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Abstract.  Based on the classical electrodynamic approach, we con-
sider localised plasmons in fullerenes and small particles with metal 
layers and shells. At low energies of the radiation quantum, models 
of fullerenes as conducting shells are used taking into account the 
contribution of only p electrons, and at high energies, of both p and 
s electrons. The obtained maxima of the scattering cross sections 
correspond to the values of 20 and 27 eV that were determined 
experimentally and in quantum models for the maxima of the pho-
toionisation cross sections of fullerenes C60 and C28, respectively. 
Approximate analytical results are presented for resonant frequen-
cies, Q factors, radiation patterns, scattering and absorption cross 
sections for sphere-like particles and fullerenes, as well as integral 
equations and functionals for dielectric particles with a conducting 
shell of arbitrary shape. Analysis relies on the use of effective sur-
face conductivity.

Keywords: localised plasmons, surface conductivity, fullerenes, 
graphene, scattering cross section, radiation pattern.

1. Introduction

In recent decades, there has been considerable interest in the 
study of plasmons – a phenomenon that has been known for 
a long time, but has found widespread use only a short time 
ago (see, for example, [1 – 6]). Plasmon polaritons can be bulk, 
surface, and localised. They can be described as waves and as 
electromagnetic oscillations induced by electronic or exciton 
excitations in a conducting structure. Localised plasmon 
polaritons (LPPs) considered in this work are oscillations in a 
certain conducting particle, for example, a metal particle; 
therefore, there arise problems to solve specific to them, 
involving determination of local fields, far-zone fields, com-
plex resonant frequencies (frequencies and Q factors of reso-
nances) of free oscillations and frequency properties of plane-
wave scattering parameters [1 – 16].

Many papers are devoted to LPPs in different particles 
and to methods of their analysis. Their analysis is based both 
on classical electrodynamic approaches [1 – 24] in strict and 
various approximate statements and on quantum approaches 
that consider a particle as a quantum dot (quantum box) 
using approximate methods of strong coupling, density func-
tional theory (DFT) [24 – 27] and similar methods, for exam-
ple, the Thomas – Fermi hydrodynamic model [28, 29]. In an 

azimuthally symmetric structure, LPPs can be approximately 
considered as resonances of surface plasmons travelling on 
the surface of a material. LPPs allow the local field to be 
enhanced and controlled and therefore they are widely used in 
various fields of physics, biology and medicine [1 – 6]. When 
excited by a plane wave, of interest are the problems of deter-
mining the differential and total cross sections [scattering, 
absorption (photoionisation) and extinction], as well as con-
structing radiation patterns of scattering. Since the dipole 
scattering cross section has a maximum near the resonant fre-
quency [30], the calculation of resonant frequencies of dipole 
modes is important for describing the behaviour of particles 
in an exciting wave. To design nonlinear and tunable devices, 
particles with semiconductor shells and nuclei, the resonant 
frequencies of which can be tuned, are of interest [21]. 
Plasmon resonance frequencies in well-conducting semicon-
ductor films such as InSb films and others can be reduced in 
the THz region and tuned by doping.

Most LPP studies considered spherical conducting (metal) 
or dielectric particles, since the Mie solution of the excitation 
problem [10 – 15] and the solution for free oscillations [7] 
obtained by the matching method are known for therm. The 
matching method is also applicable to particles in the form of 
a triaxial ellipsoid [14]. Recently, layered spherical particles 
[17 – 20] and particles of arbitrary shape [1, 2, 12 – 15] have 
been studied, for some of which approximate results have 
been obtained [1 – 5, 31]. It is convenient to study resonances 
in multilayer spherical particles by the method of 4 ́  4 trans-
fer matrices for spherical layers [32], which allows one to con-
sider an arbitrary number of layers. In the limit, this approach 
allows one to describe particles with a radially inhomoge-
neous permittivity profile. Particles with metal cores and 
dielectric shells, as well as with dielectric cores and conduct-
ing shells, are also of interest.

Classical approaches are usually based on expansion in 
wave spherical harmonics [17 – 19], on the Rayleigh approxi-
mation using the variable separation method for the scalar 
potential decomposed in the spherical harmonics of the 
Laplace equation [20], on the two-fluid model [23] and on 
other approaches. Although classical methods for multilayer 
structures are well known, including matching and integral 
equation (IE) methods, combined surface-volume IEs for 
particles with two-dimensional conducting shells have not 
been used, as well as characteristic equations based on match-
ing. The aim of the present work is to obtain such equations 
and to study LPPs for particles with two-dimensional shells. 
For nanoshells of finite thickness, significantly shorter than 
the wavelength and the depth of wave penetration into them, 
the shells can be considered two-dimensional, which reduces 
the dimensionality of the problem and simplifies the calcula-
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tion. The second criterion is the mean free path l0 in com-
parison with the shell thickness. Small thickness means the 
impossibility of using parameters for bulk samples and the 
need for a quantum calculation of electron transport [33 – 36] 
or an approximation that takes into account dimensional 
effects [37, 38].

Fullerenes, i.e. nanoclusters or carbon molecules discov-
ered in 1985, are able to support LPPs. The band structure of 
C20, C60 and other fullerenes has a gap 1.7 – 2.0 eV wide, but 
when the fullerenes are doped with X3С60 alkali metals, they 
acquire metallic properties and can even become supercon-
ducting at low temperatures (19 K for K3С60 and 33 K for 
RbCs2С60). In fullerenes, as well as in graphene, p electrons 
participate in electron transport in the IR and optical ranges, 
which, due to the large localisation of the wave function near 
the surface, can be described by effective surface conductivity. 
A large number of publications stimulated experimental work 
on the detection of giant resonances in the energy range of 
20 – 30 eV for С60 [39, 40], С28 and С20 [23 – 29]. In the hard 
UV and near X-ray ranges, the energy of quanta is greater 
than the energy of s bonds, and all four valence electrons of 
the carbon atom are involved in the transport. They can be 
considered free and use can be made of the plasma approxi-
mation [22, 23]. To estimate the above frequencies, we note 
that for graphene, the overlap energy of neighbouring atoms 
(s-bond energy) is l0 = 3.033 eV, and the overlap integral of s 
electrons is s0 = 0.129 eV [41]. The binding energy in fullerenes 
does not differ much from the above value; therefore, in the 
IR and optical ranges, the shell conductivity can be consid-
ered equal to the optical conductivity of graphene [34 – 36], 
and the plasma layer model is a good approximation in the 
UV and X-ray ranges.

The authors of Refs [23 – 27] considered photoionisation 
and obtained inelastic scattering cross sections for fullerenes 
С20 and С60 in the region of high quantum energies. A quan-
tum mechanical model of a metal cluster and fullerene was 
used in the approximation of the simplified Hamiltonian 
(helium model), in the approximation of local density and 
random phases of the density functional theory. The authors 
of Ref. [22] considered LPPs in fullerene С60 based on the 
hydrodynamic approximation and the fullerene model in the 
form of a plasma spherical layer of given thickness. The study 
of the properties of С60 began a long time ago [23], and publi-
cations, of course, are not limited to those mentioned above.

In this paper, we consider free and forced oscillations 
(during scattering of a plane wave) in LPPs with two-dimen-
sional shells, obtain the characteristic equations of free oscil-
lations of spherical dielectric particles in the presence of a 
conducting shell, derive generalising equations [7] and present 
IEs and integro-differential equations (IDEs) for particles 
with a shell of arbitrary shape. Based on them, we consider 
low-frequency LPPs in sphere-like fullerenes and in a small 
dielectric cube with a shell. Full scattering cross sections and 
radiation patterns for fullerenes excited by a plane wave are 
presented.

2. Diffraction and free oscillations for particles 
with a conducting shell

Let us consider a nanoparticle classically interacting with an 
electromagnetic wave [time dependence exp(iwt)] in the form 
of a volume V occupied by a dielectric with a permittivity e(r) 
and surrounded by a conducting layer (shell) of thickness d 
with a permittivity em (r). Let em (r) correspond to a metal and 

be described by the Drude – Lorentz formula em(w) =
( ) ( )/ iL p c

2 2e w w w ww- - . Here wp and wc are the plasma fre-
quency and the collision frequency. We consider the fre-
quency to be low, and the Lorentz term eL to be independent 
and positive, which is true up to the optical range. The bound-
ary of the volume is a closed surface S. Since the shell has the 
same thickness, its volume DV is inside the surfaces S and S', 
where the surface S' is congruent to S and its points closest to 
S are at a distance equal to d. For a shell, we introduce the 
volume density of the polarisation current  J = ¶tP(r)  and the 
volume conductivity g(r) = iwe0[em(r) – 1]:

( , ) ( , ) ( , )r r rJ Ew g w w= .	 (1)

Relation (1) is suitable for any shell, not necessarily metallic, 
and for thin shells it is determined from the quantum approach 
to electron transport [33 – 36]. The criterion for shell thinness 
is the comparability (or smallness) of the shell thickness with 
the mean free path. If d is of the order of the mean free path 
or less, the conductivity s is determined by calculating the 
number of conduction modes depending on d [33].

For two-dimensional structures such as graphene, the 
conductivity s has a natural nature. For low frequencies, the 
main contribution is made by p electrons only. We will also 
model fullerenes with the conductivity s, which is determined 
by the transport of p electrons or p and s electrons. Then, the 
conductivity can be used in the classical approach. For a mas-
sive metal sample in the low-frequency limit, we obtain the 
Drude conductivity g(0) = wp2e0 /wc. If the shell thickness is 
small compared to the penetration depth and transverse cur-
rents can be neglected, we can introduce surface conductivity  
s = gd. If v is the coordinate along the external normal mea-
sured from the surface S, then the relation between the sur-
face [  j(r)] and volume [J(r)] current densities has the form  
J(r) = j(r)d(v). Volume and surface charge densities are simi-
larly related:  r(r) = z(r)d(v). When integrated with the delta 
function, the volume integral degenerates into the surface 
integral. In a certain sense, for small d (in comparison with 
the wavelength l), relation (1) can be replaced by the relation  
j(r) = sEt(r), where E(r) = n(r) ́  E(r) ́  n(r) = E(r) – En(r) is the 
projection of the electric field vector onto the surface.

For an arbitrary particle, the problem can be formulated 
on the basis of IEs or IDEs. Of interest are both the problem 
of excitation by a given field, for example, by the plane-wave 
field Ein(r) = E0exp(–ikr) [the exp(iwt) dependence is omitted 
hereinafter] and the problems of eigenoscillations. In the gen-
eral case, we have a representation of the vector potential of 
the scattered field

,( ) ( ) ( )dG k rA r r r J r
V V

0
3

= -
d+

l l ly 	 (2)

and representations of the fields 

( ) ( ) ( ) ( ) ( )r r rik Z k LE E Ain 0 0
2

0
1

= + +- t ,

( ) ( ) ( )r r rH H Ain #= + d .

In (2), d3r' is the volume element; G(r – r’, k0) = (4pR)–1 ´ 
exp(–ik0R) is the scalar Green’s function; R = |  r – r'  |; k0 = 
w/c; Z0 = /0 0m e ; J(r) = iwe0[e(r) – 1]E(r) is the polarisation 
current density; V is the volume; dV = S is its boundary; and  

div$gradL 7d d= =t  is an operator. The fields Ein(r) and 
Hin(r) correspond to an incident plane wave.
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Representation (2) allows us to formulate several types of 
IEs and IDEs, including surface-volume ones (see [9]). They 
arise due to the superimposition of the boundary conditions j = 
sEt  on the surface and the continuity of the field E in the 
volume. The advantages of IEs and IDEs are that they are 
solved only in the region of the particle, and the solutions are 
represented in the entire space, i.e. it is convenient to obtain 
sufficiently accurate analytical solutions using physical 
assumptions about the field and the surface current density. 
We write (2) as ( )JGA V V= d+

t , where Gt  is an integral opera-
tor. Introducing the integro-differential operators ( )LG J V Vd+

t t  
and ( )G J V V# d+d t  and using vector integral theorems (on the 
gradient, on divergence and on the rotor), we can obtain a 
number of other IDE forms [8, 9].

In this paper, we will use a surface-volume IE of the form

[ ( )] ( ) ( ) ( ) ( )/ LG k Gr r r F FE E2 3 in V V0
2e+ = + +lt t t7 A

	 ( ) ( ) /iZ k L G kj S0 0
2

0- + t t 	 (3)

and an IDE of the form

,( ) ( ) [ ( ) ( )i Z k G kr r r r rj E j
S

0 0 0s s= =- -t l ly

	 – ( ) ( )],i dc G k rr rr 0
2z-d l l l.	 (4)

In (3) we introduced a vector proportional to the field,  F(r) = 
[e(r) – 1]E(r), and in (4) we introduced the surface charge den-
sity z = iÑj /w. The physical meaning of these equations is very 
simple. Equation (3) means the continuity of the total electric 
field inside and outside the particle with the fulfilment of the 
radiation condition, while on the surface it is necessary to ful-
fil the boundary condition Et(r) = s –1j. This allows us to find 
both E in the volume and j on the surface. The equation is 
obtained by puncturing an infinitesimal spherical neighbour-
hood near the source point with calculating the integral over 
it based on Ostrogradsky’s theorem; therefore, the integral 
operators should be understood in the sense of the main value 
according to Cauchy (denoted by a prime). As a result, a term 
arises outside the integral, and quadrature formulas can be 
used to calculate the integrals. In the absence of a shell, equa-
tion (3) becomes a volume IE of the type of a Fredholm equa-
tion of the second kind. Formula (4) corresponds only to 
oscillations of the conductive shell and is defined on it. By 
virtue of the equality j = sEt, it determines the tangential elec-
tric field produced by the distributions of the surface current 
and charge and corresponds to its expression in terms of the 
vector and scalar potentials: E = –ik0Z0A – Ñj, where j = 
iZ0ÑA/k0 [42]. The dimensionless (normalised) surface con-
ductivity x = sZ0 is convenient.

The above, as well as other IEs and IDEs are usually used 
in the case of bodies of large electric size, when it is necessary 
to obtain a numerical solution using projection and varia-
tional algorithms of large dimension, for example, for dielec-
tric resonators [8]. For nanoparticles, the use of the dipole 
approximation usually allows one to evaluate the influence of 
the shape on the resonant frequencies, cross sections and radi-
ation pattern. To obtain the functional for determining the 
resonant frequency, we multiply (4) by j*(r) and integrate over 
the surface, designating the result as ||  j(r) ||2 = (  j(r), j(r))S. We 
denote the projection of the vector operator Ñ onto the sur-
face as Ñt = Ñ – v∂n and consider the quantity j*(r)Ñh(r) = 
Ñ(h(r)j*(r)) – h(r)Ñj*(r), where h(r) is an arbitrary function. 

Since the current density is the surface one,  Ñj*(r) = Ñt  j*(r) = 
iwz*(r).

We divide the closed surface into two parts by the contour 
C, which will become the boundary of each of them, and con-
sider the integral (  j(r)Ñh(r))S. The integral of the first term is 
zero. Indeed, Ñ(h(r)j*(r)) = Ñt(h(r)j*(r)). Applying the Gauss 
theorem to two-dimensional divergence on both surfaces, we 
obtain two integrals over the contour of h(r)j*(r)  n(r), where 
the normal to the contour lies in the plane tangent to the sur-
face and is taken for two parts of the surface with different 
signs. To eliminate doubts about the applicability of the two-
dimensional Gauss theorem to a non-planar surface, we 
divide it into a large number of adjacent surfaces DSm so that 
each of them can be considered plane. Passing to the limit 
m ® ¥, we obtain the desired result.

Thus, (  j(r)Ñh(r))S = – iw(z(r)h(r))S. Choosing the second 
integral in (4) as h(r), we obtain the functional

( ) ( ( ) ( )) [ ( ) ( ) ( ), ,ik Z G kj r r r r r rj j j j*
S

SS
0 0 0sY = + - l lyy

	 ,( ) ( ) ( )]d dc G k r rr r r r*2
0

2 2z z+ - l l l .	 (5)

It has a zero stationary value, from which, approximately set-
ting j(r), it is possible to approximately determine the com-
plex resonant frequency w = w' + i w''. A strict characteristic 
equation should be constructed by expanding j(r) into basic 
functions and varying (5) with respect to expansion coeffi-
cients. This will lead to a homogeneous system of linear alge-
braic equations, the zero value of the determinant of which 
will give the characteristic equation. Thus, approximately set-
ting j(r) for physical reasons, it is possible to iteratively solve 
(5), obtaining the resonant frequency and Q factor.

We write the quasi-static equation for a dielectric body in 
the form E(r) = –Ñj(r), neglecting in (4) the first term under 
the integral containing k0. It determines the jump in the nor-
mal component of the electric field upon crossing the bound-
ary. Indeed, Ñj(r) is the potential of the double layer, having 
a jump z /e0 when passing through the surface. Therefore, for 
a jump in the normal component of the field, we have

( ) ( ) ( , ) ( ) ( )'r /dE G k rvr r r r r0 0 2
S

2
0 0de z z+ =- + - +n l ly ,

,( ) ( ) ( ) ( ) ( ) /dE G k rvr r r r r r0 2
S

n
2

0 0de z z- =- - -l l ly

and we obtain the expression for z through the indicated 
jump. The relation Eg(r + 0) = eEg(r – 0) yeilds a quasi-static 
IE for the surface charge density 

, k( ) ( ) ( ) ( )v dG rr r r rr2
1
1

S
0

2
0dz e

e
e z=

+
- - l l ly .	 (6)

Equation (6) yields a quasi-stationary distribution of the 
plasmon surface charge [1]. Its frequency dependence is also 
determined by the dependence e(w). The condition e » –1 is 
characteristic of plasmonics, and then for a nonzero charge 
distribution to exist, the integral should be close to zero.

To scatter a plane wave with an electric field amplitude E0 
on a particle, it is necessary to solve the above inhomoge-
neous equations and determine the densities j and Jp = iwe0 ́
 (e – 1)E proportional to E0, and then, as usual, use them in 
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the relations determining the Poynting vector flux S = rF(q, 
j)/r3 in the far zone through the surface of a large radius R 
[42 – 45]. Here F(q, j) is the radiation power diagram ([43], 
p.  320). Then the total scattering cross section S can be 
defined as the integral of R2F(q, j)  over the entire solid 
angle divided by E0

2/(2Z0).

3. Free and forced oscillations in spherical 
particles

In the case of a spherical surface, the problem has an analyti-
cal solution. For the problem of excitation of a ball by a plane 
wave, this is the Mie solution [10 – 15, 46]. The characteristic 
equations of free oscillations for the E and H modes are pre-
sented in [7, 46] and have the form

( ) ( 1)
( )
( )

( )

( )
0D

kr
n

J kr
J kr

H k r

H k r
( )

( )

/

/ /

/

/e

n

n

n

n

1 2

1 2 1 2

1 2

1 2
2

0

2
0w e e= - + - =

+

-

+

-

0 0

0

0

0 ,	 (7)

( )
(
(

(

(
0D

J kr
J kr

H k r

H k r/

( )

( )

/

/

/

/

n

n

n

nm

1 2

1 2

1 2

1 2

0

1 2
0

2
0 0

2
0 0w

e
= - =

-

-

+

-

)
)

)

)
.	 (8)

Herek k0 e= . Using the Debye potentials [42, 44] and sew-
ing the fields with allowance for the presence of a conducting 
shell on the particle, it is easy to obtain the equations for the 
E and H modes:

f¶ ( ) [ ( )]ix xx n n n00 0x e y y c ey= -- + -
n ,	 (9)

¶ ¶( ) [g ( ) ( )]ix xyn n x nn 00 0xy y c e y= -- + - .	 (10)

Here x = sZ0; x0 = kr0; c0 = k0r0; r0 is the particle radius;
( )/x J xx 2 /n n0 0 1 2 0py =-

+] g  and ( ) ( )/ H2 ( )
/n n 1 20 0

2
0py c c c=+

+  
are the Riccati – Bessel and Riccati – Hankel functions, respec-
tively; and 

¶
¶

( )
( )

( ) ( )

( ) ( )

H
f

x

H n

J x nJ xx
( )

/

/ /

/ /

r n

r n

n n

n n

0

1 4

0 1 2
2

0 1 2 0

0 1 2 1 20
2

0 0

y c
y

e
c c c

= =
-

-
+

-

- +

- +
n ] g

,	 (11)

( )
( )

( )

( )
g

x

H

J x
( )

/

/

/

n

n

n

n
n

0

1 4

1 2 0

1 20
2

0

y c
y

e
c

= =+

-

+

+ 	 (12)

are the coefficients. Equations (7) and (8) follow from (9) and 
(10) for x = 0. For fullerenes, we need to set e = 1, x0 = c0. For 
a ball, the classical strict solution for Mie scattering is given 
by the formula [46]

( ) ( )
k

n a b2 2 1 n n
n0

2
2 2

1

pS = + +
3

=

/ ,

where

n

n

n

n( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

a
x x
x x

n
n n

n n

0 0 0 0

0 0 0 0

e y c y y y c
e y c y y y c

=
-

-
- + + -

- - - -

l l

l l
;	

n

n

n( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

b
x x
x x

n n

n n n
n

0 0 0 0

0 0 0 0

y c y e y y c
y c y e y y c

=
-

-
- + + -

- - - -

l l

l l
.	

Absorption and extinction cross sections are also expressed 
through the above coefficients. The expansion in the small 
parameter c0 << 1 with only the dipole term n = 1 taken into 

account leads to the well-known formula for the scattering 
cross section [see (92.4) in [16]], which for a small particle in 
the form of a thin spherical dielectric shell of thickness d in 
the low-frequency limit yields || ( ) ( )/3 1 2 2e eS = - +   ´ 
r c 2w 4/0 d] g . For fullerenes, we take

/ 2( /{[ ( )] ( ) }'kr k k3 32 4
0 00

2 2x x d x dS = + + -) ll ,

where x = x' + ix'' is the normalised conductivity; and d is the 
thickness characterising the spread of the electron density  
r(r) obtained, for example, by the DFT method. For C60, the 
calculations yield d ~ 1 at. units [25]. With increasing fre-
quency, multipole resonances can appear; however, after the 
dipole resonance, the frequencies are high, and a quantum 
approach should be used for fullerenes, which gives high-fre-
quency asymptotics for model potentials [27].

In the dipole approximation for a wave polarised along 
the z axis, the density of the induced volume current on the 
conducting shell can be taken in the form   Jq(r, j, q) =
–sE0sinqd(r – r0). Using formulas (2.94) for the vector poten-
tial and (2.28) for the Green’s function from [42], we calculate 
the components Aq, Hj and the flux of the Poynting vector PS 
of the scattered field in the far zone k0r >>    1:

( ) ( ) (cos
i

A
k r
E r I n k r k r2 1n

n
n n

0

0

0
0 0 0

s q y y= +
3

q
=

+ - )0 ] g/ ,	 (13)

¶( ) ( ), iH r r rA E r rr
1

0 0
1q s= =-j q

- -

	 ´  n( ) ( ) [ ( ) ('cosI n k r k r2 1n
n

n
0

0 0 0q y y+
3

=

+ - )]/ ,	 (14)

p
| ( , ) |

| | (
sin dP Z H r r Z

E r I k r
0

2

0

0 02
2

0 0

0

2 2

p p
q q q= =jS

)xy ,	(15)

where

/ | | (P Z E I k r2 20 0
2

0
22

0 0pxS = =S r );	 (16)

( ) ( )cos cos dI P x x x1n n
2

1

1
q q= -

-
y ;	 (17)

p
( ( ) ( ) (sin cos dI k r I n k r2 1n

n
n0 0

0
0 0

0
q q y q= +

3

=

-)
2

)= G/y

	 ( ) ( ) ( (I n m k r k r2 1 2 1nm n m
mn 00

0 0 0 0y y= + +
33

- -

==

) )// ;	 (18)

( ) ( ) d dI P xx P xx x x x1nm n m
2

1

1

1

1
= -

--

l l lyy .	 (19)

In obtaining (16), we used the property ( )xny =
!l  

( ) ( ) /x n x xn n1y y-
! !
-  and the asymptotic behaviour ( )xn .y +l  

exp[– ix – i(n – 1/2)p/2 – ip/4] with a large argument. The scat-
tering cross section (16) is proportional to the squared modu-
lus of dimensionless conductivity. Integrals (17) are calcu-
lated through a generalised hypergeometric function (formu-
las (2.17.2) from [47]), and the first few integrals can be easily 
calculated. The obtained relations correspond to the low-fre-
quency limit. To take into account the resonances, one should 
consider the variation of the incident fieldEz = E0exp(– ik0x) 
and the surface current density
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¶( ) ( )cosj Pj n n
n

N

1

q q=q q
=

/ .	 (20)

Relation (20) for n = 1, 2, ... corresponds to the dipole, quad-
rupole and higher multipole moments [42]. For nonspherical 
azimuthally symmetric particles with the shape defined by the 
equation r = f (q), one should search for the density jq in used 
in (5) in the form of expansion (20). By determining the com-
ponent of the scattered field Eq and the incident field Einq =
–E0 exp(–ik0r0sinq)sinq on the surface of the sphere, we 
impose the impedance condition Einq + Eq = jq (q). Using the 
orthogonality relations for the derivatives of Legendre poly-
nomials [42]

¶ ¶( ) ( )
( )

cos cos sin dP P
n
n n
2 1
2 1

n m nm
0

q q q q d=
+
+

q q
py ,	 (21)

we find the expansion coefficients in (20) and all radiation 
parameters. In fact, this is nothing but the solution of the IE. 
Note that for the polynomials themselves and the associated 
Legendre functions, orthogonality relations hold [42]. The 
solution is conveniently found by using relations (2.107), 
(2.109), and (2.113) from [42]. As a result, we obtain

n n¶ ( ) ( ) (cosE r r Z j P k r k rn
n

N

n
1

0
1

0 0 0q y y=-q q
-

=

+ - )0 l l/ ,	 (22)

nn¶ ( ) ( ) (cosiH r r j P k r k rn
n

N

n
1

1
0 0 0q y y= qj

-

=

+ - )0 l/ .	 (23)

Assuming now that r = r0 and nn( ) ( ) ( )B 10 0 0c xy c y c= + + -l l , 
and also using (21), we find

( )
( ) ( )
( )

j
n n B
E n I
2 1

2 1
n

n0

0

0

c
s c

=
+

- + u
,	 (24)

where

p
¶( ) ( ) ( )exp sin cos sini dPIn n0 0

0

2c c q q q q= - q
u y .	 (25)

Assuming x = 0 and k0r0 ® 0, we have j1 = –sE0, which justi-
fies the above approximation Jq (r, j, q) = –sE0sinqd(r – r0), in 
which the term Jq in expression (22) is omitted. Denoting the 
amplitude by An(  c0) = yn' – (  c0), formula (16) according to 
(23) can be written in the form that does not contain integrals:

( )r A
3

8 2
0
2

1
2

0px c
S =1 ,	 (26)

where the subscript 1 denotes the dipole approximation. The 
strict formula, taking into account N multipole expansions 
and the field response to the current, has the form:

( )A c
| |
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1
2 1 n
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0
2 2

2

2 2

1 0

0 0p x
c

c
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+

+

=

u/ .	 (27)

It should calculate the integral (25), which, taking into 
account the two terms of the expansion of the exponential for 
small k0 r0, assumes a simple form

q
p
¶( ) /3 ( )cos sini dI P4 nn n0 1 0

3

0
.c d c q q- - q

u y .	 (28)

Here | ( ) | /I I16 3n n n0
2

1 0
2 2.c d c+u ; and In is the integral. In the 

general case, expression (15) is calculated by expanding the 
exponent in the form of a series, each member of which is 
calculated through a generalised hypergeometric function. 
Instead of such a complex process, it is easier to use the direct 
calculation of the first several integrals. In particular, I1 = 
–3p/8, I2 = –3/5, and S = S1 + c0

2DS1. In this formula, the 
refined result for (26) has the form

| ( ) ( ) ( ) |
| | /

expi i iA
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1 1
4 3

1 0 0 0
1

0
2

2
0
2 2

1
2

0
2

p
x c c c c

x c
S =

+ - - -- -1
^ h

,	 (29)

where ( ) / /sin cos sinA1 0
2

0 0 0 0 0c c c c c c= + - , and the addi-
tional correction DS1 is given by formula (27), into which the 
integrals In should be substituted. For k0r0 << 1 we have  
A1( c0) » c0 /3, and expression (29) implies the expression cor-
responding to Rayleigh scattering: S1 = 4p(k0r0)4pr0

2/3. The 
amplitude maximum |x|A( c0) approximately determines the 
dipole resonance, but for fullerenes it occurs at very high fre-
quencies lying in the X-ray range, when l » 4r0, which corre-
sponds to a have-wave dipole.

Approximation (26) does not yield a resonance at low fre-
quencies c0 << 1, while in the refined formula (29) it takes 
place. Indeed, we represent the normalised conductivity in 
the form x = x0/(1 + iw/wс) or x = x0/(1 + ic/cс). Here cc =
wcr0/c. We have | | ( )/c c0

2 2
0
2 22x x c c c= + , ( )' /c c0

2 2
0
2 2x x c c c= + , x'' =  

( )/ c0
2 2 2x c c c c- +0 c 0 . The value of x0 is constant for quantum 

energies less than 3 eV when it is determined by the transport 
of p electrons only. In the UV range, four valence electrons of 
each carbon atom participate in the transport, and the value 
of x0 is greater, and at energies above 80 eV, all six electrons 
participate in the transport. Assuming cс << c0 << 1, we 
obtain

r
27
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2
0
2pS =
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The maximum value of this expression approximately lies in 
the region where the expression in square brackets in the 
denominator vanishes: c0 = ..( ) / /1 3 3c c c0

2
0x c c c x c- -c  

At the point of maximum
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1 3
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Applying the approximations | kr0 | << 1, | kr0 |0 << 1 for 
free oscillations of a metal particle to equation (7), we obtain 
their characteristic equation

1
( )

n n
n
kr
2 1m

2

e + + =
-
0 ,	 (30)

from which, neglecting the right-hand side, we have the zeroth 
approximation en

(0) = –1 – 1/n and the resonant frequency wn' = 
/ ( ) /n1 1p Lw e+ + . Substituting the approximation em =

en
(0) = –1 – 1/n in the right-hand side of (30), we obtain

( )
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/
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/n k r
n n n

n1 1
2 1 1 1

1 1( )
p
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1 2e

e
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- + +
+

0
] g

.	 (31)

This expression implies that the resonant frequency in the first 
approximation is n =w l  / ( )

p L n
1w e e- ; moreover, e1

(1) = –2 – 
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(kpr0)2 ́   [3(eL + 2)] –1. For a silver particle of size r0 = 10 nm, 
kpr0 = 0.6 and e1

(1) = –2.01 (eL = 22.5). To assess the Q factor, 
it is necessary to calculate the complex permittivity 

' ''| | in n ne e e=- -  at this frequency and substitute it into equa-
tion (30). It will take the form

'' ''' ' )]( / ( ) [ ( )] /(i ic r n n n2 1 1n n n nw w e e+ = - - + +)0 .

Assuming the imaginary part to be small, we obtain
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+
e

e e
6 @) 3.	 (32)

The inequality |  en' | > 1 +1/n must be fulfilled, but since it is 
close to equality, the Q factor of oscillations cannot be high 
even at low dissipation. Taking e1'  = –2.01, e1'' = 0.1 and r0 = 
3 nm, we obtain w1' + iw1'' = 1.04 ́  1015(1 + i0.476) Hz and Q1 = 
1.05. The above formulas give only qualitative estimates, but 
one should really use the iterative solution [9] of the strict 
characteristic equation (7) (see Fig. 1 below).

We also consider the case of a thin (of the order of several 
nanometres) metal shell on a dielectric ball with permittivity 
e. For a film of thickness d, we can introduce surface conduc-
tivity in the form s = iw'e0d[em(w') – 1] = iZ0

–1k0’ d(e – 1). Due to 
the small thickness and condition em ~ –1 in the plasmonic 
region, the dimensionless conductivity x = sZ0 = ik0d(em – 1) 
is small: x << 1. However, for fullerenes in the plasma approx-
imation  x = –i(k0r0)(d/r0)wp2/w2 at a frequency at which k0r0 = 
0.03, we have wp2/w2 » 5, and for d/r0 = 0.3 we obtain | x | = 
0.045; at lower frequencies this value is even higher. With a 
small value of | x |, the approximation k0r0 << 1 for high-Q 
oscillations can be performed only for the E modes. We 
rewrite relation (9) in the form:

i
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c e
x
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,	 (33)

where the zeroth approximation (1 1/ ) (/in n( )
0
0c x e= + +

1 + 1/n). For the dipole mode, n = 1, we have k0
(0)r0 = 2ix/(e + 2). 

The first approximation takes the form:

i
( ) /[( / ) ( )]

(1 1/ )n
/n n n n n

n
1 1 1 1 1 2

( )
20

1
2 2 3 2c
x e e

x
=

- + + + - +

+ .	 (34)

Here x = x' + x'', and we assume x' << | x'' |. Oscillations will 
have a Q factor if the conductivity is highly reactive: | x'’ |/x' >> 1. 
For a metal shell, the conductivity is inductive: x'' < 0. The 
second approximation is obtained by substituting c0

(1) in (33). 
The obtained relations (33) and (34) require the conditions 
| x | << 1, c0 << 1 to be satisfied; otherwise, the complex roots 
of the characteristic equation (9) should be sought for.

To estimate the parameters of plasmons in fullerenes, one 
needs to know their effective surface conductivity. Let us esti-
mate the resonances for low frequencies, assuming that the 
conductivity of fullerenes is equal to the conductivity of gra-
phene. The surface conductivity of graphene in the frame-
work of the Kubo – Greenwood approaches and nonequilib-

rium Green’s functions was obtained in a number of works 
(see, for example, [34 – 36]) both with and without spatial dis-
persion. It consists of intraband and interband conductivities:  
s(w) = sintra(w) + sinter(w). Taking into account spatial disper-
sion and the tensor character of the conductivity st  is impor-
tant for surface plasmons. For LPPs, the scalar conductivity 
of graphene s obtained by calculating the corresponding inte-
gral in the momentum space in the vicinity of two Dirac 
points of the Brillouin zone with linear isotropic dispersion,  –  
the dependence of the p electron energy on the momentum  –  
can be used approximately as the effective conductivity. For 
low thermal energies (at kBT << |  mc  |), the temperature depen-
dence of the interband conductivity can be neglected, and 
then [34 – 36]
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inter ' '
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ps w m w
m w w
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= -
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- -; E .	 (35)

At low quantum energies compared with the chemical poten-
tial (wћ << |  mc  |), this conductivity is small and corresponds to 
a capacitive type conductivity:sinter » e2(iw + wc)/(4m|  mc  |). At 
high quantum energies, it is close to the quantum conductiv-
ity e2/(4ћ): sinter » /| | [( ) ]ic c

2 2'pm w w-( )/ ie 4' + . An energy 
gap arises in curved graphene; therefore, in the model of 
fullerene – low-energy quantum interaction, the interband 
conductivity is neglected. We take the intraband conductivity 
in the form [34 – 36]
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where T is the temperature. Inductive type conductivity (36) 
has a frequency dependence similar to the Drude formula. 
Using it in (33), in the zeroth approximation we obtain

'
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e
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w
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Here x0 = s0 intraZ0. In this approximation, the Q factor is Qn = 
wn' /wc. For the dipole mode ' ( / )c2 3 c 01w w x= . Let us esti-
mate this frequency for fullerenes. At mc = 0.1 eV, T = 300 K 
and wc = 1012 Hz, we obtain x0 = 5.16, and for fullerene C60 (r0 = 
0.346 nm) according to the estimate w1' = 1.05 ́  1016 and Q1 » 
104. At this frequency | x | = 5.16 ́  10–4, i.e., the expansion is 
applicable, but approximation (36) of the Kubo – Greenwood 
model taking into account the contribution of only p elec-
trons does not work. Even for fullerene С540 (r0 = 1.01 nm), 
formula (38) corresponds to a quantum with an energy of 
3.8 eV, which is already higher than the energy g0. In reality, 
formula (38) can be used only for giant fullerenes whose 
radius is greater than 1.6 nm, or for dielectric particles with a 
metal shell in the case of frequencies not exceeding the fre-
quency of quantum transitions. To obtain accurate results, 
one should numerically search for complex roots (9).

The scattered and radiated fields can be represented as an 
expansion in spherical harmonics [7, 44]:
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Ej
± = r–1
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Here, the sign ‘+’ corresponds to the region r > r0, and the 
sign ‘ – ’ corresponds to the region r < r0; k+ = k0; k– = k0 e ; 
e– = e and e+ = 1. For fullerene, e = 1, and for a metal particle  
e = em. The tangential magnetic field is ( ) (Z )/ rr E# e=H /1 2

0
! !
t t . 

We note a significant difference between these representations 
for the field scattered and emitted by free oscillations. In the 
first case, the real frequency is given by the incident wave, and 
in the region r > r0 the functions yn

+(kr0) determine the correct 
behaviour in the form of a diverging spherical wave. In the 
second case, the frequency is complex, and the functions  
yn

+(kr0) ~ exp(– iwr/c) determine the field growing at infinity. 
In monograph [45], this fact is considered to be a consequence 
of the law of conservation of energy and is explained by the 
endless consideration of the process in time (which is impos-
sible in reality): The exponentially large oscillations that took 
place in the particle in the distant past make a contribution to 
the field in a more distant region. Real finite decaying oscilla-
tions that began at some moment have a complex spatial dis-
tribution of the field. In this regard, we note an error in [7], 
where instead of an increasing Hankel function of the second 
kind, a Bessel function of the first kind was used, which, how-
ever, did not lead to an error in determining the resonant fre-
quencies.

4. Introduction of the surface conductivity 
of a nanocluster

Consider the method of introducing classical effective sur-
face conductivity for fullerene. We assume that the problem 
of quantum mechanics about the charge distribution density  
r(r, w) in fullerene exposed to an external electromagnetic 
field E = E0 exp(iwt) is solved. Due to the smallness of the 
particles, the delay is neglected. The above problem can be 
solved by various methods, for example, using the density 
functional theory or the molecular dynamics method. In 
particular, the classical model of polarisation of fullerenes 
by a point charge was considered in [48]. It is shown that it 
is in good agreement with the results obtained by the DFT 
method. We define the polarisation p = aE0 (dipole moment) 
of fullerene as ( ) d rp r r 3r= y . On the other hand, defining p 
through the surface current density j = sEt, surface conduc-
tivity and surface charge density z = iÑt  j/w = isÑt Et  /w in 
the form

r( )p r r
S

2z= dy ,

we can obtain s. We direct E0 along the z axis. For the sphere 
Et = – E0sinq. In this case, there is only one component on the 
sphere, Eq = – E0sinq, therefore ( )sinrE 1d q=-t

-
t 0  ́  

¶ ( ) ( )sin sin cosE E r2 0
1q q q=-qq

-
0 . Then

2i( )p E z r r Er 2
z 0

3
2

0 0pa r w
s

= = =dy ,	 (39)

from which is follows that ( )/i r2 0
2ps aw=-

2 . The result 
depends on the method for determining r(r) and a. For high-

energy photons, formula (36) is not applicable; therefore, it is 
desirable to estimate the conductivity taking into account all 
four p and s electrons. Based on various approximate 
approaches, such as the DFT method, hydrodynamic approx-
imation for a Fermi plasma and classical methods, the authors 
of a number of works (see, for example, [22 – 29]) obtained the 
photoionisation cross sections of C20, C28 and C60 with max-
ima in the hard UV range, caused by the collective excitation 
of oscillations of all the electrons in the cluster. From the clas-
sical point of view, it is not difficult to understand why these 
frequencies lie in this region. For high frequencies, p and s 
electrons can be assumed free and fullerene can be considered 
as a plasma. Assuming C60 to be ball, we obtain the number 
of electrons per unit volume,N = 1.38 ´ 1030, and the plasma 
frequency of 6.98 ́  1016 Hz, i.e., approximately four times 
higher than that of copper. For such a ball, we have  w1' = 
/ 3pw  = 4.03 ́  1016 Hz, or 26 eV. If we consider fullerene as 

a plasma layer with d = r0 /3, the volume concentration and wp 
will be approximately the same. In reality, r(r) has a narrow 
peak in the region r = r0  [25]. The distance Dr from the surface 
at which r(r) practically drops to zero is about 1 at. units of 
length.

We describe the shell as a plasma with permittivity ep(r) = 
1 – ( ) /( )e r m0

2r e w  and conductivity ( )i 1p0g we e= - . Due to 
the narrowness of the peak, it corresponds to inductive sur-
face conductivity /( )i cp

2s w d w=- , or

i i( ) ( )d dr r m
e r r m

e
r r

r r

r r

r r
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D

D

D
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Here r(r) = zd(r – r0); d = 2Dr. For C60, the law of conserva-
tion of charge is expressed as

z240 4 ( ) 4dq e r r r r
r r

r r
2

0
2

0

0

p pr= =
D

D

-

+

=y ,	 (41)

from which it follows that /( ) /ie r m60 p
2

0
2 2

0ps w w e d w=- = . 
Choosing for r(r) an approximation in the form of an equilat-
eral triangle in the region r0 – Dr < r < r0 + Dr with a maxi-
mum r(r0) and zeros at r = r0 ± Dr, from (40) we find 

( /( )ie r r m2 0s r wD=- ) . From (41) with the same approxima-
tion, assuming Dr/r0 << 1, we obtain r(r0) = 108e/(pDrr02), 
whence s = – 216ie2/(pr02mw). Thus, the triangular approxi-
mation yields a more than three times higher value of surface 
conductivity than the approximation in the form of the delta 
function. The quantity z = 60e/(pr02) can be interpreted as the 
surface charge density. Using x = – iwp2d/(cw), at w = 1016 Hz 
(~6.56 eV) we obtain |x| = 0.16, i.e., at a frequency exceeding 
1016 Hz, expansions in small parameters are applicable. To 
take into account dissipation, as usual, a substitution  w2 ® w2 
– iwwc should be made. In the considered range, we take wc = 
1013 Hz, which gives x0 = 173.7. Using the zeroth approxima-
tion (38), we obtain w1' = 3.144 ́  1016 Hz (20.6 eV), which is 
in good agreement with experiments and modelling using 
quantum methods [24 – 26]. According to the estimate, the 
frequency corresponding to the maximum of the scattering 
and absorption cross sections /c r3c0.w x w 0  = 2.24 ́  1016 

Hz. It should be noted that this is a very rough estimate. 
Numerical analysis implies a value of 18.15 eV. Thus, the 
results presented correspond to the known maximum pho-
toionisation cross section. In the considered approxima-
tion, the result depends on the form of r(r). In particular, 
the triangular approximation leads to an overestimated 
value of x.
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5. Numerical results

Obtaining accurate numerical results for free LPPs in contin-
uous spherical particles and for LPPs in spherical shells 
requires a rigorous iterative solution of equation (7) or (8) 
and (9) or (10), respectively. For particles with nonspherical 
shells, it is necessary to solve equation (5) and equations simi-
lar to it. This equation defines hybrid modes and can also be 
used for spherical shells. For these modes, in the first approx-
imation, it is sufficient to take one component jq in the form 
(20), but subsequent approximations require taking into 
account many modes. For the dipole mode, jq = – j0sinq and 
z  = – 2ij0cosq/(wr0). The radiation pattern of the multipole 
mode has the form [42] F(q) = [¶qPn(cosq)]2, but, in the gen-
eral case (20), taking into account (24), it is given by the 
expression

¶ ¶( ) ( ) ( )cos cosj j A A P P*
n m n m n n

m

N

n

N

11

q q qF = q q
==

// .

The impedance condition is satisfied when many current 
modes (20) are taken into account; therefore, the radiation 
patter F(q) and the cross section (27) are complex.

Figure 1 shows the results of an iterative solution of equa-
tion (9) for a spherical metal particle with permittivity accord-
ing to the Drude – Lorentz model in the form of the depen-
dences of the resonant frequency and Q factor on the radius. 
For radii of metal nuclei and shell thicknesses of the order of 
tens of nanometres, the Drude – Lorentz approximation in the 

optical range still works. The results are represented by points 
that are obtained as a converging iterative process with a 
residual of an equation no worse than 10–8. It can be seen that 
the frequencies are weakly dependent on the radius.

Figure 2 shows the results of calculating the normalised 
frequency dependences of the scattering cross section for C60 
using formulas (26) and (29) as functions of the normalised 
frequency / /f k r r20 00 p l= =u . We used the normalisation 

/( )c1 0
2 2

0x cS S S=u , where S0 = pr02 is the geometric section. The 
curves in Fig. 2 for different fullerenes hardly differ if fu   > 
0.01, but their absolute maxima are proportional to  r02S0, i.e. 
to the fourth degree radius, and the absolute frequencies are 
inversely proportional to the radius. It can be seen that the 
frequencies of the maxima correlate well with the resonant 
frequencies of free oscillations in the same way as for scatter-
ing by a dipole. The absolute values of the cross section 
depend on the collision frequency, which can be a function of 
frequency; therefore, their experimental determination allows 
us to find wc, which can also be determined from the absorp-
tion cross section:
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In the first approximation, taking into account one harmonic, 
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The approximation was obtained for spheroidal fullerenes: 
c0 << 1. In this approximation, ( ) /I 4 31 0c =u . In the low-fre-
quency region, the maximum cross section Sa is approxi-
mately the same as S1:
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Figure 1.  Dependences of (a) the normalised resonant frequency and 
(b) Q factor of the main mode (n = 1) on the particle radius at eL = 
( 1 – 4 ) 1 and ( 5 – 6 ) 2 – i0.002 and plasma frequencies of ( 1 ) 1016, ( 2 ) 
2 ́  1016, ( 3 ) 3 ́  1016, ( 4, 5 ) 4 ́  1016 and ( 6 ) 6 ́  1016; wc = 1014 Hz.
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Table 1 shows the results of calculating the resonance fre-
quencies and Q factors of the dipole mode (n = 1) obtained 
using formulas (5) and (9). The frequencies of the dipole scat-
tering maxima calculated by formulas (26) and (29) are also 
presented. The high-frequency resonances in Table 1 are 
determined by the correspondence of the cluster perimeter to 
the wavelength. Their frequencies are large due to the small 
radius. It is interesting that such Schumann resonances with 
extremely low frequencies (the lowest frequency of 7.8 Hz) are 
due to the propagation of a Zenneck surface plasmon along 
the Earth’s surface.

Figure 3 shows the results of calculating the radiation pat-
tern for the power F(q, j) of the scattered field for a cubic 
dielectric particle of size a = 60 nm with permittivity e = 3 
covered with a metal shell 10 nm thick at a wavelength of l = 
500 nm. The total particle size was 80 nm. The results are 
based on an iterative solution of volume IDE (3) using 
quadrature formulas to calculate matrix elements. The metal 
shell is considered as a bulk structure with a complex metal 
permittivity em = –2 – 0.2i. The plane wave field was Ein = 
z0exp(–ik0x), and the dimension of the problem, taking into 
account symmetry, was 256. Symmetry made it possible to 
solve the IE in only one octant and only for two field compo-

nents, Ex and Ez, using cubic piecewise constant finite ele-
ments.

6. Conclusions

Based on the classical approach, we have obtained character-
istic equations for free LPPs in shelled spherical particles and 
sphere-like fullerenes. We have presented general IEs and 
IDEs for diffraction problems and problems of free oscilla-
tions in dielectric particles of arbitrary shape in the presence 
of a conducting shell described by surface conductivity, as 
well as a functional for determining resonant frequencies. In 
the low-frequency and dipole approximations, we have 
obtained scattering cross sections for a spherical shell. The 
results are given for resonant frequencies and scattering cross 
sections for metal nanoparticles in the form of a sphere and 
fullerenes, as well as radiation patterns for dielectric cubic 
particles coated with a metal shell. In the latter case, the solu-
tion of the volume IE is used.

For spheroidal fullerenes with the number of atoms less 
than 240, the resonant frequencies of the dipole mode fall in 
the hard UV range, and they coincide well with the frequen-
cies obtained by other methods. For giant fullerenes with ico-
sahedral symmetry, they move to the far UV range, but the 
accuracy of these results is worse due to violation of spheric-
ity. So, for C28 and C60 we have frequencies of 28.55 and 
28.78 eV, and for C960 and C1500 we have frequencies of 5.19 
and 4.16 eV, respectively. The obtained relations can easily be 
generalised to composite double-layer and even multilayer 
concentric shells, for which the matrix matching method pro-
posed in [32] is convenient. For composite fullerenes, how-
ever, the position of the internal particle corresponds to the 
minimum binding energy and may be asymmetric. For elon-
gated closed and open nanotubes, a general approach is 
needed based on the solution of an IDE, the result of which 
strongly depends on their orientation with respect to the field. 
Depending on the length of the nanotubes, longitudinal 
dipole resonances can lie in the optical and IR ranges. As in 
graphene [36], optically pumped fullerenes in the THz range 
can become active and have a negative real part of conductiv-
ity. This can be used by producing active layers containing 
such fullerenes. For modelling, mixing formulas are more 
convenient. More rigorous approaches require solving quan-
tum problems for quantum dots (quantum boxes) consisting 
of a large number of atoms. It is important to calculate the 
number of plasmon excitation modes. The applicability of the 

Table  1.  Free oscillations and the frequency of the maximum scattering cross section for the dipole mode of fullerenes. 

Fullerenes

Frequencies and Q factors of free oscillations Frequencies of the first maximum

ħw/eV
by formula (5)

ħw/eV
by formula (9)

Q (10–3)
by formula (5)

Q (10–3)
by formula (9) ħw/eV by formula (29) ħw/eV by formula (26)

С20 34.01 34.67 3.2 5.3 25.89 1478.3

С28 28.12 28.55 3.1 4.4 23.95 1249.3

С32 27.20 27.46 2.8 4.2 21.11 1168.1

С60 20.55 20.78 2.7 3.2 19.15 853.5

С70 18.90 19.24 2.6 2.9 18.41 790.2

С140 13.22 13.60 1.9 2.1 15.94 558.7

С240 10.04 10.39 1.4 1.6 13.54 426.4

С260 9.66 9.98 1.2 1.5 13.27 409.7

С540 6.56 6.93 0.9 1.1 11.06 284.3

С960 4.98 5.19 0.7 0.8 9.57 213.2

С1500 4.01 4.15 0.5 0.6 8.56 170.6
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Figure 3.  Normalised radiation patterns of power at azimuthal angles 
j = ( 1 ) 0, ( 2 ) p, ( 3 ) p/4 and ( 4 ) p/2.
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above classical results follows from the correspondence of the 
obtained frequencies to quantum calculations.
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