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Abstract.  A contour analysis method based on a spiral beam for-
malism is proposed for cardiogram classification. A cardiogram 
contour proximity metric is introduced in spiral beam intensity 
space. Normal and infarction cardiograms are classified using the 
proposed method. The method is shown to provide adequate results 
in most of the cases examined.

Keywords: spiral beams, classification of cardiograms, contour 
analysis, analysis of cardiograms.

1. Introduction

Automated analysis of physiological signals, including elec-
trocardiographic ones, is attracting more and more attention 
because there is a strong need for preventive diagnosis and 
early diagnosis of pathologies. Traditionally, electrocardio-
grams (ECGs) are analysed by a cardiology expert, who 
examines their shape, the height and arrangement of their 
waves and the position and duration of their segments [1] 
(Fig. 1). Analysis results depend in many respects on the doc-
tor’s skill and experience.

At the same time, more and more attention is being paid 
to automated analysis techniques in diagnosis. Differential 
diagnosis in the case of ECG analysis from the viewpoint of 
process automation is a classification problem, which can be 
solved using different approaches. One of the main methods 
is neural network technology [2, 3] (see also references in 
Isakov et al. [3]). In a number of other approaches, mathe-
matical transformations, e.g. wavelet analysis [4, 5], are pro-
posed as an effective tool for signal classification. However, 
the above-mentioned methods are not flawless: it is worth 
mentioning the very complex architecture of neural networks, 
the absence of formalised neural network adaptation algo-
rithms and the problem of adequate neural network learning 
procedures. Wavelet transform algorithms typically do not 
take into account specific features of a signal or the purpose of 
signal conversion. In the case of wavelet analysis of cardio-
grams, there are currently no clear criteria for relating wavelet 
cardiograms to particular types of cardiac pathology [4]. At the 
same time, a cardiogram can be thought of as a particular case 
of a contour and, accordingly, various contour analysis meth-
ods can be used to interpret (and classify) cardiograms [6, 7].  

In previous work [8, 9], a method was proposed for contour 
recognition using spiral light beams. The method assumes 
that the object to be recognised is not a plane curve represent-
ing a contour but a corresponding spiral light beam, which is 
more informative and has important characteristics and 
properties. Spiral light beams were first considered by 
Abramochkin and Volostnikov [10, 11] as a class of self-simi-
lar solutions to a parabolic equation, whose intensity remains 
constant during evolution, to within a scale factor and rota-
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Figure 1.  Schematic of a portion of a normal cardiogram (main features).
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tion. This work presents a continuation of previous studies 
[8,  9] and builds on the following background: In cardiog-
raphy, contours of normal and infarction cardiograms 
have a characteristic shape and differ markedly from each 
other. Since the cardiogram waveform is described by a 
periodic function, one can pass from a linear time sweep to 
the representation of a cardiogram period as a closed con-
tour (Fig.  2).

Putting cardiogram contours in correspondence with 
spiral beams, one can construct some proximity (or similar-
ity) metric for spiral beam intensity distributions (and hence 
for the input ECG contours) and then conclude whether a 
given cardiogram is normal or abnormal with an infarction 
pattern.

2. Mathematical formalism  
for spiral beam theory

In modern cardiography, use is commonly made of a stan-
dard cardiogram recording procedure, which utilises readings 
from 12 leads (three standard limb leads, three augmented 
limb leads and six chest leads), i.e. one cardiogram represents 
a set of data from the 12 leads. We will consider the signal 
from each cardiograph lead as a plane curve consisting of an 
ordered set of points:

z(t) = x(t) + iy(t),   t Î [0,T ].	 (1)

Except in the case of cardiac arrhythmias, a cardiogram 
can be regarded as a periodic function with a period T, which 
allows it to be described by (1). For successful cardiogram 
contour analysis, it is necessary to resolve the key problems of 

classic contour analysis [2]: the choice of the starting point, 
relative scale of contours and rotation and the presence of 
noise. As shown earlier [8, 9], the use of the spiral beam 
approach for contour recognition makes it possible to obviate 
these problems owing to a number of inherent features of spi-
ral light beams. A spiral beam is an optical field whose inten-
sity distribution may have an arbitrarily complex shape 
(including that of a closed curve). It retains its structure dur-
ing propagation and focusing to within a scale factor and 
rotation [11]. A contour described by (1) can be put in one-to-
one correspondence with the complex amplitude of a spiral 
beam, ( , )S z z* :
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where r is the Gaussian beam parameter.
If we parameterise one period of a cardiogram and repre-

sent it as a closed contour, then (if the quantisation condition 
for the corresponding spiral beam is met:
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where Scurve is the area under the curve and Nq is the quantisa-
tion parameter determined by the number of zeros of the 
complex amplitude [11]) the complex amplitude of the spiral 
beam is invariant to the choice of the starting point in the 
curve to within a phase factor [9]. Note that, for an adequate 
description of intricate contours, the number of zeros of the 
complex amplitude should not be small. In what follows, a 
spiral beam constructed for a large quantisation parameter 
(Nq = 150) will be referred to as a highly detailed spiral beam.

We now pass from an integral representation of complex 
amplitudes to infinite sums by expanding the spiral beam in 
terms of an orthogonal basis formed by ( , )z zL *
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where the coefficients cn have the form
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As shown earlier [8, 9], if the quantisation condition (3) is 
met the complex amplitude of a spiral beam is sel-similar 
under a contour scale transformation (A) and contour rota-
tion (a) of the form z(t) ®  z(t)A ´ exp(ia),
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Figure 2.  Portion of a cardiogram (one period) obtained from the car-
diograph lead V1 to illustrate an infarction pattern: (a) standard image 
in the form of a time sweep of the voltage signal V(t), (b) cyclogram with 
x(t) = V(t)cos[(2p/T)t] and y(t) = V(t)sin[(2p/T)t].
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and the series expansion coefficients cn in (4) bear information 
about the rotation angle.

In other words, a contour analysis problem can be solved 
using principles of coherent optics because the mathematical 
tools for describing spiral light beams allow the above-men-
tioned difficulties to be overcome.

3. Classification of cardiograms using the spiral 
beam formalism: basic principle and metric

Consider a formal problem formulation. Let a z(t) contour 
be a portion of the waveform from one of the 12 cardio-
graph leads over the period of the cardiac rhythm, K be the 
set of contours of all cardiograms from all the leads, and D 
be a finite set of classes of cardiograms (diagnoses). We 
assume that there is an unknown target dependence (K ® D 
mapping) whose values are only known for elements of a 
finite learning subset K0 = {(k1, d1), … ( kn, dm)}, where K0 is a 
set of reference cardiograms with known diagnoses. For 
any cardiogram k Î K, it is necessary to find the corre-
sponding class dj Î D so as to minimise the discrepancy 
between the set of contours ki from the cardiograph leads 
and the corresponding elements of set Kj Î K, Kj ® dj. In 
other words, the classification problem in this formulation 
can be reduced to finding an appropriate metric m defining 
the distance between a contour under examination and the 
set of contours of the reference cardiograms from the cor-
responding leads. Finding such a metric is generally a non-
trivial issue [12] and determines in many respects the success 
of a particular approach to solving the classification prob-
lem. Well-known methods of solving the classification prob-
lem (probabilistic ones, the C-means method, KNN and 
others) introduce frequently used metrics [12, 13] which are 
obviously inapplicable in the case of spiral beams because 
here a new metric should be invariant to contour scale trans-
formations and rotations and also to the choice of the start-
ing point of the contour.

We introduce the following metric m: I ´ I ® [0, 1] in spiral 
beam intensity space, where I(z, z*) = S(z, z*)S  

*(z, z*). As a 
basis, we take the intensity overlap function P (q):
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Since P (q) is a normalised scalar product, its magnitude lies 
within the [0, 1] segment. Let us now introduce the metric m in 
the form
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A value of the metric as close to zero as possible means 
that the cardiogram under test falls in the class of cardio-
grams in question (there is a coincidence with a classified con-
tour), whereas a value near unity suggests that the contour 
does not belong to the class under consideration.

4. Algorithm of cardiogram classification  
by the spiral beam method

Consider in greater detail the cardiogram classification proce-
dure. Data for cardiogram interpretation were borrowed from 
the open-access physiologic signal database physionet.org [14] 
(PTB Diagnostic ECG Database [15]). For definiteness, we 
will consider two large classes of cardiograms: normal ones 
and cardiograms of myocardial infarction patients. Various 
infarction locations are possible: anterior, inferior, lateral, 
ventricular, septal or atrial infarction [1]. The characteristic 
pattern of changes in the signals from the different cardio-
graph leads depends on infarction location. In particular, 
anterior infarction is suggested by changes in leads I (II), 
aVL, V1 and V2 (V3 – V6); inferior infarction, by changes in 
leads II, III and aVF; and lateral infarction, by changes in 
leads I, II, aVL, V5 and V6 [1]. Accordingly, correlations 
between a cardiogram under test and a reference in some 
leads may point to infarction.

The cardiogram comparison procedure involves the fol-
lowing steps:

1. The heartbeat period is determined for each cardiogram 
under test (to be classified), and a parameterised closed curve 
(1) is constructed (one period) for each of the 12 standard 
leads.

2. The coefficients of expansion (5) for the complex ampli-
tude of the spiral beam (4) are calculated for each of the 12 
input contours of the ECG under test. It is necessary that the 
quantisation condition (3) be met, where the quantisation 
parameter (and hence the number of series expansion coeffi-
cients) should not be small, because the contour has a rather 
complex shape, which requires a detailed analysis.

3. For each reference cardiogram and each of the 12 leads, 
precalculated series expansion coefficients are retrieved from 
file storage.

4. Metric (8) is calculated using all the reference cardio-
grams for each of the 12 leads of the cardiogram under test, 
and the best result is selected for each lead.

5. The results for the 12 leads are analysed and a decision 
is made as to how to classify the cardiogram according to the 
following rules:

(a) the cardiogram is classified with certainty as normal if 
the metric reaches a minimum in the class of normal ECGs 
for at least eight leads and the rest of the leads are not deter-
mining for the classes of infarction ECGs; and

(b) the cardiogram is classified with certainty as indicative 
of infarction if the metric reaches a minimum in the class of 
infarction ECGs for at least half of the leads and, moreover, 
these leads are determining for the infarction locations of the 
corresponding reference cardiograms.

5. Cardiogram classification results

As reference cardiograms, we used ten normal cardiograms of 
ten patients of different ages and sex and ten infarction car-
diograms of ten different patients with different infarction 
locations (anterior, inferior, inferolateral, inferoposterolat-
eral, anteroseptal and recurrent anterior infarctions). For 
each cardiogram, we constructed a closed contour over one 
period for the 12 leads and calculated the coefficients in the 
expansion of the spiral beam in terms of Laguerre – Gauss 
polynomials for all the contours. Next, for each cardiogram 
under test and each of the 12 leads, we calculated the correla-
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tion function (7) with all the reference ECGs in the cases of a 
medium detail level (50 zeros of the complex amplitude and 
300 series expansion coefficients) and a high detail level (150 
zeros of the complex amplitude and 600 series expansion coef-
ficients). Note that, even in the case of the medium detail 
level, we obtained good cardiogram contour recognition and 
classification results, but in what follows we will consider and 
discuss the results obtained at the high detail level. In Table 1 
and below, the following designations are used: TIk, infarction 
cardiograms under test; TNk, normal cardiograms under test; 
EIk, infarction reference cardiograms; and ENk, normal refer-
ence cardiograms (the designations in round brackets are taken 
from an input signal database).

We tested 11 infarction cardiograms, of which 9 were clas-
sified as indicative of infarction, and 8 normal cardiograms, 
of which 6 were identified with certainty (classified as nor-
mal). Thus, according to the present results, the selectivity of 
the method is 82 % and its specificity is 75 %.

Consider, for example, the TI2 cardiogram. It corresponds 
to a complex recurrent infarction pattern, which should be 
analysed with attention paid to leads I, aVL (Fig. 3), V1, V2, 
II, III and aVF. It is clearly seen in Fig. 3 that, for the infarc-
tion pattern under consideration, the cardiogram contours in 
lead aVL have characteristic features and differ markedly 
from each other even when compared visually. Objects used 
in the method under consideration – spiral beams – ‘inherit’ 
the initial signal geometry. Accordingly, the spiral beams dif-
fer in intensity and field phase distributions.

Tables 2 and 3 present calculated proximity metrics (m) of 
the cardiogram under test with all the references.

Let us analyse the data obtained here. There are only two 
coincidences with normal ECGs, in leads aVR and V6, whose 
signals are, generally speaking, not determining in diagnosing 
this infarction pattern. It can be stated with certainty that 
there is good agreement with the infarction cardiograms in 
leads II, aVF and V1 – V5 (which are determining for the refer-
ence cardiograms under consideration), where the metric has 
minimum values (0.060 – 0.132). The highest value of m in this 
example is 0.535 (but it is the best value in the entire set of 
references in lead II). There are also coincidences with the 
infarction cardiograms in the nondetermining leads I, III and 

Table  1.  Number of leads for which the best metric was reached 
between the cardiogram under test and normal (Ànorm) or infarction 
(Àh at) reference cardiograms.

Cardiogram  
under test Àh at Ànorm

Classification 
result

Actual 
diagnosis

TI1 (pat_5b) 5 7
Normal ECG, 
controversial 
result

Infarction

TI2 (pat_6b) 10 2 Infarction Infarction

TI3 (pat_7c) 11 1 Infarction Infarction

TI4 (pat_9) 9 3 Infarction Infarction

TI5 (pat_10a) 6 6 Infarction Infarction

TI6 (pat_14b) 8 4 Infarction Infarction

TI7 (pat_15a) 6 6 Infarction Infarction

TI8 (pat_16a) 6 6 Infarction Infarction

TI9 (pat_17b) 4 8
Normal ECG, 
controversial 
result

Infarction

TI10 (pat_19c) 6 6 Infarction Infarction

TI11 (pat_20c) 11 1 Infarction Infarction

TN1 (pat_105) 4 8
Normal ECG, 
controversial 
result

Normal ECG

TN2 (pat_245) 4 8
Normal ECG, 
controversial 
result

Normal ECG

TN3 (pat_252) 1 11 Normal ECG Normal ECG

TN4 (pat_266) 1 11 Normal ECG Normal ECG

TN5 (pat_267) 2 10 Normal ECG Normal ECG

TN6 (pat_277) 4 8 Normal ECG Normal ECG

TN7 (pat_279a) 2 10 Normal ECG Normal ECG

TN8 (pat_284) 1 11 Normal ECG Normal ECG

a

b

Figure 3.  Contours of (a) the TI2 infarction cardiogram under test and 
(b) the EN1 normal reference cardiogram from lead aVL (left panels), 
intensity distributions of the corresponding spiral beams (middle 
panels) and phase distributions of the spiral beams (right panels). In the 
phase distributions, black and white pixels correspond to 0 and 2p, re-
spectively.

Table  2.  Proximity metric m for leads I, II, III, aVL, aVR and aVF of 
the TI2 cardiogram (pathology, infarction) with the corresponding 
leads of reference cardiograms.

Reference 
cardiogram

Cardiograph lead

I II III aVL aVR aVF

EN1 (pat_104) 0.625 0.693 0.776 0.591 0.267 0.758

EN2 (pat_242) 0.588 0.644 0.796 0.617 0.577 0.756

EN3 (pat_244) 0.479 0.604 0.726 0.497 0.367 0.670

EN4 (pat_246) 0.432 0.589 0.735 0.523 0.317 0.725

EN5 (pat_247) 0.368 0.702 0.756 0.574 0.165 0.733

EN6 (pat_248) 0.639 0.725 0.635 0.502 0.328 0.771

EN7 (pat_251) 0.367 0.550 0.364 0.366 0.336 0.453

EN8 (pat_255) 0.456 0.675 0.760 0.549 0.355 0.763

EN9 (pat_260) 0.477 0.721 0.816 0.616 0.429 0.779

EN10 (pat_264) 0.451 0.590 0.677 0.572 0.453 0.669

EI1 (pat_1) 0.423 0.612 0.452 0.383 0.660 0.495

EI2 (pat_2) 0.604 0.633 0.627 0.621 0.485 0.558

EI3 (pat_3) 0.556 0.639 0.397 0.637 0.269 0.482

EI4 (pat_4a) 0.367 0.621 0.231 0.486 0.311 0.445

EI5 (pat_7a) 0.515 0.596 0.257 0.468 0.460 0.436

EI6 (pat_8a) 0.405 0.569 0.599 0.450 0.326 0.597

EI7 (pat_11a) 0.350 0.535 0.347 0.333 0.182 0.318

EI8 (pat_12a) 0.542 0.578 0.215 0.452 0.321 0.522

EI9 (pat_13a) 0.565 0.617 0.214 0.484 0.373 0.387

EI10 (pat_18a) 0.520 0.622 0.237 0.474 0.568 0.399

Note: The best metric values and the corresponding cardiograms are 
indicated by bold type.



87On the feasibility of using the spiral beam formalism for analysis of cardiograms

aVL, which also suggests that the ECG under test can be clas-
sified as indicative of infarction.

Tables 4 and 5 present calculated proximity metrics ( m) of 
the normal cardiogram under test with all the references. It is 

seen that, in 11 leads, the metric m for the TN3 cardiogram 
with the normal reference cardiograms (without pathology) 
has a minimum in the range 0.048 – 0.334, and only in lead V5 
there is a correlation with the EI6 infarction ECG. On the 
other hand, since in the case of the EI6 cardiogram character-
istic changes are seen in leads II, III and aVF, without show-
ing up in lead V5, it is reasonable to conclude that the TN3 
cardiogram under test was successfully identified as normal 
(without pathology).

Figure 4 shows spiral beam intensity distributions for the 
EI9 (infarction) and EN3 (normal) reference cardiograms in 
the 12 leads. It is seen that the intensity distributions in differ-
ent leads have characteristic features for the infarction and 
normal (pathology-free) cardiograms and differ markedly. 
The contour proximity metric calculated by the proposed 
method is m > 0.5 for 8 of the 12 leads, and only in leads V1, 
V6 and aVR is m below 0.35 (the contours obtained in these 
leads are sufficiently similar). It is seen from this example of 
proximity metric calculation for two reference cardiograms of 
different classes that a decision as to the classification result 
should rely on analysis of the metrics obtained in all the car-
diograph leads. This procedure lies in the field of the theory of 
decision making under conditions of uncertainty and is 
beyond the scope of this work, but it will receive considerable 
attention in our future work, which we plan to focus on statis-
tical analysis of a set of reference cardiograms and subsequent 
retrieval of information about similarity in terms of the pro-
posed metric.

6. Conclusions

A spiral beam formalism has been proposed for electrocar-
diogram classification, a proximity metric has been intro-
duced for the spiral beam intensity distribution, and results of 

Table  3.  Proximity metric m for leads V1 – V6 of the TI2 cardiogram 
(pathology, infarction) with the corresponding leads of reference 
cardiograms.

Reference 
cardiogram

Cardiograph lead

V1 V2 V3 V4 V5 V6

EN1 0.218 0.293 0.460 0.741 0.776 0.719

EN2 0.586 0.316 0.359 0.384 0.325 0.547

EN3 0.449 0.652 0.755 0.755 0.673 0.360

EN4 0.267 0.285 0.371 0.468 0.409 0.399

EN5 0.147 0.148 0.266 0.424 0.428 0.502

EN6 0.387 0.652 0.813 0.807 0.790 0.617

EN7 0.284 0.253 0.319 0.483 0.671 0.344

EN8 0.231 0.327 0.398 0.545 0.564 0.383

EN9 0.380 0.351 0.386 0.449 0.559 0.480

EN10 0.412 0.456 0.501 0.745 0.763 0.470

EI1 0.769 0.750 0.729 0.590 0.449 0.587

EI2 0.512 0.431 0.280 0.247 0.396 0.477

EI3 0.380 0.432 0.602 0.798 0.694 0.416

EI4 0.060 0.118 0.132 0.231 0.310 0.407

EI5 0.164 0.167 0.168 0.255 0.409 0.399

EI6 0.587 0.664 0.724 0.812 0.808 0.423

EI7 0.289 0.206 0.353 0.594 0.572 0.399

EI8 0.248 0.283 0.319 0.343 0.313 0.422

EI9 0.170 0.193 0.270 0.451 0.485 0.429

EI10 0.640 0.412 0.331 0.386 0.292 0.528

Note: The best metric values and the corresponding cardiograms are 
indicated by bold type.

Table  4.  Proximity metric m for leads I, II, III, aVL, aVR and aVF of 
the TN3 cardiogram (normal) with the corresponding leads of reference 
cardiograms.

Reference 
cardiogram

Cardiograph lead

I II III aVL aVR aVF

EN1 0.315 0.318 0.660 0.745 0.126 0.450

EN2 0.729 0.247 0.657 0.771 0.199 0.371

EN3 0.425 0.341 0.496 0.601 0.065 0.405

EN4 0.542 0.422 0.612 0.465 0.242 0.432

EN5 0.609 0.504 0.733 0.794 0.259 0.559

EN6 0.456 0.506 0.275 0.376 0.110 0.317

EN7 0.246 0.580 0.390 0.334 0.101 0.693

EN8 0.477 0.314 0.668 0.684 0.117 0.337

EN9 0.505 0.289 0.763 0.770 0.048 0.544

EN10 0.452 0.297 0.328 0.724 0.077 0.282

EI1 0.682 0.650 0.683 0.669 0.534 0.670

EI2 0.724 0.656 0.645 0.685 0.356 0.662

EI3 0.601 0.706 0.643 0.704 0.286 0.739

EI4 0.637 0.683 0.564 0.755 0.278 0.727

EI5 0.416 0.751 0.568 0.465 0.207 0.768

EI6 0.388 0.465 0.400 0.699 0.148 0.590

EI7 0.554 0.690 0.484 0.629 0.267 0.683

EI8 0.440 0.773 0.613 0.477 0.205 0.764

EI9 0.384 0.544 0.572 0.452 0.219 0.734

EI10 0.464 0.731 0.504 0.411 0.419 0.755

Note: The best metric values and the corresponding cardiograms are 
indicated by bold type.

Table  5.  Proximity metric m for leads V1 – V6 of the TN3 cardiogram 
(normal) with the corresponding leads of reference cardiograms.

Reference 
cardiogram

Cardiograph lead

V1 V2 V3 V4 V5 V6

EN1 0.128 0.172 0.440 0.379 0.248 0.435

EN2 0.346 0.263 0.468 0.713 0.777 0.733

EN3 0.125 0.530 0.641 0.176 0.517 0.427

EN4 0.205 0.363 0.550 0.670 0.667 0.478

EN5 0.160 0.346 0.592 0.682 0.653 0.327

EN6 0.088 0.547 0.716 0.518 0.184 0.155

EN7 0.087 0.147 0.436 0.694 0.495 0.300

EN8 0.113 0.151 0.430 0.628 0.613 0.237

EN9 0.097 0.084 0.352 0.703 0.649 0.222

EN10 0.063 0.140 0.190 0.292 0.225 0.228

EI1 0.768 0.736 0.639 0.621 0.800 0.705

EI2 0.384 0.504 0.507 0.771 0.789 0.772

EI3 0.500 0.362 0.361 0.210 0.382 0.695

EI4 0.404 0.369 0.479 0.770 0.738 0.618

EI5 0.167 0.283 0.492 0.777 0.799 0.722

EI6 0.425 0.492 0.529 0.234 0.133 0.288

EI7 0.113 0.311 0.531 0.646 0.611 0.424

EI8 0.245 0.390 0.577 0.705 0.773 0.727

EI9 0.158 0.283 0.497 0.671 0.635 0.308

EI10 0.441 0.316 0.445 0.717 0.770 0.747

Note: The best metric values and the corresponding cardiograms are 
indicated by bold type.
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cardiogram classification by the proposed method have been 
presented. The results demonstrate a successful classification 
for most of the cardiograms considered. The method allows 
one to gain information about potential infarction. As a con-
tinuation of this research, future work is expected to extend 
the basis for differential diagnosis of other cardiovascular 
pathologies, as well as for differential diagnosis of infarction 
location. Another applied research direction will be con-
cerned with computation acceleration, e.g. by parallelising 
the algorithms involved.
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Figure 4.  Spiral beam intensity distributions and contour proximity 
metrics (m) in leads (a) I, II, III, aVL, aVR, aVF and (b) V1 – V6 for the 
EI9 infarction ECG (upper row) and EN3 normal ECG (lower row).


