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Abstract.  A numerical model is proposed to describe the evolution 
of polarisation of a light wave propagating through a telecommuni-
cation fibre with random linear birefringence in a magnetic field. 
As a result of statistical processing of a set of numerical simulation 
results, a convenient phenomenological formula is obtained for the 
first time for the dependence of the average value of the polarisa-
tion rotation angle on the magnetic field, the fibre parameters and 
its length. It is found that the average value of the polarisation rota-
tion angle in a long telecommunication fibre in the representation of 
the Stokes vectors linearly depends on the applied longitudinal 
magnetic field (as in the classical Faraday effect for an isotropic 
medium) but is proportional to the root of the fibre length. It is 
theoretically shown and experimentally confirmed that the polari-
sation rotation angle for an extended segment of a telecommunica-
tion fibre (50 km) is two orders of magnitude less than that for an 
isotropic fibre of the same length and material.

Keywords: Faraday effect, standard single-mode fibre, SSMF, beat 
length, correlation length, Jones matrix, polarisation state, Stokes 
vector, polarimeter.

1. Introduction

The effect of a magnetic field on polarisation of light in an 
isotropic medium, first discovered by M. Faraday in 1845, is 
well studied and widely used in polarimetry and magnetic 
field sensors [1 – 3]. In particular, under the action of a mag-
netic field directed along the light propagation axis the polar-
isation plane of linearly polarised radiation is rotated in an 
isotropic medium by an angle Q, which linearly depends on 
the magnetic field induction B and fibre length L [4]

Q = VBL,	 (1)

where the proportionality coefficient V, called the Verdet 
constant, is determined by the medium properties. The pres-

ence of constant linear birefringence in the medium leads to a 
significant change in the effect of the magnetic field on the 
polarisation of light [5].

In this paper, we investigate the effect of the magnetic 
field on the polarisation of light propagating in a telecommu-
nication optical fibre characterised by a random distribution 
of linear birefringence along the fibre. As far as we know, 
studies on the effect of the magnetic field on the polarisation 
of light in such media have not previously been performed.

Our numerical model allowed us to derive a convenient 
phenomenological formula describing the dependence of the 
average value of the polarisation rotation angle on the mag-
netic field and fibre parameters. The results can be used to 
assess the impact of the magnetic field caused by a lightning 
stroke on the operation of high-speed fibre-optic communica-
tion lines in optical ground wires [6 – 8].

2. Model of fibre with random distribution  
of linear birefringence in a magnetic field

Rectilinear fibre of an ideal cylindrical shape, made of an iso-
tropic material, in the absence of an external physical impact 
has circular symmetry and is isotropic. However, in the pro-
duction of fibre and optical cable, there arises birefringence 
with random characteristics along the fibre [9 – 11]. 
Birefringence in fibre is usually characterised by the beat 
length

LB = 2p/D b,	 (2)

(in our case, D b is the difference in the propagation constants 
for the slow and fast modes, averaged over the fibre length 
[12]).

Consider the model of a telecommunication fibre in which 
the birefringence value is constant, and the orientation of the 
principal axes changes randomly along the fibre. Strictly spe
aking, both the orientations of the principal axes of birefrin-
gence f and s (fast and slow) and the birefringence value 
change randomly. However, as shown in work [9, 13], statisti-
cal polarisation properties of fibre can be adequately descri
bed using a model in which the linear value of birefringence is 
fixed, and only the orientation of the slow and fast axes of the 
birefringent element changes randomly.

In the model under study, the fibre of length L has M sec-
tions of equal size, Dz = L /M. To account for the impact of 
the magnetic field on the polarisation of light, we use the split-
step Fourier method [14] (Fig. 1). With this aim in view, each 
section is represented by two subsections, the first of which 
describes weak linear birefringence caused by the imperfec-
tion of the cylindrical profile of fibre, and the second corre-
sponds to weak circular birefringence induced by an external 
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magnetic field due to the Faraday effect. Then the Jones 
matrix of the mth section (m = 1, 2, ..., M) is defined as Jm = 
F Gm, where the matrix Gm describes weak internal linear 
birefringence of the fibre, and the matrix F describes circular 
birefringence. Thus, the resulting Jones matrix of the entire 
fibre is

J = JM JM – 1 ...J2 J1 = FGMFGM – 1 ...FG2FG1.	 (3)

In general case, the Jones matrix Gm in the Cartesian coor-
dinate system with x, y axes is described by two parameters: 
the difference between the phase shifts of the components lin-
early polarised along the principal axes of the element, y = 
ys – yf, and the angle am between the slow axis s of the ele-
ment and the axis x of the Cartesian coordinate system [15]. 
Then the Jones matrix is expressed as

Gm = RmGRm
–1,	 (4)

where
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are the matrix of rotation by the angle am and the matrix of 
the birefringent element, respectively; and y = 2pz/LB is the 
difference between the phase shifts.

The random orientation distribution of the principal axes 
of sections in the model is described by a random process with 
a white noise spectrum [13]. Each fibre section is rotated rela-
tive to the preceding one around the z axis by a random angle 
D am obeying a normal distribution with dispersion s and zero 
mean value. The dependence of the probability density on the 
angle D am has the form:

f(D am) = 
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exp
2
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ps s

aD
-e o.	 (5)

Thus, an individual random fibre sample (D a1, D a2, ..., D aM) 
is formed. The orientation angles of the section axes are 
related to the relative angles of the section rotation by the 
expression

am = i
i

m

1

aD
=

/ ,   m = 1, 2, ..., M.	 (6)

It can be shown that if the square of dispersion is proporti
onal to the section size (s2 ~ Dz) and the section sizes are 
smaller than the characteristic sizes of the change in light 
polarisation, the statistical properties of fibre do not depend 
on the section size; i. e., in the limiting case, when the section 
length Dz tends to zero, the dispersion also tends to zero, and 
the square of dispersion remains proportional to the section 
length:

s2 = ÀDz.	 (7)

Wai and Menyuk [13] introduced the correlation length LC = 
1/(2À) through the proportionality coefficient À. Our numeri-
cal experiments, as well as the calculations performed in work 
[13], have shown that the correlation length LC introduced in 
this way coincides with high accuracy with the widely used 
depolarisation length employed for describing the properties 
of optical fibres with random birefringence, measured with 
respect to the local polarisation eigenstates (see Appendix). 
The obtained relationship between the correlation and depo-
larisation lengths is of great importance, since the latter can 
be measured experimentally, while we know nothing about 
the existing methods for direct measurement of the correla-
tion length.

In the presence of a magnetic field, the Jones matrix F 
describing the circular birefringence induced by the magnetic 
field due to the Faraday effect has the form [15]
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where j = VBDz is the phase difference between the left and 
right circular polarisations in a section of the length Dz.

Since the light polarisation at the fibre output can be arbi-
trary, it is convenient to describe its change under the mag-
netic field action in terms of the Stokes vectors. If depolarisa-
tion is neglected, the Stokes vector can be represented by a 
point on the Poincaré sphere, and is determined by three com-
ponents: s = (S1, S2, S3), which are uniquely defined as [15]

S1 = E Ex y
2 2
- ,   S2 = 2Ex Ey cos d,   S3 = 2Ex Ey sin d,	 (9)

where Ex and Ey are the amplitudes of the x and y compo-
nents of the Jones vector of light in fibre; and d is the phase 
difference between the y and x components of the Jones vec-
tor. With a fixed polarisation state at the input and a change 
in the magnetic field from zero to B, the output Stokes vector 
sout(B) moves along a certain trajectory on the Poincaré 
sphere.

We define the cumulative angle as an angle numerically 
equal to the trajectory length of the Stokes vector on the 
Poincaré sphere, averaged over the family of random fibre 
samples as the magnetic field changes:

q = n
k

N

k

qD
n 1=

/ ,	 (10)

where D n
kq  is the angle between successive Stokes vectors in 

the kth sample with a stepwise increase in the field (n is the 
step number, and N is the total number of steps). The angle 
D q between the Stokes vectors sA and sB is calculated by the 
formula:

D q = arccos(sA, sB) = arccos(S1AS1B + S2AS2B

	 + S3AS3B).	 (11)

In an isotropic medium, the cumulative angle q defined by 
formula (10) is related to the rotation angle Q of the polarisa-
tion plane of linearly polarised radiation, which is included in 
the classical formula for the Faraday effect (1):

q = 2Q.	 (12)

1 2 M – 1 M

G1 F F F FG2 GM –1 GM

z

Figure 1.  Splitting of the fibre into alternating subsections G and F de-
scribing linear and circular birefringence.



775Effect of a magnetic field on polarisation of light in an optical fibre with a random

Figure 2 shows the dependences of the cumulative angle 
on the optical fibre length, obtained by numerical simulation 
with averaging over the number of samples equal to 20 and 
400. The following parameters were used in the calculations: 
fibre length, L = 50 km; section length, D z = 0.1 m; correla-
tion length, LC = 1 m [11]; beat length, LB = 23.5 m, magnetic 
field induction, B = 4.6 mT; and Verdet constant for telecom-
munication fibre, V = 0.53 rad T–1 m–1.

Averaging over a larger number of samples gives an 
approximation dependence, which at z >> LB, LC can be 
described with a high degree of accuracy by the formula

qapp = VBL
L
z

2
1 /

B
C

1 2

p ` j .	 (13)

The root-like dependence on the coordinate z is character-
istic of processes with random variation of parameters. For 
example, polarisation mode dispersion behaves in a similar 
way [9]. In a numerical experiment, it was found that for fixed 
values of VB, LB, and LC, the dependences of the cumulative 
angle on z can be accurately described by the expression qapp = 
f  (VB, LB, LC) z . The dependence of the function f on the 
parameters VB, LB, and LC was assumed to be a power law: 
f  (VB, LB, LC) = a(VB)aLb

B L
g
C. As a result of numerical simu-

lation, four fitting parameters were determined: a  = 1/2p, 
a  =  1, b = 1, and g = – 1/2. The value of the coefficient a coin-
cides with the value of 1/2p with an error of 10–3.

3. Experimental setup and discussion  
of the results

To study the effect of an external longitudinal magnetic field 
on the state of the light polarisation at the fibre output, we 
assembled a setup, the schematic of which is shown in Fig. 3. 
Continuous-wave optical radiation (l = 1550 nm) of a laser 
(ITLA 1.5 mm, NeoPhotonics) was fed through a segment of 
a polarisation-maintaining (PM) fibre and an optical connec-
tor C into the coil of a standard single-mode SSMF fibre with 
a length of 50 km. A longitudinal magnetic field in the fibre 
was formed using a solenoidal coil S (the number of turns, 
N = 30), through which a constant electric current was passed 
from a power source (PS). The current varied from zero to the 

maximum value Imax = 80 A with a step of 5 A and a time step 
of 5 s. The current of 80 A corresponded to the field B = 
4.6 mT. The components of the Stokes vector of the output were 
measured using a polarisation controller (PC) (New Ridge 
Technologies, NRT 2550 model). The control unit (CU) set 
the coil current and controlled the polarisation controller 
operation, i. e. turned on and recorded the readings at each 
step of the current change. Thus, the polarisation state depen-
dence of the output light on the coil current (longitudinal 
magnetic field in the fibre) was recorded.

The evolution of polarisation of the output radiation with 
a change in the magnetic field in both physical and numerical 
experiments can be conveniently represented as a trajectory 
on the Poincaré sphere. For each trajectory, successive rota-
tion angles of the Stokes vectors D q were calculated by for-
mula (11).

Figure 4 presents the experimentally and numerically  
obtained trajectories of the state of polarisation (SOP) of light 
at the output of a 50 km long fibre on the Poincaré sphere 
with increasing magnetic field. Five trajectories are shown, 
designated for the experiment and numerical simulation. To 
determine the cumulative angle, in physical experiment and 
numerical simulation averaging was performed over 1000 tra-
jectories.

Figure 5 shows the processed data of the experiment and 
numerical simulation. Vertical bars show the standard mean-
square deviation sq obtained during averaging. It should be 
noted that sq does not tend to zero as the number of averaging 
samples increases. In this case, a linear dependence of the 
cumulative rotation angle on the current/field is observed. 
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Figure 2.  Model dependence of the cumulative angle on the fibre length 
in accordance with formula (13) (approximating curve) and averaged 
dependences obtained by numerical simulation.
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Figure 3.  Scheme of the experimental setup.
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One can see a good agreement between the experimental and 
numerical results both in the behaviour of the dependence 
itself and in terms of the dispersion value.

Thus, for the first time, the effect of the magnetic field on 
the polarisation of light propagating in a telecommunication 
fibre has been studied, and a phenomenological analytical 
expression for the cumulative angle has been obtained.

The analytical expression is obtained as a result of statisti-
cal processing of a set of numerical simulation data on the 
polarisation characteristics of a telecommunication fibre with 
random anisotropy. According to the expression obtained, 
the polarisation state’s rotation angle linearly depends on the 
magnetic field, while the length dependence is root-like. It was 
established and confirmed experimentally that in a long 
(50  km) telecommunication fibre, the cumulative rotation 
angle of the polarisation state is two orders of magnitude less 
than the corresponding angle for an isotropic fibre of the 
same length and material.

Appendix. Depolarisation length  
determination 

According to work [10, 11, 13], the depolarisation length LE  is 
the distance at which information about the initial polarisa-

tion of a light wave is partially lost. Numerically, LE  is defined 
as the length at which the relation

á px(LE)ñ – á py (LE)ñ = 1/e2	 (14)

is satisfied. Here, á px(z)ñ and á py (z)ñ are the fibre-ensemble 
averaged dependences of the normalised powers of two 
orthogonal linearly polarised components of a light wave 
along the z length. Normalisation is performed to the total 
power in both polarisations, so that px(z) + py (z) = 1. At the 
fibre input (z = 0), polarisation is determinate: the light is lin-
early polarised along the x: axis:  px(0) = 1, py (0) = 0 (Fig. 6). 
At all other points with the z ¹ 0 coordinates, polarisation is 
not completely determinate and is characterised by an aver-
age value. This definition of the depolarisation length was 
introduced by Kaminow in 1981 and has since been widely 
used to describe the polarisation characteristics of a telecom-
munication fibre with a random distribution of linear bire-
fringence [10].
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Figure 5.  ( Colour online ) Experimental and model dependences of the 
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