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Abstract.  Based on a theoretical model describing the lasing 
dynamics in a gas ring laser (GRL) with coupled cavities, we have 
investigated the frequency characteristics of radiation. The condi-
tions are found under which an increase in the scale factor is the 
largest. The regime of frequency locking of counterpropagating 
waves is studied. It is shown that the lock-in region in a GRL with 
an antiphase optical coupling of the cavities remains the same as 
without an additional cavity. The conditions are determined under 
which multistability of the radiation characteristics arises in a cou-
pled-cavity GRL. In the numerical solution of the equations of the 
considered theoretical model, three branches of the frequency 
response are found.

Keywords: gas ring laser, coupled cavities, regime of beatings, lock-
in regime, multistability of radiation characteristics.

1. Introduction

Coupled-cavity ring lasers are of interest for fabricating gyro-
scopes. It was theoretically shown in Refs [1 – 3] that such 
lasers make it possible to control the intracavity dispersion 
and create conditions for the occurrence of anomalous disper-
sion, leading to an increase in the scale factor and sensitivity 
of a laser gyroscope (LG).

Laser gyroscopes are systems that use optical sensors of 
angular rotational velocity of two types: ring lasers generat-
ing counterpropagating waves with different frequencies 
inside the laser cavity, and sensors in which the radiation of 
an external laser is transmitted in opposite directions through 
the Sagnac interferometer (or ring cavity). Laser gyros with a 
sensor of the first type are called active, and LGs with a sen-
sor of the second type are called passive. For passive LGs, the 
possibility of increasing the scale factor using coupled cavities 
was shown theoretically in [4 – 6].

In this paper we study active LGs. The disadvantage of 
papers [1 – 3], in which coupled-cavity gas ring lasers (GRLs) 
were considered, is that they did not take into account the 
influence on the frequency characteristics of coupling through 
backscattering and nonlinear interaction of counterpropagat-
ing waves in an active medium. To this end, it is necessary to 
improve the theoretical model of coupled-cavity GRLs, as 

was done in studies on semiconductor and solid-state ring 
lasers [7 – 9].

The purpose of this work is a theoretical study of the 
regimes of beatings and frequency locking in coupled-cavity 
GRLs.

2. Theoretical model of a GRL

Figure 1 shows a scheme of a coupled-cavity GRL. Inside the 
main ring cavity containing the active medium (AM), two 
counterpropagating waves E ,1 2

u  propagate. The radiation 
emitted from the main cavity through a partially transmitting 
coupling mirror M excites the optical fields E ,c c1 2

u  in the addi-
tional ring cavity and returns again to the main cavity through 
the same mirror.

Intracavity fields in the main and additional cavities are 
written in the form

,( ) ( )exp( ) ( ) ( )exp( )i iE t E t t E t E t tc c, , , ,n c c n1 2 1 2 1 2 1 2w w= =u u ,	 (1)

where wn is the optical frequency of the generated mode. The 
complex amplitudes E1,2(t) are slow functions of time and 
change little over the period of optical oscillations. To 
describe the interaction of counterpropagating waves in a 
coupled-cavity GRL we will use the following system of ordi-
nary differential equations:

Frequency characteristics of a gas coupled-cavity ring laser

I.I. Zolotoverkh, E.G. Lariontsev

https://doi.org/10.1070/QEL16934

I.I. Zolotoverkh, E.G. Lariontsev D.V. Skobeltsyn Institute of Nuclear 
Physics, M.V. Lomonosov Moscow State University, Vorob’evy gory, 
119991 Moscow, Russia; e-mail: e.lariontsev@yahoo.com	

Received 13 December 2018; revision received 19 February 2019	
Kvantovaya Elektronika  49 (8) 740 – 744 (2019)	
Translated by I.A. Ulitkin

J

M1

M2 M3

M
M6

M5M4

E1
~

E2
~

Ec2
~

Ec1
~

AM

Figure 1.  Scheme of a coupled-cavity GRL.
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Equations (2) describe the generation of counterpropagat-
ing waves E1,2 inside the main cavity taking into account the 
effect of the fields Ec1,c2, and equations (3) describe the excita-
tion of counterpropagating waves in the external cavity by 
waves E1,2. Single-mode lasing is considered. In equations (2) 
and (3), Dwr and Dwc   are the bandwidths of the main and 
additional cavities; intracavity losses for counterpropagating 
waves are assumed to be equal. The linear coupling of the 
counterpropagating waves in the main and additional cavities 
is determined by the complex coupling coefficients m ,21u . The 
coefficients k1,2 describe the linear polarisability of the GRL 
active medium, and the coefficients a1,2 and b1,2 describe its 
saturation with fields of counterpropagating waves. The coef-
ficient (1 + h) /k0 is equal to the ratio of the gain to the intra-
cavity losses at the maximum of the gain curve, where 
k0  =  max(Rek1,2) and h is the excess of the gain over the 
threshold. The optical coupling coefficients between the 
fields in the main and additional cavities, ( ) /exp ik Tc j  and 

( ) /exp ik T Tc n c cj w+ , depend on the amplitude transmittance 
of the coupling mirror kc, on the round-trip transit times T 
and Tc for the light in the main and additional cavities, on the 
phase shift j between the reflected and transmitted waves at 
the coupling mirror, and also on the phase shift per round-
trip transit of the additional cavity, F = wnTc.

The sensitivity to rotation is associated with the Sagnac 
effect: the main and additional cavities due to the rotation 
exhibit differences between the eigenfrequencies of the coun-
terpropagating waves:

8 Sp JW = /( )Llo ,	 (4a)

8 Sc c cp JW = /( )Llo ,	 (4b)

where S and Sc are the projections of the areas of the main 
and additional cavities on the axis of rotation; L and Lc are 
the perimeters of ring cavities; and Jo  is the angular rotation 
velocity.

The coefficients k1,2, a1,2, and b1,2 determining the interac-
tion of counterpropagating waves in the active medium will 
be calculated on the basis of the GRL vector theory [10, 11], 
which is valid in the weak field approximation with an arbi-
trary ratio between the widths of the homogeneous and 
Doppler lines.

3. Regimes of beatings and frequency locking

3.1. Regime of beatings

Consider the regime of the beating of counterpropagating 
waves. We assume that the beat frequency wb is significantly 
greater than the coupling of counterpropagating waves 
through backscattering (| wb | >> | |m ,1 2u ). In this case, when 
solving equations (2) and (3), the coupling coefficients m ,1 2u  
can be neglected. For simplicity, we restrict ourselves to the 
case when the additional cavity is insensitive to rotation (the 

projection of the area vector on the axis of rotation Sc is zero 
or small).

In the regime of beatings, the time dependence of the com-
plex amplitudes of the counterpropagating waves E1,2 will be 
expressed as

( ) | | ( )exp iE t E t,2 ,2 ,21 1 1w= ,	 (5)

where the moduli of the amplitudes | E1,2 | are constant and the 
beat frequency is wb = w1 – w2. 

From equations (3) we find
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Substituting (6) into equations (2), we obtain the system of 
equations:

[ (1 ) ]/ /i E E1 2r, , , , , ,1 2 1 2 0 1 2 1 2
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1 2 2 1
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/
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where Ac = kc
2exp(iFс)/(TTc), and Fс = 2j + wnTc.

The imaginary part of equations (7) yields two equations 
for determining the frequencies w1,2:

[ (1 ) ]Im / /E E1 2r, , , , , ,1 2 1 2 0 1 2 1 2
2

1 2 2 1
2w k h k a b wD= + - - -

	
4/

/
ReA

2 ,

c

c
2 2
1 2

1,2

!
w

w wD
W -

+
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and the real part of the equations yields two equations for 
determining the intensities of the counterpropagating waves  
|E1,2 |2:

e[ (1 ) ]R / /E E1 2, , , , , r1 2 0 1 2 1 2
2

1 2 2 1
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The system of equations (8) and (9) can be solved by the 
method of successive approximations. We assume that the 
following inequality holds:

kc2 /(TTc) >> [ (1 ) /Im E1, , ,1 2 0 1 2 1 2
2k h k a+ - -

	 ] /E 2r, ,1 2 1 2
2b wD- .	 (10)

In this case, the influence of nonlinear interaction of counter-
propagating waves in the active medium on the frequency 
response of the GRL can be neglected, and equation (8) in the 
zero approximation takes the form
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where /k TTc c0w = .
When the inequality

w1,22 << Dwc2/4 	 (12)
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is fulfilled, from (11) for the beat frequency we obtain the 
expression

cos4
b

c c
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2 2

2

w
w w

w
D

DW
F

=
+

.	 (13)

It follows from (13) that the dependence of the beat frequency 
on the angular rotation velocity Jo  is determined by the scale 
factor

cos
K K

4 c c

c
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2 2

2

0
w w

w
D

D
F

=
+

,	 (14)

where

K0 = 8pS /(lL)	 (15)

is the scale factor of the main cavity in accordance with 
expression (4a).

The expressions for the beat frequency wb and the scale 
factor K include the negative feedback phase (NFB) Fc, which 
depends on two parameters: the phase shift in the additional 
cavity F = wnTc and the phase shift j of the reflected and 
transmitted waves on the coupling mirror. The NFB phase 
can be changed from 0 to 2p when adjusting the perimeter of 
the additional cavity by a value of the order of the wave-
length.

We distinguish two particular cases: Fc = 2pp (p is an inte-
ger), i.e. in-phase optical coupling; and Fc = 2pp + p, i.e. anti-
phase coupling. In the case of antiphase coupling, the optical 
coupling between the cavities leads to an increase in losses in 
the main cavity and to a decrease in the amplitudes | E1,2 | of 
the intracavity fields. The in-phase coupling, on the contrary, 
compensates for the losses in the main cavity and increases 
the amplitudes | E1,2 | of the intracavity fields.

It follows from (14) that the antiphase optical coupling 
between the cavities leads to an increase in the scale factor, 
and the in-phase coupling leads to its reduction. The largest 
increase in the scale factor occurs when the condition

w0
2 = Dwc

2/4 	 (16)

is met.

3.2. Lock-in regime

Consider now the lock-in regime, when due to coupling 
through backscattering, the frequencies of the opposite waves 
become equal (w1 = w2 = w). In this regime, the complex 
amplitudes of the counterpropagating waves E1,2 will be 
expressed as

E1,2 = А ± iB,	 (17)

where A and B are real constant values. From equations (3) 
we find

/
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For simplicity, in studying the lock-in regime, the cou-
pling coefficients of counterpropagating waves are given in 
the form m1=u  m exp( / )im 22 p-=u . We consider the case of 
antiphase NFB (Fc = 2pp + p) and the coefficients that deter-

mine the polarisation of the medium will be assumed real:  k1 = 
k2 = k, a1 = a2 = a, and b1 = b2 = b. Substituting (18) into 
equations (2), we obtain the system of equations
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The real and imaginary parts of these equations can be 
reduced to the form:
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Subtracting (21) from (20), we obtain the equation

W(A2 + B2) = 2mAB.	 (22)

Expressing A and B through the amplitude E0 and phase  y, 
we rewrite (22) in the form

( )sinm 2yW
= .	 (23)

It follows from (23) that the lock-in regime exists in the region

–m £ W £ m.	 (24)

In accordance with (24), the optical coupling between the 
cavities does not affect the width of the lock-in region. In the 
GRL with antiphase NFB, the lock-in region remains the 
same as without an additional cavity.

3.3. GRL frequency characteristics

In the zero approximation (without taking into account the 
nonlinear coupling of counterpropagating waves in the 
active medium), the dependence of the beat frequency fb = 
wb /2p on the frequency nonreciprocity W /2p of the main 
ring cavity can be calculated using equations (11). Analytical 
formulae for the corrections in the first approximation to 
the beat frequency, which take into account the influence of 
the coupling of counterpropagating waves through back-
scattering and nonlinear coupling in the active medium, will 
not be derived in this work. These corrections will be consid-
ered on the basis of a numerical solution of the system of 
equations (2) and (3).

In the numerical solution of equations (2) and (3), the 
coefficients k1,2, which describe the linear polarisability of the 
GRL active medium, and the saturation coefficients a1,2 and 
b1,2  will be calculated using the formulae given in [10, 11] for 
a 0.63-mm ring He – Ne laser at the 3s2 – 2p4 transition of neon. 
Consider a single-isotope laser at a pressure of p = 700 Pa 
with a Doppler line width of 800 MHz, a uniform transition 
line width of 357 MHz, an upper level width of 32 MHz, and 



743Frequency characteristics of a gas coupled-cavity ring laser

a lower level width of 85 MHz. We assume that the magnetic 
field H, which provides the splitting of the magnetic sublevels 
of neon, is absent (H = 0).

First, we consider the situation when condition (16) is sat-
isfied for coupled-cavity GRLs. As already noted, in the case 
of antiphase optical coupling one should expect that the scale 
factor defined by formula (14) will be maximum. Let us 
choose the following parameters of the cavities: the perime-
ters of the main and additional cavities are L = 10 cm and Lc = 
40 cm, and the losses per round-trip of these cavities are 0.005 
and 0.0075, respectively. At the amplitude transmittance of 
the coupling mirror kс = 0.0019, condition (16) is exactly sat-
isfied for the GRL with the specified parameters of coupled 
cavities. With such values of the parameters, Fig. 2 shows the 
dependence of the beat frequency fb on the frequency non-
reciprocity W/2p of the main ring cavity. The solid curve in 
Fig. 2 corresponds to the beat frequency in the zero approxi-
mation, calculated using formulae (11). The dots show the 
results obtained on the basis of the numerical solution of 
equations (2) and (3) with the coupling coefficients of the 
counterpropagating waves m ,1 2 =u    ( /2)exp im p-  (m /2p = 
100 Hz) when the gain exceeds the threshold h = 0.5. The cal-
culation was performed for a GRL with an optical coupling 
close to the antiphase one with Fc = 1.0091p. With this phase 
of optical coupling Fc, as shown by the numerical solution of 
equations (2) and (3), the scale factor in the presence of the 
coupling of the counterpropagating waves turns out to be 
maximal. The largest increase in the scale factor (K /K0 = 
1400) in this case occurs at W /2p = 0.66 kHz.

One can see from Fig. 2 that for low frequency nonreci-
procities, in the region of –100 Hz £ W /2p £ 100 Hz, the 
frequencies of counterpropagating waves are locked in. The 
width of the lock-in region is determined by the modulus of 
the coupling coefficient of the counterpropagating waves, m, 
and does not depend on the optical coupling between the cav-
ities. At the boundary of the lock-in region, the beat frequency 
changes abruptly by 4.35 kHz.

3.4. Frequency hysteresis

In Section 3.3, the frequency characteristics of the GRL were 
considered in the case of optical coupling satisfying the condi-
tion kс2 /(TTc) = Dwс2 /4. As shown in [12], when the inequality 

kс2 /(TTc) > Dwс2 /4	 (25)

holds for coupled-cavity GRLs, due to spontaneous phase 
symmetry breaking, new branches of the frequency character-
istic appear. Let the GRL have the following parameters: the 
perimeters of the main and additional cavities are L = 10 cm 
and Lc = 40 cm and the losses per round-trip in these cavities 
are 0.0049 and 0.00748, respectively. In this case, with the 
amplitude transmittance of the coupling mirror kc = 0.0019, 
inequality (25) is satisfied. With such values of parameters, 
Fig. 3 shows the dependence of the beat frequency fb on the 
frequency nonreciprocity W /2p of the main ring cavity. The 
solid curve in Fig. 3 corresponds to the beat frequency in the 
zero approximation, calculated using formulae (11). The dots 
show the results obtained on the basis of the numerical solu-
tion of equations (2) and (3) with the coupling coefficients of 
the counterpropagating waves exp( / )im m 2,1 2 p-=u  (m/2p = 
100 Hz) at h = 0.5 and the values of the parameters of the 
active medium specified above for a single-isotope He – Ne 
laser at a pressure p = 700 Pa. The calculation was performed 
for a GRL with an optical coupling close to the antiphase one 
at Fc = 1.009208p.

One can see from Fig. 3 that the frequency response has 
three branches with numbers 1, 2 and 3. At the exit from the 
frequency lock-in region C with frequency nonreciprocity  
W/2p > 100 Hz, the regime of beatings occurs on branch 1. 
On the right boundary of branch 1 with W /2p > 130 Hz, 
there occurs a transition to the regime of beatings on branch 2. 
On the left boundary of branch 2, at  W /2p < –100 Hz, a 
transition to branch 1 is observed. On the left boundary of 
branch 1, at W /2p < –136 Hz, the GRL undergoes a transi-
tion to the regime of beatings on branch 3.
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Figure 2.  Dependence of the beat frequency of counterpropagating 
waves on the frequency nonreciprocity W /2p in a GRL with an optical 
coupling close to the antiphase one when condition (16) is satisfied. The 
solid curve corresponds to the beat frequency wb calculated by formulae 
(11). The dots show the results obtained in the numerical solution of 
equations (2) and (3). The values of the parameters of the cavities are 
given in the text.
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Figure 3.  Three branches of the frequency response for a GRL with an 
optical coupling close to the antiphase one when the condition (25) is 
satisfied. The solid curve corresponds to the beat frequency wb calcu-
lated by formulae (11). The dots show the results obtained in the nu-
merical solution of equations (2) and (3). The values of the parameters 
of the cavities are given in the text.
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4. Conclusions

We have studied the frequency characteristics of coupled-
cavity GRLs on the basis of a theoretical model that describes 
the lasing dynamics with allowance for the coupling through 
backscattering and the nonlinear interaction of counterprop-
agating waves in an active medium. It is shown that the anti-
phase optical coupling of the cavities leads to an increase in 
the scale factor. The greatest increase in this coefficient occurs 
when condition (16) is satisfied. In the case of coupled cavi-
ties, a strongly nonlinear dependence of the beat frequency on 
the rotational velocity arises, which creates considerable dif-
ficulty for the practical use of the effect of increasing the scale 
factor. The regime of of frequency locking of counterpropa-
gating waves is investigated. It is found that for a GRL with 
antiphase NFB, the lock-in region remains the same as with-
out an additional cavity. The conditions are found under 
which multistability of the radiation characteristics arises in a 
coupled-cavity GRL. In solving numerically equations (2) 
and (3) within the framework of the considered theoretical 
model, three branches of the frequency response are found.
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