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Abstract.  The action of an s-polarised femtosecond laser pulse is 
found to result in nonlinear currents in a metal film, which arise due 
to the nonuniform heating of the conduction electrons and under the 
influence of the drag force. The Fourier transforms of a low-fre-
quency magnetic field generated by nonlinear currents are calcu-
lated. It is shown that when the film thickness is less than the scale 
of the low-frequency field nonuniformity, the amplitude of the tera-
hertz signal increases in inverse proportion to the film thickness. If 
the thickness of the film is less than the depth of the skin layer at the 
laser frequency, the low-frequency signal is amplified inversely pro-
portional to the square of the film thickness.

Keywords: femtosecond pulse, film, metal, terahertz radiation, skin 
layer. 

1. Introduction 

The generation of terahertz radiation by metals has been 
widely studied experimentally and theoretically (see, for 
example, [1 – 17]). A number of general properties of terahertz 
generation in interaction of femtosecond laser pulses with 
metals can be explained by three generation mechanisms. The 
first of them dominates under the conditions when the laser 
pulse duration tp is shorter than t, i.e. the electron free path 
time, and arises due to the effect of the ponderomotive force 
on the electrons (see [8, 9, 11 – 13,17]). The other two domi-
nate if the pulse duration is tp >> t, and arise either as a result 
of effective heating of electrons [14, 16], leading to a pressure 
gradient, or under the action of a drag force generating direc-
tional motion of electrons along the metal surface [9, 16]. 

Despite the different physical nature of these mechanisms, 
for all of them the amplitude of the generated signal markedly 
depends on the field structure in the metal. Experiments in 
which the geometry of the metal surface was changed also 
indicate a strong dependence of the generated signal on the 
properties of the field distribution in the sample. This is 
clearly demonstrated in [4, 5], where the generation of tera-
hertz radiation from a corrugated metal surface was studied, 
and in [7], where radiation was generated by nanoparticles. In 
a simpler experiment, when the generation in flat iron [1], sil-
ver [2] or gold [2, 3, 6, 10] films of various thickness was stud-

ied, a strong dependence of the generation efficiency on the 
film thickness was found. The fields generated by a femtosec-
ond laser pulse in a metal film have been previously studied in 
connection with the problem of laser heating of a film [18]. It 
is natural to use the results of paper [18] to calculate nonlinear 
currents in the film and to subsequently consider the genera-
tion of terahertz radiation. 

Following [18], we present in this work the expressions for 
the high-frequency field in a film produced by an s-polarised 
femtosecond laser pulse. The case is considered when the 
pulse duration tp is much longer than the electron free path 
time, and there is no need to keep corrections to the field due 
to a change in the amplitude of the laser pulse envelope. 
Under conditions of weak nonuniform heating of electrons, 
an equation was written for a small pressure perturbation and 
the source of the drag current was found. Equations were also 
formulated for the Fourier transforms of low-frequency elec-
tric and magnetic fields. Using the general solution of these 
equations and the continuity conditions for the tangential 
field components at the film boundaries, we found the Fourier 
transforms of the low-frequency magnetic field generated by 
a pressure gradient and drag force. The expressions for the 
Fourier transforms of the magnetic field were analysed. If the 
duration of the laser pulse is much longer than the free-path 
time of the electrons, the scale of the change in the low-fre-
quency field is much greater than the depth of the skin layer 
at the fundamental frequency of the laser radiation. If the film 
thickness is greater than the scale of the change in the low-
frequency field, then the results obtained previously for a 
massive sample follow from the derived expressions [9, 16]. If 
the low-frequency field changes weakly in the film thickness 
and the laser radiation field is localised at the film surface, the 
Fourier transform of the magnetic field increases proportion-
ally to 1/L with decreasing film thickness L. Finally, for very 
thin films whose thickness is less than the skin depth at the 
laser radiation frequency, the Fourier transform of the gener-
ated field increases in proportion to 1/L2. It was suggested 
that a weak increase in the amplitude of the low-frequency 
signal and an increase in the transmission of the gold film at 
the fundamental frequency, which were observed in [6] far 
from the percolation threshold, are due to the general proper-
ties of the field behaviour in the film described by us. 

2. High-frequency field in the film 

Let us consider the interaction of an s-polarised electromag-
netic laser pulse with a metal film occupying a space region 0 < 
z < L. We represent the electric field strength of the pulse as 

( / ) ( )sint tE kr kren w w- - .	 (1)
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Here, w is the carrier frequency of radiation; k = (w/c)(sinq, 0, 
cosq); q is the angle between the wave vector k and the z axis 
orthogonal to the film surface; c is the speed of light; and 
Een(t) = (0, Een (t), 0) is the pulse envelope changing during the 
time tp >> 1/w. The electromagnetic pulse penetrates into the 
film, is reflected from it, and passes into the region z > L. 
Under conditions when the characteristic spatial scale of the 
change in the field is much larger than / | |iFu w n+ , where uF 
is the Fermi velocity and v is the effective collision frequency 
in the field of the incident pulse, one can use the results of [18] 
in considering the field in the film. By neglecting small correc-
tions ~1/wtp << 1, in accordance with relation (15) from [18], 
for the electric field strength in the film we have E(z, t) = (0, 
E(z, t), 0), 

( , ) ( ) [ ( , ) ( , ) ]Re sin Im cosE z E F z F zent t w wt w wt= - ,	 (2)

where t = t – (x/c)sinq, and the function F(z, w) has the form 

F(z, w)

cos sinhq coshi c
( ) ( ) 2 ( )
2 { [ ( )] [ ( )]}

cos sinh cos cosh
cos

ic L c L
z L z L

2 2 2 2k w q k wk q k
w q w k k k

=
- -

- - - .	 (3)

The spatial structure of the field in the film depends on the 
value of the parameter k, which is related by the expression

( / ) [ ( )]sinc2 2 2 2k w q e w= - 	 (4)

with the permittivity of the metal 

( ) ( ) / ( )ip0
2e w e w w w w n= - + ,	 (5)

where wp is the plasma frequency of the electrons, and e0(w) is 
the contribution to the permittivity from the lattice. Below, 
we confine ourselves to considering such frequencies w, when 
the imaginary part of e0(w) can be neglected. 

For further consideration, we need the current density of 
the conduction electrons, j(z, t) = (0, j(z, t), 0), and the mag-
netic field component along the z axis, Bz(z, t). In accordance 
with relation (2) and the equation c¶E/¶x = – ¶Bz/¶t, we have 

Bz(z, t) = E(z, t)sinq.	 (6)

In turn, the expression for j(z, t) follows from the equation for 
the velocity of the directed motion of electrons in a high-fre-
quency field (see, for example, equation (3) from [18]): 

( , )F z w( , )
( )

[ ( , )]Re Im cosj z
E

F z
4
p en
2

2 2pt
w

w n
t

w n w wt=-
+

+"

	 [ ( , ) ( , )]Im Re sinF z F zw w n w wt+ - ,.	 (7)

The current density j(z, t) and the electric field strength E(z, t) 
allow us to find the average power obtained by the conduc-
tion electrons during the period 2p/w. Taking into account 
the inequality wtp >> 1, for the absorbed power we have

2
( , ) ( , )

8
dt j z E z

0

2 / p
2

,p p
w t t

wp wy

	 ´  2( ) | ( , ) | ( , )E F z Q zen2 2
2 /

w n
n t w t
+

.	 (8)

Absorption of laser radiation leads to nonuniform heating of 
electrons and the associated pressure perturbation. Under 
conditions of relatively weak heating, for a small pressure 
perturbation Dp(z, t), one can use the equation

¶
¶

¶
¶

¶
¶( , ) ( , ) ( , )p z z z p z Q z

3 3
2

s

F
2

t t
n

u t tD D- =< F ,	 (9)

where vs is the effective frequency of electron collisions, whose 
velocity of directed motion varies over times longer than the 
duration of the laser pulse. The pressure perturbation is 
related to the heat capacity of electrons by the expressions 
Dp(z, t) = C(z, t)T(z, t)/3, C(z, t) = p2nkB2T(z, t)/2eF, where eF 
is the Fermi energy; kB is the Boltzmann constant; and n and 
T(z, t) are the concentration and temperature of electrons, 
respectively. 

The high-frequency motion of electrons in the fields 
E(z, t) and Bz(z, t) leads to the appearance of a low-frequency 
drag current along the film surface. In accordance with rela-
tions (6) and (7), after averaging over a period 2p/w, the 
source of the low-frequency drag current density along the x 
axis has the form 

( , ) ( , ) ( , )sindmc
e t j z B z mc

e Q z
2

/

z
0

2

p
w t t t q=

p wy .	 (10)

Relations (8), (10) and the equation for Dp(z, t) form the basis 
for further consideration of the generation of low-frequency 
radiation in a thin film. 

3. Low-frequency field in the film 

The drag force density and the pressure gradient along the 
film surface lead to the appearance of a directed motion of 
electrons along the x axis. In the case, when vs satisfies the 
inequality

vstp >> 1,	 (11)

for nonlinear current density along the film surface we have 

¶
¶( , ) ( , ) ( , )sinJ z mc

e Q z p z
s

x t n
q t t tD= +8 B

	 ( , ) ( , )J z J zcd grad/ t t+ .	 (12)

Relation (12) does not contain a contribution to Jx(z, t) due 
to the ponderomotive effect of the laser pulse. Under the con-
ditions of inequality (11), this contribution is vstp >> 1 times 
less than the contribution due to the influence of the drag 
force. If in equation (9) we can neglect the effect of heat trans-
fer across the film on the pressure gradient along the x axis, 
the contribution to Jx(z, t) due to the drag force, as can be 
seen from relation (12) and equation (9), is 3/2 times greater 
than that due to the pressure gradient along the film surface. 
Considerable heat transfer across the film leads to an even 
greater relative decrease in the contribution from ¶Dp(z, t)/¶t 
into the current density in Jx(z, t). For example, under the 
conditions of the experiment performed in [6], there is an 
additional decrease of about two times. 

Relation (12) allows us to consider the generation of low-
frequency radiation under conditions of inequality (11). From 
Maxwell’s equations we find the low-frequency field in the 
film by using a system of equations for the Fourier transforms 



243Generation of terahertz radiation in the interaction

of the electric field component Ez(z, W) and the magnetic field 
component B(z, W) = (0, B(z, W), 0):

¶
¶( ) ( , ) ( , ) 4 ( , )iE z c
z B z

i J zx x
pe W W

W
W

W
W=- - ,	 (13)

¶
¶

¶
¶( , ) ( , ) ( , )

z
B z B z c z J z4

s cd2

2
2 pkW W W- =- .	 (14)

Here, W is the frequency resulting from the Fourier trans-
form;

( ) ( ) /[ ( )]ip s0
2e e w nW W W W= - + 	 (15)

is the low-frequency permittivity; and 

( / ) [ ( )]sincs
2 2 2 2k q eW W= - .	 (16)

The change in vs over time is neglected, which is possible 
under conditions of weak heating. The general solution of 
equation (14) has the form 

( , ) ( ) ( )exp expB z C z C zs s1 2k kW = - +

	
¶
¶[ ( )] ( , )' '
'

'expdc z z z
z
J z2

s
s cd

z

Lp
k k W+ -' y

	
z

¶
¶[ ( )] ( , )' '
'

'expdz z z
z
J zs cd

0
k W+ - - 1y .	 (17)

The low-frequency radiation is emitted from the film in the 
region of space z < 0 and z > L. The Fourier components of 
the fields of the radiation emitted from the film are found 
from equations (13) and(14), in which the term with Jx(z, W), 
is omitted, ks2 is replaced by (–W 2 /c2)cos2q, and e(W) is substi-
tuted by unity. In this case, in the region z < 0

( , ) ( )exp cosiB z B z cr r qW W W
= -: D ,	 (18)

( , ) ( , )cosE z B zr r qW W=- ,	 (19)

and in the region z > L

( , ) ( ) ( )exp cosiB z B z L ct t qW W W
= -: D ,	 (20)

( , ) ( , )cosE z B zt t qW W= .	 (21)

Unknown quantities C1, C2, Br(W), Bt(W) are found from the 
conditions of continuity of Ex(z, W) and B(z, W) at the film 
boundaries z = 0 and L. Because the radiation patterns in the 
region of space z < 0 and z > L are very similar, we confine 
ourselves to the analysis of radiation in the region z < 0, 
which is either greater than the radiation in the region z > L, 
or comparable to it if the film is sufficiently thin. 

The nonlinear currents Jcd(z, W) and Jgrad(z, W) make an 
additive contribution to the magnetic field strength emitted 
from the surface z = 0. The contribution from the drag cur-
rent has the form 

L
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The result of (22) follows from the continuity conditions of 
the tangential components of the electromagnetic field and 
from expressions (12), (13), and (17) – (21), if Jgrad(z, t) is 
omitted from (12). In turn, by omitting Jcd(z, t), from the 
same relations we find the contribution to B(0, W) from the 
pressure gradient 
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Relations (22) and (23) allow us to consider the effect of film 
thickness on the generation of low-frequency radiation due to 
the drag current and the pressure gradient along the film sur-
face. 

4. Discussion 

Let us discuss the properties of low-frequency radiation by a 
metal film. For a typical metal in the low frequency region:

| ( ) | ,sin
s

p
s

2
2

0& &
n

w
q e n

W
W W- .	 (24)

At frequencie 1/tp s+ % nW , from (16) we approximately have 
ks = (1 )( / ) /i c 2p sw nW- . In addition, in the visible frequency 
range, conditions

/ | ( ) | ,sinp
2 2 2

0& &w w q e w w n- ,	 (25)

are relatively simply realised, in which k » wp/c and exceeds 
| ks | = ( / ) /cp sw nW  by / 1s &n W  times. 

First, we consider relation (22) describing the generation 
of low-frequency radiation by the drag current. If the film is 
thick, then 1L Ls& &k k . In this case,
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i
F z c z

2
p

pw
w q w
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+
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Taking into account relations (8), (12) and (26), for a thick 
film we find from (22)

( ) 16
cos

iB
mc
e

2cd
s s

s

p

p
2 2 2 2

2

p
n

n
k k

k
w w q

w
W =

+ +

	 W
( )

( )
cos

sin cos
i c

I
s

2

# e q k
q q

W W +
,	 (27)
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is the Fourier transform of the energy flux density. Taking 
into account the inequalities , , vs s& & &n w n nW W  and 
the explicit form of k and ks, expression (27) coincides with 
expression (37) from [9], obtained for a massive sample. For a 
thinner film, conditions are possible when the high-frequency 
field is localised at the surface (z = 0), and the low-frequency 
field is weakly nonuniform across the film thickness, i.e., 

1 .L Ls& &k k  In this case, at 

W| /( ( )) | /cos cs s p& -q k e n wW W ,

when Bcd(W ) is not abnormally small, instead of (27) we have 

W( ) 16
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iB
mc
e

2cd
s p
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2 2 2 2

2
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w w q

w
=

+

	 W
( )

( )
cos

sin cos
iL c

I
s s

2

# k e q k
q q

W W +
.	 (28)

Comparing relations (27) and (28), we see that at 

1 /( )cosLs s p& &k n w qW 	 (29)

radiation from a thin film is more efficient. According to (28), 
with film thicknesses satisfying inequalities (29), the Fourier 
transform of Bcd(W ) increases proportionally to 1/L with 
decreasing film thickness. 

An even stronger increase in Bcd(W ) with a decrease in the 
film thickness is realised under the conditions when 1 L& k , 
ksL. In such a thin film 

( , )
2

2
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i

F z
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w
w q w k

w q
=

+
,	 (30)

and the Fourier transform of Bcd(W ) has the form: 
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When changing the film thickness in the interval (29) and the 
interval 

1 2( / )cosL p& &k w w q 	 (32)

the Fourier transform of Bcd(W ) increases proportionally to 
1/L2 with decreasing L. 

The generation of low-frequency radiation due to the 
pressure gradient is described by relation (23). The explicit 
form of Bgrad(W ), as can be seen from formula (12), depends 
on the type of solution of equation (9). We assume that the 
change in pressure is determined by a small change in the tem-
perature of the electrons. Then, neglecting the heat loss at the 
film boundaries, which meets the boundary conditions 
¶ ¶( , ) / |p z z z 0tD =  = ¶ ¶( , ) / |p z z z LtD =  = 0, from equation (9) we 
have 
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where Q(z, W) is the Fourier transform of the absorbed power 
Q(z, t) (8) and use is made of the notation 

3 /iT s F
2 2k n uW=- .	 (34)

According to relation (12), the pressure perturbation Dp(z, t) 
determines the nonlinear current density Jgrad(z,  t). Taking 
into account the explicit form of Dp(z, W ) (33), from (12) we 
find the Fourier transform of Jgrad(0, W ) on the illuminated 
surface of the film: 
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The expression for Jgrad(L, W ) is given by relation (35), if we 
replace cosh[kT(z – L)] by cosh(kTz). 

For thick films, 1, 1L LT s& &k k  and 1L &k . Under 
these conditions, using relations (8), (26) and (35), from (23) 
we have 
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Expression (36) differs from (27) in that instead of ks /(2k + 
ks), expression (36) contains the factor (2kT/3)(2k  + kT)–1, 
which is less than 2/3 in absolute value. We also note that 
under the conditions of cosp &w w q  and cosp s&w q nW  
adopted in [16], expression (36) coincides with the Fourier 
transform of the field ET (see formula (25) in [16]) arising due 
to the temperature gradient, if there is no significant differ-
ence between veff and v, as was considered above. At 

,cosp &w w q  cosp s&w q nW  relation (27) also coincides 
with the Fourier transform of the field Ed (see formula (24) in 
[16]) generated by the drag current. 

For typical metals | | ( / ) /cs p sk w nW=  ~ | kT | = /3 s Fn uW , 
since /( ) /c3F s p+u n w . For example, for gold at room tem-
perature, vs = 4 ́  1013 s–1, uF = 1.4 ́  108  cm  s–1 and wp = 
1.37 ́  1016 s–1. In this case, /( ) 0.83F s -u n  ́ 10–6 cm, and 
/ 2 10c p

6
#-w -  cm. Therefore, as the film thickness decreases, 

there arise conditions under which ksL << 1 and kTL << 1 
simultaneously, but kL can be large, since vs >> W. Under 
these conditions and in fulfilling the right-hand inequality 
(29) we find 

W W( ) ( ), 1 , 1
cos

B B L L L
3
2

grad cd s
p

s
T- & & & %k k

w q
n kW .	(37)

Here, Bcd(W) is given by (28), in the denominator of which one 
can omit the small term iksc. That is, like Bcd(W), the Fourier 
transform of Bgrad(W) increases with decreasing L in propor-
tion to 1/L. If, under the conditions of applicability of for-
mula (37), the inequality kL << 1 is satisfied instead of kL >> 1, 
then relation (37) still holds. Only in this case Bcd(W) is given 
by relation (31), in the denominator of which the small term 
iksc is omitted. For such thin films, the Fourier transforms of 
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Bcd(W) and Bgrad(W) increase proportionally to 1/L2 with 
decreasing L.

Ramakrishnan and Planken [6] studied the generation of 
terahertz radiation by illuminating gold films of various 
thickness on a glass substrate with weak femtosecond laser 
pulse at a wavelength of 800 nm. For such films, the percola-
tion threshold is ~7 nm [6]. In [6], the pulse duration was tp = 
50 fs. For a Gaussian pulse, this value of tp corresponds to 

p /(2 ) 30lnt 2p -t=  fs. Under these conditions, for the 
characteristic scales of the change in the field we have the fol-
lowing estimates: 1/ /c 22p- -k w  nm, 1/ /( )Re t v3T F p s-k u  
22-  nm and 1/Reks = /v t cs p p -w 24 nm, where it is assumed 

that /t2 p-W . According to [6], at film thicknesses of less than 
20 nm, but larger than 16 nm, i.e. far from the percolation 
threshold, one can observe an increase in the film transmis-
sion at the fundamental frequency and a relatively weak 
increase in the amplitude of the terahertz signal. The reason 
for such an increase, as shown above, may be a relative 
increase in the field strength of the laser pulse in a thin film, 
which leads to an increase in the transmittance at the funda-
mental frequency (see [18]). A more detailed quantitative 
comparison with the data from [6] is difficult.

Firstly, for gold, the mean free path of conduction elec-
trons is ~ / 35vF s -u  nm, i.e., somewhat larger than the field 
inhomogeneity scales, and the theory should be supplemented 
with allowance for spatial dispersion. Secondly, the theory 
does not take into account the graininess of the film structure, 
which can also lead to errors in the calculations of the tera-
hertz signal. And, thirdly, most data were obtained in [6] in 
the vicinity of the percolation threshold, where the theory is 
not applicable. At the same time, the above-established pecu-
liarities of the generation of terahertz radiation by the drag 
current and the pressure gradient of electrons can be realised 
in films of metals of higher quality, when the granular struc-
ture is absent. In this case, it is desirable to have films with hot 
electrons, when, due to an increase in the effective collision 
frequency, the mean free path of electrons becomes small 
compared with the characteristic scales of field changes.
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