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Abstract.  We propose and theoretically investigate the possibility 
of using spherical, whispering gallery mode microresonators based 
on germanosilicate glasses with different GeO2 contents for gener-
ating optical frequency combs in the dissipative soliton regime 
under pumping at a wavelength of 1.55 or 2 mm. The dispersion and 
nonlinearity of microspheres of different radii are calculated and 
analysed, and their optimal characteristics and the expected param-
eters of the output radiation are determined. It is shown that the 
spectral widths of optical frequency combs formed in 0.8SiO2 – 
0.2GeO2 and GeO2 glass microspheres pumped at l = 1.55 and 
2 mm can be ~200 and ~300 nm, respectively. In these cases, in 
addition to the dissipative soliton with a duration of ~100 fs, the 
generation of dispersive waves is also observed. 

Keywords: microresonator, microsphere, whispering gallery modes, 
optical frequency combs, dispersion, Kerr nonlinearity, germano-
silicate glasses.

1. Introduction 

Optical frequency combs (OFCs), periodic trains of ultra-
short laser pulses with equidistantly spaced spectral lines, are 
used in various applications, including metrology, spectros-
copy, probing, remote diagnostics, and have a huge impact on 
science and technology [1]. OFCs formed on the basis of 
mode-locked lasers are employed used in scientific laborato-
ries. Discovered in 2007, Kerr frequency combs generated in 
high-quality optical whispering gallery mode (WGM) micro-
resonators [2] can significantly reduce the size and power con-
sumption of optical devices and design new types of devices 
with unprecedented characteristics (resolution, speed, com-
pactness, and power consumption). In recent years, signifi-
cant progress has been made in the development of compact 
microresonators on microchips for generating OFCs in the 
dissipative soliton regime. For the existence of dissipative 
solitons, a double balance must be satisfied – the Kerr nonlin-
earity and anomalous dispersion, as well as dissipation and 
amplification [3]. In this connection, in developing microreso-
nators for generating dissipative solitons, special attention is 

paid to dispersion, to which both the material and the geo-
metric components contribute [4]. As materials for microreso-
nators, use can be made, for example, of crystalline materials 
[5] or various glasses, the simplest of which is silica [6].

In the present work, for the first time, as far as we know, 
we theoretically investigate the possibility of using germano-
silicate glass microspheres to generate optical combs (in the 
dissipative soliton regime). Special attention is paid to the 
study of the nonlinearity and dispersion of such microresona-
tors, since these parameters have a strong influence on the 
nonlinear dynamics of the system. Note that the use of micro-
spheres based on (1 – x)SiO2 – xGeO2 with x » 0.2 was previ-
ously demonstrated experimentally for a precision frequency 
shift under the action of UV radiation [7] and for narrow-
band filters [8]. The currently existing technologies allow the 
production of high-quality (1 – x)SiO2 – xGeO2 glasses with 
any germanium-dioxide content x (0 £ x £ 1) [9, 10]. 
Germanosilicate glasses have a higher nonlinear refractive 
index than that of silica and zero dispersion shifted to the long 
wavelength region. At the same time, according to the ther-
mophysical properties, germanosilicate glasses are close to 
silica ones, which makes it possible to apply to them well 
developed technologies for the manufacture of glass micro-
resonators, for example, by heating the end of the optical 
fibre. Note also that so far, germanosilicate microresonators 
have been manufactured by applying a film of germanate 
glass on the surface of a silica microsphere [7]. In silica glasses 
at wavelengths greater than 2.2 mm, optical losses are large, 
which limits the range of their use. The transparency region of 
(1 – x)SiO2 – xGeO2 glasses for large values of x goes beyond 3 
mm [9], which determines their potential applicability both in 
the telecommunication range and in the wavelength range of 
2 –3 mm. An encouraging fact is that currently the generation 
of tunable solitons in the range of 2 – 3 mm [11] and supercon-
tinuums with a long wavelength boundary of 3 mm and more 
[12 – 16] has been demonstrated in germanosilicate fibres.

In Section 2 of this work, we numerically investigate the 
dispersion and nonlinear properties of spherical WGP micro-
resonators based on germanosilicate glasses with different 
contents of germanium dioxide (0 £ x £ 1) and different 
radii, and in Section 3 we model the generation of dissipative 
solitons pumped at wavelengths 1.55 and 2 mm. 

2. Calculation of dispersion and nonlinear 
characteristics 

The eigenfrequencies of the WGM microresonators can be 
found by numerically solving the characteristic equation, 
which is obtained on the basis of Maxwell’s equations for a 
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given system [1]. The characteristic equation for spherical 
microresonators for TM modes is [1, 17] 
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and for TE-type waves it has the form 
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where the prime means the total derivative with respect to the 
argument; k = k0n is the propagation constant in the medium; 
k0 = 2pn/c is the propagation constant in vacuum; c is the 
speed of light; n is the radiation frequency; l is the wavelength 
(l = c/n); Jl + 1/2 is the Bessel function of order (l + 1/2); H /

( )
l 1 2
1
+  

is the Hankel function of the first kind of order (l + 1/2); R is 
the radius of the microsphere; n is the refractive index; and l is 
the mode index, which coincides with the azimuthal index for 
the WGM. An index q is also introduced, indicating the root 
index of the characteristic equation. We considered funda-
mental modes with q = 1. 

The dependence of the refractive index n of (1 – x)
SiO2 – xGeO2 germanosilicate glasses on the wavelength l was 
determined according to the model [18]:
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where x is the mole fraction of GeO2; i = 1 – 3; SAi, Sli are the 
Sellmeier coefficients for SiO2, and GAi, Gli are the Sellmeier 
coefficients for GeO2: SA1 = 0.6961663 mm, Sl1 = 0.0684043 mm, 
SA2 = 0.4079426 mm, Sl2 = 0.1162414 mm, SA3 = 0.8974794 mm, 
Sl3 = 9.896161 mm, GA1 = 0.80686642 mm, Gl1 = 0.068972606 mm, 
GA2 = 0.71815848 mm, Gl2 = 0.15396605 mm, GA3 = 
0.85416831 mm, and Gl3 = 11.841931 mm [18].

We developed a numerical code to find the roots of the 
characteristic equation and determine the eigenfrequencies nl. 
The roots were localised by using approximation formulas for 
the eigenfrequencies of TM modes [17],
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and TE modes:
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Approximate values of nl were used as the initiators of the 
algorithm for finding the roots of the equation (the modified 
Powell method). The dependence of the refractive index on 
frequency was taken into account iteratively.

It was found that the WGM eigenfrequencies for the TE 
and TM modes differ slightly; therefore, all calculations are 
given below for the TM modes.

The coefficient of quadratic dispersion b2 taking into 
account the material and geometric contributions was calcu-
lated by the formula
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We calculated the dispersion of (1 – x)SiO2 – xGeO2glass 
microspheres with different radii R for 0 £ x £ 1. Figure 1 
shows the dependences of the zero dispersion wavelength l0, 
and Fig. 2 displays dependences of the coefficient b2 on x and 
R at the expected pump radiation wavelengths lp » 1.55 and 
2 mm. Here and below, we found the mode index correspond-
ing to the wavelength closest to lp, and assumed that the 
wavelength of the pump laser could be adjusted as needed. 
We were interested in the regions of small anomalous disper-
sion that is necessary for the potential generation of dissipa-
tive solitons. For the fundamental mode in the WGM micro-
resonators, the dispersion zero is shifted to the long wave-
length region relative to the zero of the material dispersion, 
which is due to the waveguide contribution. The smaller the 
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Figure 1.  Zero dispersion wavelengths l0 (mm) as functions of the molar 
fraction x of germanium dioxide in glass and the radius R of the micro-
sphere based on this glass.
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size of the microsphere, the greater the waveguide contribu-
tion to the WGM dispersion and the stronger its difference 
from the glass dispersion. Figures 1 and 2 show that under 
pumping at lp = 1.55 mm, microspheres should be chosen 
from silica glass or germanosilicate glass with a low content 
of germanium dioxide (x £ 0.2), and under pumping at lp = 
2 mm, microspheres, on the contrary, should be made of ger-
manate glass (GeO2) or germanosilicate glass with a high con-
tent of germanium dioxide (x ³ 0.7). In both cases, it is pref-
erable to use microspheres with R » 150 – 250 mm. Figure 3 
shows the calculated dispersion dependences of WGM micro-
spheres with a radius of 200 mm for various x. Also for com-
parison, we present the material dispersion dependences of 
silica and germanate glasses (SiO2 and GeO2). Silica micro-
spheres at a wavelength of 2 mm have a large anomalous dis-
persion, which is a factor limiting their use.

To estimate the effective WGM volumes, we used an 
approximation formula [19]:

Veff » 3.4
2 n

l/ /3 2
3
11 6p p

lc m . 	 (8)

The calculated effective WGM volumes at lp = 1.55 and 2 mm 
are shown in Fig. 4. We should note the weak dependence of 
Veff on x.

The nonlinear coefficients g of microspheres were deter-
mined by the formula [5]

2
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In calculating g, we used the experimentally measured val-
ues of the nonlinear refractive index n2 of (1 – x)SiO2 – xGeO2 
glasses for various x [20] and approximated them with a linear 
function:

n2 = n2(SiO2) + xK(GeO2), 	 (10)

where n2(SiO2) = 2.2 ´ 10–20 m2 W–1 and K(GeO2) = 2.9 ´ 
10–20 m2 W–1.

Figure 5 shows the calculated dependences of nonlinear 
coefficients g on x and R at pump wavelengths lp = 1.55 and 
2 mm. The greater the x, the greater the g, which is caused by 
the dependence n2(x).

3. Simulation of optical frequency combs 

The dynamics of the formation of optical frequency combs in 
microspheres based on germanosilicate glasses was modelled 
using the Lugiato – Lefever equation [21, 22]:
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where E(t, t) is the complex envelope of the field inside the 
microresonator; t and t are the slow and fast times; tR = 
2pRn/c is the microresonator roundtrip time; t = mtR; m is the 
microresonator roundtrip number; d0 is the frequency detun-
ing of the pump field Ein from the nearest resonance; q is the 
coupling coefficient; and a is the loss coefficient as the sum of 
intrinsic and coupling losses. In the calculations, we used the 
Q value of 107 to demonstrate the possibility of generating 
optical frequency combs. The loss coefficient at the pump 
wavelength is related with the parameters of the microsphere 
as follows: a = (2p)2R/(Qlp). We neglected the wavelength 
dependence of losses. The power of narrow-band pump 
sources both at lp = 1.55 and 2 mm was assumed to be 100  mW. 

Characteristic detuning from the resonance, d0, was ~10–3, 
and the radius R of the microspheres was 200 mm. The cou-
pling coefficient was equal to the loss coefficient [23]: q = a = 
5 ́  10–4 and 4 ́  10–4 at lp = 1.55 and 2 mm, respectively. Under 
pumping at a wavelength of 1.55 mm, we considered the com-
positions of glasses with a molar fraction of germanium diox-
ide x = 0 – 0.2, and under pumping at 2 mm, the molar fraction 
of germanium dioxide in the glasses amounted to x = 0.7 – 1, 
in accordance with the requirements for the parameters of the 
microspheres, formulated in Section 2 in the analysis of dis-
persion properties.

In modelling equation (11) with the help of a specially 
developed numerical code, we used the split-step Fourier 
method (SSFM) using the fast Fourier transform [24].

It is known that the dynamics of the formation of optical 
combs can be very complex, i.e. depending on the parameters 
of the system, various scenarios can be implemented 
[3,  5,  25 – 27]. Here, the objects to be analysed are dissipative 
solitons [3, 5, 23, 28]. We are looking for stationary solutions; 
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therefore, the approximate analytical expressions given in [5] 
are given as initial conditions for equation (11). In the numer-
ical simulation, we used dispersion dependences shown in 
Fig. 3. The calculated OFC spectra and the temporal power 
distribution for lp = 1.55 mm at x = 0.2, 0.1, 0 and for lp = 
2 mm at x = 1, 0.9, 0.8, 0.7 are shown in Figs 6 and 7. Figures 
6a and 7a show the pump wavelength and the index l of the 
corresponding WGM, and Figs 6b and 7b display the dura-

tion and repetition rate (1/tR) of dissipative solitons in the 
time domain. The smaller the absolute value of the anoma-
lous dispersion at the pump wavelength, the wider the spec-
trum of the dissipative soliton and the shorter its duration. 
Thus, the spectral width of an OFC generated in a 
0.8SiO2 – 0.2GeO2 glass microsphere with b2 = – 3 ps2 km–1 at 
a wavelength of 1.55 mm is ~200 nm with a soliton duration 
of ~100 fs, while the spectral width of the OFC generated in 
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a silica glass microsphere with b2 = –12 ps2 km–1 at the same 
wavelength is less than 100 nm with a soliton duration of 
~200 fs. At lp = 2 mm, the spectral widths of the optical fre-
quency combs are ~300 and ~150 nm with soliton durations 
of ~100 and ~200 fs, the solitons being generated in micro-
spheres made of germanate glass with b2 = –5 ps2 km–1 and of 
0.3SiO2 – 0.7GeO2 glass with b2 = –23 ps2 km–1, respectively.

Note an interesting feature of optical frequency combs 
generated at lp = 1.55 mm, x = 0.2 and at lp = 2 mm, x = 1, i.e. 
the presence of local maxima of spectral intensities on short-
wavelength wings (Figs 6 and 7). This feature has a simple 
explanation. It is known that if in the course of pulse evolu-
tion in a medium with Kerr nonlinearity and anomalous dis-
persion in the presence of cubic dispersion, the broadened 
wing of the spectrum falls into the region of normal disper-
sion, then dispersive waves are generated near the point of 
synchronism with a soliton. Note that this effect was first dis-
covered and studied for optical fibres [24, 29], and later inves-
tigated for microresonators [23, 30]. In the time domain, the 
short-wavelength dispersive waves are located on the back 
front of the dissipative soliton, which is also noted in Figs 6 
and 7. 

4. Conclusions 

We have proposed and theoretically studied the possibility of 
using spherical, whispering gallery mode microresonators 
based on (1 – x)SiO2 – xGeO2 germanosilicate glasses with dif-
ferent GeO2 contents (0 £ x £ 1) for generating optical fre-
quency combs in the dissipative soliton regime under pump-
ing at a wavelength of 1.55 or 2 mm. We have calculated and 
analysed the dispersion and nonlinearity of microspheres of 
different radii and determined their optimal characteristics 
and the expected parameters of the output radiation. It has 
been shown that under pumping at a wavelength of 1.55 mm, 
one should choose microspheres made of silica or germano-
silicate glass with a low content of germanium dioxide (x £ 
0.2), and under pumping at a wavelength of 2 mm, on the con-
trary, one should choose germanosilicate glass with a high 
content of germanium dioxide (x ³ 0.7). In both cases, it is 
preferable to use microspheres with a radius of 150 to 250 mm. 
It has been shown that, at a laser pump power of 100 mW, in 
optimal cases, the spectral widths of optical frequency combs 
generated in microspheres made of 0.8SiO2 – 0.2GeO2 and 
GeO2 glasses at a centre wavelength of 1.55 and 2 mm can be 
~200 and ~300 nm, respectively. In these cases, in addition 
to the dissipative soliton with a duration of ~100 fs, the gen-
eration of dispersive waves is also observed. The use of micro-
spheres based on germanosilicate glasses with optimal com-
positions allows one to obtain optical frequency combs with a 
larger spectral width than those generated by using silica 
microspheres.
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