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Abstract.  We consider the problem of the ambiguity of the inverse 
problem of polarimetry for a homogeneous anisotropic medium 
characterised by orthogonal eigenpolarisations generated by non-
commutativity of Jones and Mueller matrices of elementary types 
of anisotropy. The differences between two variants of the orthog-
onality conditions for the eigenpolarisations of an arbitrary aniso-
tropic medium, the existence of which is due to this ambiguity, are 
investigated. The results obtained can be used to analyse the ade-
quacy of the solution of the inverse problem of this class and in the 
problems of the synthesis of polarisation elements with given 
characteristics.

Keywords: inverse problem of polarimetry, Jones matrix, phase aniso­
tropy, amplitude anisotropy, eigenpolarisations.

1. Introduction

The most important problem of modern polarimetry is the 
solution of the inverse problem. The latter is defined as a 
problem in which the characteristics of radiation before and 
after interaction with a medium are partially or completely 
known (or can be measured) and it is necessary to extract 
maximum information about the medium in question.

In this paper, we turn to the class of inverse problems in 
which the interaction of polarised electromagnetic radiation 
with a medium under study does not result in depolarisation. 
In this class of inverse problems, the maximum possible 
amount of information necessary to determine the character-
istics of a medium is contained in the 2 ́  2 Jones matrix or in 
the 4 ́  4 Mueller matrix [1, 2], between which there is a one-
to-one correspondence [2]. In this case, the polarisation states 
of the radiation are described by the 2 ́  1 Jones vector or the 
4 ́  1 Stokes vector.

In [3 – 5], this problem was investigated using a model of 
an arbitrary homogeneous anisotropic medium based on the 
generalised equivalence theorem, according to which [3] any 
combination of polarisation elements with linear and circular 
phase and amplitude anisotropy is equivalent to an optical 
system containing one element of each kind:

T = T LP(d, a)T CP(j)T LA(P, q)T CA(R),	 (1)

where T is the resulting matrix of the medium under consider-
ation. The T LP, T CP, T LA and T CA matrices describe four, 
according to Jones terminology [6], elementary types of ani
sotropy: linear (LP) and circular (CP) phase anisotropy [i. e. 
the case when electromagnetic radiation with two orthogonal 
linear (circular) eigenpolarisations propagates in a medium 
with different phase velocities], as well as linear (LA) and cir-
cular (CA) amplitude anisotropy [when radiation with two 
own orthogonal linear (circular) polarisations is absorbed dif-
ferently]. The expressions for these matrices have the form:
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where d and a are the magnitude and azimuth of the orienta-
tion of the linear phase anisotropy; j is the magnitude of the 
circular phase anisotropy; P and q are the magnitude and azi-
muth of the orientation of the linear amplitude anisotropy; 
and R is the magnitude of the circular amplitude anisotropy. 

As is known, matrices of elementary types of anisotropy 
(2) do not commute [2]. This gives rise to one of the most 
important ambiguity contexts for solving the inverse problem 
of polarimetry for homogeneous anisotropic non-depolaris-
ing media.

Savenkov et al. [5] showed that in the general case the 
inverse problem under consideration has two solutions related 
to the existence of two different polarisation bases [orders of 
multiplication of matrices of elementary types of anisotropy 
(2)]:

T CPT LPT CAT LA,	 (3a)

T CPT LPT LAT CA.	 (3b)
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Based on this result, Savenkov et al. [5] investigated how 
the properties (azimuths and ellipticities) of eigenpolarisa-
tions of a medium depend on the parameters of amplitude 
anisotropy for the case of Hermitian dichroism.

Another important problem of polarimetry in the consid-
ered context of the ambiguity of solving the inverse problem 
is the study of the conditions under which the eigenpolarisa-
tions of a homogeneous anisotropic medium are orthogonal. 
On the one hand, as can be seen from (2), all (!) four elemen-
tary types of anisotropy are characterised by orthogonal 
eigenpolarisations. The situation with different combinations 
of elementary types of anisotropy is much more complicated 
and diverse. Previously, Jones himself showed in the form of 
the so-called first equivalence theorem [6] that an arbitrary 
combination of polarisation elements with linear (T LP) and 
circular (T CP) phase anisotropy is always characterised by 
orthogonal, in the general case, elliptical eigenpolarisations. 
Since the Jones and Mueller matrices of circular and linear 
phase anisotropy are unitary, a similar theorem exists in lin-
ear algebra [7], in the sense that the product of unitary matri-
ces is always a unitary matrix. It is noteworthy in this case 
that there is no such theorem for the product of Hermitian 
matrices, which are the matrices of linear (T LA) and circular 
(T CA) dichroism in (2). This means that in polarimetry there 
are no variants of the product of matrices T LA and T CA, 
which would be characterised by orthogonal eigenpolarisa-
tions.

In the class of media characterised by two elementary 
types of anisotropy, in the context of the orthogonality of the 
eigenpolarisations of a medium under study, only two cases 
should be mentioned. In the first case, the medium is charac-
terised simultaneously by circular phase and circular ampli-
tude anisotropy, which, in the framework of multiplicative 
simulation, corresponds to the variant of the second Jones 
equivalence theorem [6]. Such a medium or its equivalent 
combination of polarisation elements is obviously always 
characterised by orthogonal circular eigenpolarisations. In 
the second case, the medium is characterised by linear phase 
and amplitude anisotropy with coinciding orientation azi-
muths [1].

In paper [8], for the polarisation basis (3a), we obtained 
the conditions for the orthogonality of eigenpolarisations of a 
medium in the general case, i. e., when the medium under 
study is characterised by all four elementary types of anisot-
ropy. The aim of this paper is to obtain similar general 
orthogonality conditions for eigenpolarisations of an arbi-
trary anisotropic medium for the polarisation basis (3b) and 
to perform a comparative analysis of these conditions.

2. Conditions for the orthogonality  
of an arbitrary anisotropic medium

As shown in [8], for the Jones matrix model in basis (3a) the 
conditions for orthogonality of the eigenpolarisations for an 
arbitrary homogeneous anisotropic medium have the form

(1 – P ){(1 + R2 ) cos[2(a – q – j)]
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Using arguments and actions similar to those given in [8], 
we obtain the conditions for the orthogonality of eigenpolari-
sations for basis (3b):
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It can be seen that orthogonality conditions (4) and (5) are 
structurally very similar, and their differences are as follows: 
different arguments of cosines in the first equations (where 
there is a quantity – j in one basis, which is absent in another 
basis) and different signs in front of R2 in the second equa-
tions.

3. Comparative analysis of the obtained  
solutions

Further analysis will be carried out for two cases: a = q and 
a ¹ q, i. e., the equality and inequality of azimuths of orienta-
tion of the linear phase and amplitude anisotropy.

3.1. Case a = q

In this case, the systems of equations (4) and (5) take the 
form

(1 – P )[– 1 + R2 + (1 + R2) cos 2j] = 0,	
(6a)
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The general (in the sense that the medium in question is 
simultaneously characterised by all four elementary types of 
anisotropy) solution of system (6a) with respect to the param-
eters of phase anisotropy was obtained in [9] and has the 
form:

d = ± 2 arctan 
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j = ± arccos 
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c m.	
(7)

At the same time, the analysis of system (6b), which is 
similar to the one we performed for system (6a) in [9], shows 
there is no such general solution for it.
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As an example illustrating this result, we consider the 
solution of the inverse problem in bases (3a) and (3b) for the 
following Jones matrix:

T = 
0.96 0.2
0.36 0.37

0.23 0.47
0.6 0.05

i
i

i
i

-

+

- -

+
e o.	 (8)

In basis (3a) we have d = – 20 °, a = 10 °, j = 26.6 °, P = 0.7, 
q = 10 °, and R = 0.5, and in basis (3b) we have d = – 31.3 °, 
a = – 14.4 °, j = – 24.4 °, P = 0.56, q = 10 °, and R = 0.45. 
Thus, in the first case, a = q and the existing solution corre-
sponds to conditions (7). In the second case, a solution also 
exists, but in this case, a ¹ q.

For both systems, (6a) and (6b), there are no solutions in 
the case when the medium under study is simultaneously 
characterised by any three elementary types of anisotropy 
from (2).

Now we turn to conditions (7). It is seen that when the 
orientation azimuths of the phase and amplitude anisotropy 
coincide, the value of phase linear anisotropy d is completely 
determined only by the value of the parameter P, i. e. linear 
amplitude anisotropy, and the value of the circular phase 
anisotropy j is completely determined only by the value of 
the parameter R, i. e. circular amplitude anisotropy. Graphic 
interpretation of conditions (7) is presented in Fig. 1.

Important in this case is that, as follows from Fig. 1a, the 
magnitude of linear phase anisotropy d, when the magnitude 

of linear amplitude anisotropy P varies in the whole range of 
its physically acceptable values, can reach values only in the 
range of 0 to 90 °, the values of d that are greater than 90 ° can-
not be obtained. It follows from Fig. 1b that with a change in 
the parameter R in the whole range of physically acceptable 
values, the value of j can change only in the range of 0 of 45 ° 
and of 135 ° to 180 °. Thus, the parameters d and j in the case 
of the orthogonality of eigenpolarisations have ‘forbidden 
zones’ of values in the range of 90 ° to 180 ° and of 45 ° to 135 °, 
respectively. It should be noted that the widths of the forbid-
den zones are equal to p in both cases.

Note that conditions (6a) and (6b) obviously describe all 
media characterised by two types of anisotropy, which were 
discussed in Section 1, including those media that are charac-
terised by linear phase and amplitude anisotropy with coinci-
dent orientation azimuths.

3.2. Case a ¹ q

In this case, the general solutions of systems (4) and (5) take 
respectively the form:
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where D = a – q.
Thus, in the case of a ¹ q in both bases, (3a) and (3b), 

there are general solutions to the inverse problem, which are 
represented by the systems of equations (9) and (10). These 
solutions differ in sign between R2 and 1, as well as the sign of 
the parameter d. The graphical interpretation of conditions 
(9) and (10) is presented in Figs 2 and 3. It can be seen that for 
basis (3a) the values of parameters j and d are physically 
acceptable for any values of a pair of parameters R and D, 
whereas for basis (3b) there are forbidden zones for the values 
of the parameters j and d, as in the case of a = q.

We should add that systems (4) and (5) in the case when 
the medium under study is simultaneously characterised by 
any three elementary types of anisotropy from (2) have the 
only solutions [4, 5]

j = 0, p,

a = q ±
4
p ,	 (11)
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Figure 1.  Orthogonality conditions for eigenpolarisations ( 7 ): ( a ) lin-
ear phase anisotropy d as a function of linear amplitude anisotropy P 
and ( b ) circular phase anisotropy j as a function of circular amplitude 
anisotropy R.
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j = 0, p,

a = q ±
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These solutions correspond to the so-called Hermitian 
dichroism and can be considered as dichroic polar forms in an 
anisotropic medium model based on the polar decomposition 
theorem [10].

4. Conclusions

We have considered the problem of the ambiguity of the 
inverse problem of polarimetry for a homogeneous anisotro-
pic medium characterised by orthogonal eigenpolarisations 
generated by the non-commutativity of Jones and Mueller 
matrices of elementary types of anisotropy (2). The non-com-
mutativity of Jones and Mueller matrices leads to the pres-
ence of two solutions of the inverse problem of polarimetry, 
related to the existence of two different polarisation bases (3a) 
and (3b) [5].

For the polarisation basis (3b), conditions (5) have been 
found under which an arbitrary anisotropic medium is char-
acterised by orthogonal eigenpolarisations. For conditions 
(5) and conditions (4), which we obtained in [8], a compara-
tive analysis has been performed. 

For the case a = q, it has been shown that there is no gen-
eral solution for conditions (5). At the same time, for condi-
tions (4), the solution exists [9]. This means that if for a 
medium with orthogonal eigenpolarisations, whose anisotro-
pic properties are described by some Jones matrix, within the 
polarisation basis (3a) there is a solution to the inverse prob-
lem containing all four elementary types of anisotropy, then 
within basis (3b) there is always (!) a solution for this Jones 
matrix, containing only three elementary types of anisotropy. 

It has also been shown that in the case a = q, there are no 
solutions to the inverse problem of the class under consider-
ation that simultaneously contain three elementary types of 
anisotropy in bases (3a) and (3b).

General solutions have been obtained for the inverse 
problem (9) and (10) for the case a ¹ q. The characteristic 
features of these solutions are that, if we consider the dichroic 
parameters P and R to be arbitrary, the magnitude of the cir-
cular phase anisotropy j depends only on R and the differ-
ence D of orientation azimuths of the linear phase and ampli-
tude anisotropy. The magnitude of the linear phase anisot-
ropy d depends on all the two above parameters and on P. 
However, it has been shown that in basis (3a), physically 
acceptable values of the parameters j and d can be found for 
any pair of the values of the parameters R and D, whereas in 
basis (3b), such values of j and d exist not for every pair of 
the parameters R and D.

The results obtained in the work, on the one hand, are of 
undoubted interest for an adequate interpretation of the 
polarimetric measurement data, and on the other hand, they 
can be used in the synthesis of polarisation elements with 
given characteristics. 
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