dipole) mode, the half-wavelength of the sinusoid should be 
equal to the length of the nanorod. The authors of Ref. [10], 
in which the dipole mode for a circular-section nanorod is 
considered, have already made this refinement of the LCR 
model.

In Refs [10, 11] the authors considered the contribution to 
the loop inductance L0, specific for nanosamples and related 
to the kinetic energy or momentum of the drift motion of elec-
trons. With the increase in the nanosample size, this contribu-
tion becomes relatively small compared with the usual induc-
tance. The value of L0 is found by equating the kinetic energy 
of the electrons of the current to the inductance energy L0I 2/2, 
whence L0 = lme /Snee2 is obtained, where l and S are the 
length and cross-sectional area of the nanosample; me is the 
electron mass; ne is the concentration of conduction electrons 
in gold; and e is the electron charge modulus. The value of the 
expression nee2/me can be obtained by relying on the well-
known experiment value of the plasma frequency for gold 
wp = /n e me e

2
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where e0 and m0 are the electric and magnetic constant, respec-
tively, and the quantity d = c/wp = 21.9 nm in accordance with 
Refs [10, 11] can be considered as the depth of penetration of 
the light field into gold. Note that for optical frequencies, the 
thickness of the skin layer of electric currents is several times 
smaller than this value.

In addition to the contribution L0 to the inductance of an 
equivalent oscillatory circuit that is specific for nanosamples, 
there is also the traditional contribution L to the inductance. 
In Ref. [10], as in Ref. [11], it was proposed to find this contri-
bution in accordance with the definition of inductance:
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V
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In Ref. [10], it is proposed to find the capacitance of the oscil-
lating circuit C in the same way:

d
C
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V
2 2V

2
0

2e e
=

3=
y ,	 (3)

i. e., in a more correct way than in Ref. [11], where the capaci-
tance is calculated between the ends of the cylinder using the 
approximation of a flat capacitor, followed by the introduc-
tion of a fitting coefficient of 2.5 to correct the resulting 
capacitance. In calculations using Eqn (3), the dielectric con-
stant inside the nanoparticle is assumed equal to the dielectric 
constant of the environment of the nanoparticle basing on the 
fact that the volume of the nanoparticle is small and, there-
fore, contributes little to the integral. Plasmon losses are 
taken into account as losses on the ohmic resistance of the 
nanoparticle.

Fully agreeing with the formulas of Ref. [10] for calculat-
ing the capacitance and the traditional contribution to induc-
tance, we note that integrals over an infinite volume can be 
replaced by integrals over the volume of a nanoobject, which 
greatly simplifies the calculations. Indeed, for example, the 
energy of the electric field can be found as the energy of the 
charges of the conductor:
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where V0 is the volume of the nanosample; e = n2 is the dielec-
tric constant of the medium surrounding the nanosample with 
a refractive index n; r is the bulk charge density; and
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is the potential. With the mode composition of the resonances 
taken into account, the charge density is proportional to the 
cosine of the coordinate along the electric field E of the light 
wave. Hence, when the mode m is excited, we obtain for the 
capacitance of the nanoantenna:
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Here, l is the length of a nanobar or nanorod along the field 
E; V0 and V0l is the same volume of the nanosample; x and x’ 
is the coordinate inside the nanosample along the E field; and 
r and r' is the radius vector of the point inside the nanosam-
ple. The integrals are calculated in dimensionless variables, 
where each coordinate is scaled to the sample length l.

Similarly, the interaction energy of the currents can be 
related to the inductance: 
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where j is the current density and the integral, as in Eqn (6), is 
taken over dimensionless variables scaled to the sample length 
l.

As a result, the resonant frequency of the mode with an 
arbitrary number m
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corresponds to the resonance wavelength lres = 2pc/wres = 
2pc ( )L L C0+ .

For a dipole mode (m = 1) using the least squares method, 
we found convenient approximating formulas for the inte-
grals [in Eqns (6), (9) and (10)]:
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Formulae (11) and (12) for approximating the integrals 
are valid with an accuracy of up to 5 % for each of the pairs of 
values of the relative widths and thicknesses of the nanobar, 
shown in Fig.2.

For the mode with the number m, the integrals change 
approximately like this:

JCm  = J a m
a 1

C1 +
+   и  JLm  = J

b m
b 1
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+

+ ,

where a and b are constants independent of m but dependent 
on the form factor of the nanobar. Substituting the obtained 
approximating formulas (11), (12) for integrals into the exp
ression (10), we obtain an approximating formula for estimat-
ing the resonance frequency:
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3. Full-wave simulation of single nanoantennas 
with rectangular cross section

As mentioned above, the influence of one of the geometrical 
parameters, in particular diameter, on the position of the res-

1.0

h/l

0.5

0 1 2 3 d/l

Figure 2.  Range of variation of the inverse form factors of a nanobar, 
in which the approximations of the integrals for the inductance L and 
capacitance C using simple analytical formulas ( 11 ) and ( 12 ) are valid.
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onance response frequency of a cylindrical nanoantenna was 
studied in detail in Ref. [8]. The change in the response fre-
quency as a function of the diameter (thickness) of such a 
cylindrical nanorods was found. In the present work, the res-
onance responses were studied when two parameters were 
changed (the width and thickness of the nanoantenna with a 
fixed length), whereas for a cylinder of circular cross section 
[8] the variable parameter was only the thickness (diameter). 
In this section, we present the results obtained by full-wave 
simulation for a nanobar of rectangular cross section. In the 
full-wave simulation, the Comsol Multiphysics (RF-module) 
package was used to solve the wave equation numerically, 
taking both the real and imaginary parts of the dielectric con-
stant of the media into account. To simulate the field attenu-
ation at infinity, the so-called perfectly matched PML layer 
was used. The numerical algorithm was implemented using 
the finite element grid method. As shown, e. g., in Ref. [12], at 
the moment such a numerical algorithm is the most reliable 
and approved one.

Nanobars with l = 100, 500 and 1000 nm were investi-
gated. In this case, the thickness of the nanobars was chosen 
to be smaller than the thickness of the skin layer or of the 
order of it (h = 5, 10, 20 nm). This choice of thickness is caused 
by the fact that when deriving the approximate analytical 
expressions, by default it was assumed that there is a uniform 
current distribution across the thickness (along the z axis). The 
material of the simulated nanoantenna is gold. Experimentally 

obtained dispersion characteristics were used for computer 
calculations [13].

3.1. Numerical simulation for determining the resonance 
response of a nanobar

Figure 3 shows the spectral dependences of the scattering 
cross section for the gold nanoantenna with l = 500 nm and 
h = 5, 10, and 20 nm. The nanobar width d varied from 20 to 
900 nm. The dependences have a resonance character with a 
resonance having the highest amplitude corresponding to the 
first dipole mode. As the width of the nanobar increases, the 
resonance wavelength decreases and the width of the reso-
nance increases. At the left edge of the resonance, a feature is 
seen that can be identified as the third mode resonance. When 
the width of the nanobar changes, the resonances of the first 
and third modes move towards each other. With a normal 
incidence of light, the second mode is not excited.

It is clearly seen from Fig. 3 that in the selected frequency 
range the first dipole mode has a resonant response. It is also 
seen that with increasing nanobar width d, the resonance fre-
quency increases (the resonance shifts shorter wavelengths) 
and becomes practically unchanging, when a certain width 
(d » 800 nm) is exceeded. In addition, there is an expected 
increase in the width of the resonance curve with increasing h 
and d. Note that the behaviour of the width of the resonance 
curve requires a separate study and is not the primary task of 
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Figure 3.  Scattering cross sections as functions of the wavelength of the incident radiation for l = 500 nm, different d and h = ( a ) 5, ( b ) 10, ( c ) 20 nm, 
and also for ( d ) d = 80 nm, l = 500 nm and h = 5, 10, 20 nm.
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the present work. Figure 3d also shows the resonance res
ponses for nanoantennas with l = 500 nm, d = 80 nm and 
various thicknesses. The presented dependences clearly dem-
onstrate the relative shift of the frequency maxima and the 
corresponding increase in the amplitude of the scattering 
cross section with increasing nanoantenna thickness.

The behaviour of the frequency resonance response as a 
function of thickness coincides with the results of the calcula-
tions carried out by the authors of Ref. [14] for cylindrical 
nanoantennas of circular cross section.

In Fig. 4, for the golden nanoantenna with l = 1000 nm 
and h = 5 nm, the scattering cross section is shown as a func-
tion of wavelength for several values of d (from 80 to 
500  nm). For an antenna with d = 500 nm, the third mode is 
quite clearly visible. For a nanobar with l = 100 nm, the 
character of the dependences of the scattering cross section 
is similar.

Figure 5 presents the calculated dependence of the scatter-
ing cross section for a nanoantenna with l = 1000 nm, h = 5 nm 

and d = 200 nm, for which relative magnitudes of the maxima 
for odd plasmon modes are clearly visible in a magnified 
wavelength scale.

Figure 6 shows the dependences of the resonance wave-
length on the width d of nanobars with l = 100, 500 and 
1000  nm and h = 5, 10, 20 nm. It can be seen that the reso-
nance response has two characteristic regions: the nonlin-
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ear region of fast changing lres up to the width d » 300 nm 
and the linear region, where lres changes very slowly with 
increasing d.

Figure 7 shows the same dependences, but grouped for 
identical thicknesses h = (a) 5, (b) 10, (c) 20 nm. Here it can be 
clearly seen that in the range of rapid change of lres an 
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antenna with the greatest length l = 1000 nm has the largest 
gradient in d.

4. Results and discussion

Let us analyse the applicability of the refined (as compared 
to Refs [10, 11]) LCR circuit model for quick estimation of 
the frequency response of a nanoantenna with a rectangular 
cross section. Figure 8 shows the dependences of the reso-
nance wavelength on the nanobar widths with l = 100,500 and 
1000 nm and h = 5, 10 nm, obtained as a result of full-wave 
calculation in the Comsol medium, calculated using the model 
developed by the authors of Ref. [11] and the refined model 
proposed by the authors of this paper.

It can be seen that there are regions of nanoantenna par
ameters in which the model proposed by the authors of Ref. 
[11] provides very good agreement with the results of the full-
wave calculation, but only for nanoantennas no longer than 
100 nm. It should be noted that this coincidence was achieved 
in [11] by introducing a fitting factor of 2.5 to the electrical 
capacitance. In a wide range of parameters, the model [11] is 
not adequate, while the model, which takes into account the 
sinusoidal distribution of currents, maintains a relative error 
and correctly reflects the nature of the dependence in a wide 
range of nanoantenna parameters. Nevertheless, it is obvious 
that our model requires additional improvement and refine-
ment to reduce the relative error of the calculation results. 
Inaccuracy may be due, e. g., to the influence of the uneven 
distribution of the field (current) over the width and thickness 
of the nanobar. In electrostatic problems, the charge density 
is high on the sharp edges of the conductor. Therefore, it can 
be expected that the current density increases near the edges 
of a wide nanobar. In the future, the authors intend to supple-
ment the proposed methodology with allowance for the inho-
mogeneity of the field of currents over the cross section of the 
nanobar.

To summarise, the main results of this work include the 
following. Approximating formulas were obtained for calcu-
lating the resonance wavelength for a nanobar of rectangular 
cross section. Using the full-wave method, the dependences of 
the resonance wavelength on the width and thickness of the 
nanobar are obtained. Using approximating formulas, it is 
shown that the LCR model can be used to estimate the reso-
nance frequency of nanoantennas with geometrical parame-
ters varying over wide ranges. The ways to improve the LCR 
model are outlined.
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