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Abstract.  A theoretical model is proposed that describes the lasing 
dynamics in a gas ring laser (GRL) with coupled cavities. The con-
ditions are found under which spontaneous phase symmetry of 
counterpropagating waves is broken in the GRL with an antiphase 
optical coupling of the cavities. It is shown that in the case of spon-
taneous phase symmetry breaking, two branches appear on the 
GRL frequency characteristic. In some region of frequency non-
reciprocity of a ring cavity, both branches can exist under the same 
conditions. In this case, radiation bistability appears in the GRL, 
and hysteresis phenomena can be observed.

Keywords: gas ring laser, coupled cavities, beat mode, phase non-
reciprocity, spontaneous symmetry breaking.

1. Introduction

The study of nonlinear dynamics, amplitude and frequency 
characteristics of radiation of ring coupled-cavity lasers is an 
important task. In such lasers, part of the intracavity field of 
the main cavity containing the active medium is introduced 
into an additional ring cavity and then returns from it to the 
main cavity. As a result, external optical feedback arises in the 
main cavity, which, as theoretical and experimental studies of 
semiconductor coupled-cavity ring lasers have shown, has a 
great influence on the lasing dynamics and output character-
istics [1 – 3]. In these studies, it was found that the optical 
feedback phase plays an important role in the lasing dynamics 
and under conditions of stable generation regimes [3]. In the 
case of selective optical feedback, when radiation is spectrally 
filtered in an additional cavity, single-mode generation can be 
obtained, the radiation frequency can be tuned, and the genera-
tion modes can be controlled in semiconductor lasers [4, 5].

In theoretical and experimental studies of a solid-state 
coupled-cavity ring Nd : YAG laser, the effect of the optical 
feedback on the self-modulation oscillations of the intensities 
of the counterpropagating waves was examined [6, 7].

Coupled-cavity ring lasers are of interest for use in gyros-
copy. It was theoretically shown in [8 – 10] that in gas ring 
lasers (GRLs) with coupled cavities it is possible to control 
the intracavity dispersion and create conditions for the occur-
rence of anomalous dispersion, leading to an increase in the 
scale factor and sensitivity of the laser gyroscope. The disad-

vantage of these works is that they do not consider the lasing 
dynamics and the stability of the generation regimes. To do 
this, it is necessary to improve the theoretical model of the 
coupled-cavity GRL, as was done in studies of semiconductor 
[1 – 5] and solid-state [6, 7] lasers.

One of the nonlinear effects observed in ring lasers and 
nonlinear ring cavities is spontaneous symmetry breaking of 
the fields of counterpropagating waves (see, for example, 
[11 – 13]). The purpose of this work is a theoretical study of 
spontaneous phase symmetry breaking, which, as shown 
below, can occur in coupled-cavity GRLs.

2. System of equations

Figure 1 shows the scheme of a coupled-cavity GRL. Inside 
the main ring cavity containing the active medium (AM), two 
counterpropagating waves E ,1 2

u  propagate. The radiation 
emitted from the main cavity through a partially transmitting 
coupling mirror M excites the optical fields E ,c c1 2

u  in the exter-
nal ring cavity and returns again to the main cavity through 
the same mirror.

Intracavity fields in the main and additional cavities are 
written in the form

( ) ( ) ( )exp iE t E t t, , n1 2 1 2 w=u ,	
(1)

( ) ( ) ( )exp iE t E t t, ,c c c c n1 2 1 2 w=u ,
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Figure 1.  Scheme of a coupled-cavity GRL.
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where wn is the optical frequency of the generated mode. The 
complex amplitudes E1, 2(t) are slow functions of time and 
change little over the period of optical oscillations.

For coupled-cavity GRLs, based on similar studies of 
semiconductor [4] and solid-state [6, 7] ring lasers, we write 
the system of ordinary differential equations:
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Equations (2) describe the generation of counterpropagat-
ing waves E1, 2 inside the main cavity taking into account the 
effect of the fields Ec1, c2, and equation (3) describes the excita-
tion of counterpropagating waves in the external cavity by 
waves E1, 2. Here Dwr, Dwc are the bandwidths of the main and 
additional cavities (intracavity losses for counterpropagating 
waves are assumed to be equal); m ,1 2u  and m ,c c1 2u  are the com-
plex coupling coefficients, which determine the linear cou-
pling of the counterpropagating waves in the main and addi-
tional cavities; the coefficients k1, 2 describe the linear polaris-
ability of the GRL active medium, and a1, 2, b1, 2 describe its 
saturation with fields of counterpropagating waves; (1 + h)/k0 
is the ratio of the gain to the intracavity losses at the maxi-
mum of the gain curve; k0 = max{Re k1, 2}; h is the excess of 
the gain over the threshold; and kc exp(ij)/T and kc exp(ij + 
wnTc)/Tc are the optical coupling coefficients between the 
fields in the main and additional cavities, depending on the 
amplitude transmittance of the coupling mirror kc, on the 
round-trip transit times T and Tc for the light in the main 
and additional cavities, on the phase shift j between the 
reflected and transmitted waves at the coupling mirror, and 
also on the phase shift per round-trip transit of the addi-
tional cavity, F = wnTc.

To justify the considered model, which describes the 
dynamics of the coupled-cavity GRL emission, one can also 
use models of coupled lasers (see, for example, [14, 15]). If in 
the model of coupled lasers we proceed to a particular case 
when there is no gain medium in one of the cavities, then we 
come to the model under consideration. It is applicable pro-
vided that in each of the counterpropagating directions in the 
GRL there is a single-mode generation.

The sensitivity to rotation is associated with the Sagnac 
effect, when the main and additional cavities due to rotation 
with an angular velocity Jo  exhibit the difference between the 
eigenfrequencies of the counterpropagating waves:

8
L
Sp

l
JW =
o
,  

L
S8

c
c

cp
l

JW =
o
,	 (4)

where S, Sc are the projections of the areas of the main and 
additional cavities on the axis of rotation; and L, Lc are the 
perimeters of the ring cavities.

To describe the interaction of counterpropagating waves 
in an active medium, we will use the GRL vector theory 
[16, 17], which is valid in the weak field approximation with 

an arbitrary ratio of the widths of the homogeneous and 
Doppler lines.

3. Beat frequency

Consider the regime of the beating of counterpropagating 
waves. We assume that the beat frequency wb is significantly 
greater than the coupling of counterpropagating waves 
through backscattering (|wb| >> | |m ,1 2u , | |m , 2c c1u ). In this case, 
when solving equations (2) and (3), the coupling coefficients 
| |m ,1 2u  and | |m , 2c c1u  can be neglected. For simplicity, we restrict 
ourselves to the case when the additional cavity is insensitive 
to rotation (the projection of the area vector on the axis of 
rotation Sc is zero or small).

In the regime of beatings, the time dependence of the com-
plex amplitudes of the counterpropagating waves |E1, 2| will be 
expressed as

E1, 2(t) = |E1, 2|exp(± iwt), 	 (5)

where the wave amplitudes |E1, 2| are constant and w = wb /2. 
From equations (3) we find

/2
( ) /exp
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i

E
k T T
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1 2 1 2! w w

j w
D=

+

+ . 	 (6)

Substituting (6) into equations (2) and assuming for sim-
plicity that the saturation coefficients a1, 2 and b1, 2 are real 
values, we obtain the equation for w:

( ) /4
A

2c
2 2w

w w
w

D
W

+
+

= , 	 (7)

where { [ (2 )]}Im exp iA k Tc cn
2 j w= + .

In (7) there are two parameters characterising the optical 
feedback phase:F = wnTc  and the phase shift j between the 
reflected and transmitted waves at the coupling mirror. The 
optical feedback phase can be changed in the range of 0 – 2p 
when adjusting the perimeter of the additional cavity by a 
value of the order of the wavelength. We will further assume 
that 2j + wnTc = 2pp ± p, where p is an integer. In this case, 
the optical coupling between the cavities increases the losses 
in the main cavity and reduces the amplitudes |E1, 2 | of the 
intracavity fields. This optical coupling of the cavities will be 
called antiphase.

In the case of antiphase optical coupling, we rewrite equa-
tion (7) in the form

( ) /4 2c
2 2

0
2

w
w w

w w
D

W
-

+
= , 	 (8)

where / .k TTc c0w =
From (8) it follows that in the absence of rotation (W = 0) 

in the case of antiphase optical coupling, the beat frequency 
wb = 2w is determined by the expression

2 ( ) / .4b c0
2 2!w w wD= -  	 (9)

Thus, the antiphase optical coupling in the absence of 
nonreciprocity in the main and additional cavities (due to 
rotation or under the action of magnetic fields) leads to the 
emergence of the inequality of the frequencies of the counter-
propagating waves. In other words, it can be said that optical 
coupling leads to the emergence of a frequency bias, which, 
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according to (9), can take two opposite signs. This effect is 
called the spontaneous phase symmetry breaking of the coun-
terpropagating waves.

From (9) it follows that spontaneous phase symmetry 
breaking occurs when the condition

/ /2k TTc c c2 wD 	 (10)

is satisfied.
Figure 2a shows the dependence of the beat frequency fb = 

wb /2p on the frequency nonreciprocity of the main ring cavity 
W/2p. Here, the solid curve corresponds to the beat frequency 
wb = 2w, calculated by formula (8). As can be seen from 
Fig. 2a, there are two regimes with beat frequencies of oppo-
site sign. Figures 2b and 2c show the same results in narrower 
frequency intervals.

In the calculations, the following parameters were chosen: 
the perimeters of the main and additional cavities, L = 10 cm 
and Lс =  40 cm; losses per round-trip transit of the main and 
additional cavities, 0.005 and 0.002, respectively; and the 
amplitude transmittance of the coupling mirror, kc = 0.001. 
With the indicated values of the parameters, in the case of 
antiphase optical coupling due to the spontaneous phase sym-
metry breaking of the counterpropagating waves, there 
appears a frequency bias; in accordance with formula (9), fb = 
wb /2p = ± 413.5 kHz. As a result, two branches appear on the 
GRL frequency response (see Fig. 2a). There is a region of 
frequency nonreciprocities W in which both branches can 
coexist. In this case, radiation bistability occurs in the GRL, 
and hysteresis phenomena can be observed.

The system of equations (2) and (3) was also solved numer-
ically in the case of antiphase optical coupling. In this case, all 
the parameters of the cavity were chosen the same as in the 
calculations using formula (8). The coefficients k1, 2, describing 
the linear polarisability of the GRL active medium, and the 
saturation coefficients a1, 2 and b1, 2 were calculated using the 
formulas given in [16, 17] for a ring He – Ne laser on the 3s2 – 2p4 
neon transition with a wavelength of 0.63 mm. A single-isotope 
laser was considered at a pressure of p = 700 Pa, with a Doppler 
linewidth of ku/2p = 800 MHz, a homogeneous transition line-
width gab /2p = 357 MHz, an upper level width ga /2p = 32 MHz 
and a lower level width gb /2p = 85 MHz. It was assumed that 
the magnetic field H, which produces the splitting of the mag-
netic sublevels of neon, is absent (H = 0).

The points in Fig. 2a show the results obtained by numer-
ically solving equations (2) and (3) with the coupling coeffi-
cients of the counterpropagating waves, ( /2)exp im m,1 2 p= -u  
and m/2p = 100 Hz. The excess of the gain over the threshold 
h was assumed to be equal to 0.5.

As noted above, the antiphase optical coupling between 
the cavities reduces the intensity of the intracavity field in the 
main cavity. With the above parameters, as shown by the 
numerical solution of equations (2) and (3), the intensity 
reduction was 20 %. The results obtained allow us to conclude 
that the analytical solution of (8), which does not take into 
account the effect of the coupling of counterpropagating 
waves through backscattering, agrees well with the results of 
calculations with allowance for coupling.

4. Conclusions

A theoretical model describing the lasing dynamics of a cou-
pled-cavity GRL is proposed. It is shown that in the frame-
work of this model, in the case of antiphase optical coupling 

of the cavities, spontaneous phase symmetry breaking of the 
counterpropagating waves can be observed, leading to the 
emergence of a frequency bias and the formation of two 
branches on the frequency response of the GRL. These 
branches correspond to two bistable regimes of beatings of 
counterpropagating waves with beat frequencies of opposite 
sign. An approximate analytical solution (8) is obtained, 
which is in fairly good agreement with the exact results calcu-
lated on the basis of the considered coupled-cavity GRL 
model. Conditions (10) are found, under which spontaneous 
phase symmetry of the counterpropagating waves is broken 
in the GRL with antiphase optical coupling of the cavities.
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Figure 2.  (a) Dependence of the beat frequency of counterpropagating 
waves fb = wb /2p on the frequency nonreciprocity of the main ring cav-
ity W/2p in the presence of bistability; (b, c) bistable regimes with op-
posite values of beat frequencies (shown in narrower frequency inter-
vals): solid curves show beat frequency wb = 2w calculated using for-
mula (8), and points are the results obtained by numerically solving 
equations (2) and ( 3); the parameter values are given in the text of the 
paper.



	 I.I. Zolotoverkh, E.G. Lariontsev656

Acknowledgements.  The authors are grateful to I.I. Savel’ev, 
who stimulated our interest in the study of coupled-cavity 
ring lasers.

References
  1.	 Mashal L., Van der Sande G., Gelens L., Danckaert J., Verschaffelt G. 

Opt. Express, 20, 22503 (2012).
  2.	 Khoder M., Van der Sande G., Danckaert J., Verschaffelt G. 

IEEE Photon. Technol. Lett., 28, 959 (2016).
  3.	 Friart G., Van der Sande G., Khoder M., Erneux T., Verschaffelt G. 

Opt. Express, 25, 339 (2017).
  4.	 Ermakov V., Beri S., Ashour M., Danckaert J., Docter J., Bolk J., 

Leijtens X.J.M., Verschaffelt G. IEEE J. Quantum Electron., 48, 
129 (2012).

  5.	 Khoder M., Verschaffelt G., Nguimdo R.M., Bolk J., Leijtens X.J.M., 
Danckaert J. Opt. Lett., 38, 2608 (2013).

  6.	 Zolotoverkh I.I., Lariontsev E.G., Firsov V.V., Chekina S.N. 
Quantum Electron., 48, 1 (2018) [ Kvantovaya Elektron., 48, 1 
(2018)].

  7.	 Zolotoverkh I.I., Lariontsev E.G. Quantum Electron., 48, 510 
(2018) [ Kvantovaya Elektron., 48, 510 (2018)].

  8.	 Schaar J.E., Yum H.N., Shahriar S.M. Proc. SPIE, 7949, 794914 
(2011). 

  9.	 Han X., Luo H., Qu T., Wang Z., Yuan J., Bin Z. J. Opt., 16, 
125401 (2014).

10.	 Wang Z., Yuan B., Xiao G., Fan Z., Yuan J. Appl. Opt., 54, 9568 
(2015).

11.	 Skryabin D.V., Vladimirov A.G., Radin A.M. Opt. Commun., 
116, 109 (1995).

12.	 Kamysheva A.A., Kravtsov N.V., Lariontsev E.G., Chekina S.N. 
Quantum Electron., 36, 763 (2006) [ Kvantovaya Elektron., 36, 763 
(2006)].

13.	 Del Bino L., Silver J.M., Stebbings S.L., Del’Haye P. Sci. Rep., 7, 
43142 (2017).

14.	 Glova A.F., Kurchatov S.Yu., Likhanskii V.V., Lysikov A.Yu., 
Napartovich A.P. Quantum Electron., 26, 500 (1996) [ Kvantovaya 
Elektron., 23, 515 (1996)].

15.	 Fabiny L., Colet P., Roy R., Lenstra D. Phys. Rev. A, 47, 4287 
(1993).

16.	 Khromykh A.M., Yakushev A.I. Sov. J. Quantum Electron., 7, 13 
(1977) [ Kvantovaya Elektron., 4, 27 (1977)].

17.	 Savel’ev I.I., Khromykh A.M., Yakushev A.I. Sov. J. Quantum 
Electron., 9, 682 (1979) [ Kvantovaya Elektron., 6, 1155 (1979)].

 




