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Abstract.  It is shown that TM-polarised surface waves, which exh
ibit a different character of their attenuation, can propagate along 
a dielectric layer separating photorefractive crystals with a diffu-
sion mechanism of the nonlinearity formation. The wave profiles 
can be symmetric and antisymmetric with respect to the centre of 
the three-layer structure. For all considered wave types, dispersion 
equations are derived. The dependences of the propagation constant 
on the characteristics of the layered structure are found for long-
wavelength surface waves in an explicit analytical form, and the 
conditions for their existence are revealed. The influence of the 
temperature and thickness of the dielectric layer on the propagation 
regimes of surface waves and their characteristics is analysed.

Keywords: surface waves, photorefractive crystal, photorefractive 
diffraction grating, propagation constant, attenuation coefficient, 
layered media.

1. Introduction

Many optical devices (sensors, triggers and waveguides) enjoy 
the use of both waveguide and control properties of media 
interfaces in multilayer structures that allow light beams with 
wavelengths of specified ranges to be transmitted or blocked 
[1 – 4]. Among the materials used in such devices, photore­
fractive crystals are of particular importance due to a number 
of their specific properties [5 – 9]. Strontium barium niobate 
(SBN) crystals, sillenite family crystals (Bi12SiO20, Bi12TiO20, 
Bi12GeO20), LiTaO3, BaTiO3, KNbO3, Fe : LiNbO3 and other 
crystals are usually used as materials with a photorefractive 
effect [10 – 12].

In many optoelectronic devices based on the use of such 
materials, controlled localisation along the interfaces of the 
layers of optical radiation energy and mechanisms for varying 
its spatial and spectral characteristics play an important role. 
The possibilities of controlling such nonlinear optical pheno­
mena and the prospects of practical application for optical inf­
ormation processing give rise to an interest in the theoretical 
study of the unique properties of surface waves (SWs) [13 – 15] 
propagating along the interfaces of the crystal, one of which 
exhibts a photorefractive effect.

A theoretical study of the laws governing the propagation 
of SWs excited under various conditions at the photonic crys­
tal – dielectric interface has been carried out repeatedly [16 – 23]. 
Nevertheless, a detailed analysis is required of the peculiari­
ties of the SW propagation in heterostructures with alternat­
ing nonlinear optical effects in the layers. In this regard, the 
present work proposes a theoretical description of new types 
of SWs propagating along a three-layer structure, which is a 
photonic crystal with a dielectric layer of finite thickness.

Significant differences in the electro-optical responses of 
the media of neighbouring layers, caused, for example, by the 
induction of a field in one of the layers due to the redistribu­
tion of charge density, lead to the possibility of the appear­
ance of fundamentally new features of the formation of the 
SW profile, the amplitude of which can oscillatory decay 
when moving away from the interface into the outer layers.

In this work, we study only a symmetric three-layer struc­
ture, the outer layers of which consist of a photonic crystal 
with the same optical characteristics. By virtue of symmetry, 
such a system can produce SWs with a field profile distribu­
tion characterised by a certain symmetry with respect to the 
layer interfaces, in particular in-phase and out-of-phase, des­
cribed by even and odd solutions, respectively. Such SWs will 
differ from the waves described in [21], propagating in a com­
bined waveguide of a photonic crystal with a dielectric film on 
its surface. In contrast to [23], the present work focuses on the 
analysis of the existence conditions and characteristics of 
TM-polarised SWs attenuating in two different regimes for 
the case of a finite layer thickness, and also on obtaining the 
dispersion laws for a thin layer in an explicit analytical form.

2. Model equations 

We consider the propagation of nonlinear, extraordinarily 
polarised SWs (TM-, or p-polarised waves), for which Еy = 0, 
Hx = Hz = 0, in a photonic crystal with an unperturbed refrac­
tive index nP, a dielectric plate of finite thickness 2а being loc­
ated inside the crystal. Let the diffusion regime of redistribu­
tion of photoinduced electric charge carriers, which form an 
intracrystalline field determining the nonlinear dependence of 
the refractive index, be realised in the photonic crystal.

We choose the coordinate system so that the middle of the 
dielectric layer passes through the coordinate origin, and its 
interface with the parts of the photorefractive crysal lies in the 
planes x = ± а perpendicular to the x axis. Then the parts of 
the photonic crystal occupy the half-spaces |x| > a, and the 
dielectric layer is in the region |x| < a. The polar photore­
fractive crystal axes in both half-spaces are considered oppo­
sitely directed along the x axis.
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We will consider only the stationary distribution of the 
SW field. In this case, from the system of Maxwell’s equations 
we obtain the equation for the non-zero component of the 
magnetic field vector of the TM wave [19 – 21]:
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where k0 = 2p/l0; l0 is the wavelength of light in vacuum; and 
n (x) is the spatial distribution of the refractive index of light 
in the direction perpendicular to the photonic crystal – dielec­
tric layer interface. We represent the dependence of n (x) in 
the form
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where nL is the refractive index of the dielectric layer, which is 
considered constant; and D nP is a small nonlinear addition to 
the unperturbed refractive index nP in the photonic crystal. 
Hereinafter, the subscript P corresponds to the quantities des­
cribing the properties of the photorefractive crystal in the 
region |x| > a, and the subscript L corresponds to the quan­
tities describing the properties of the dielectric layer in the 
region |x| < a.

We assume that a nonlinear addition to the unperturbed 
refractive index in a photonic crystal is formed as a result of 
only the diffusion mechanism of nonlinearity [11]. We also 
assume that the dark intensity Id (the intensity of dark illumi­
nation) is negligible compared to the intensity of light in the 
surface wave I µ |Hy|2. Then, in the approximation Id << I, 
the nonlinear addition to the refractive index of the photonic 
crystal can be represented as

D nP (x) = n r e
k T

I
I

2
1

eff
B

P
3 l ,	 (3)

where the primes hereinafter denote the derivatives with res­
pect to the x coordinate; reff is the effective electro-optical 
coefficient; kВ is the Boltzmann constant; T is the tempera­
ture; and e is the electron charge modulus. Nonlinear addi­
tion (3) is small compared to the unperturbed refractive indi­
ces of both the photonic crystal and the dielectric interlayer.

Let the resulting distribution of the wave propagating 
along the z axis have the form

Hy(x, z) = exp(i bk0z)
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( b is the propagation constant). Then, taking into account 
Id << I and D nP << nP, L from (1) – (4) we obtain equations

H ,1 2
''  + mH ,1 2

'  + (nP
2  – b2)k0

2H1,2 = 0,	 (5)

HL
''  + (nL

2  – b2)k0
2HL = 0,	 (6)

where the wave attenuation coefficient in the photonic crystal 
has the form

m = 2k0
2nP

4 reff kBT/e.	 (7)

The continuity conditions for the field components at the 
layer interfaces imply the boundary conditions 

H1(– a) = HL(– a),   H2(a) = HL(a),	 (8)
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Thus, the mathematical formulation of the model for des­
cribing the SW propagation along the dielectric layer in a 
photorefractive crystal reduces to equations (6) and (7) with 
boundary conditions (8) and (9). The field distribution in var­
ious types of SWs in the model in question is described by 
solutions of the contact-boundary value problem (6) – (9) sat­
isfying the boundedness conditions and |Hy| ® 0 for x ® ¥.

Since this model assumeы that all the optical characteris­
tics of the parts of the photonic crystal to the left and to the 
right of the dielectric interlayer are identical, surface states 
with symmetry of the field distribution can occur in such a 
symmetric three-layer structure, which are described by even 
[H1(x) = H2(– x)] and odd [H1(x) = – H2(– x)] solutions. In the 
present work, only surface states of this kind are considered; 
therefore, in what follows we will use the notation for the mag­
netic field strength in the photorefractive crystal, HP (x) = 
H1(x), for x < – a, and in the region x > a the field HP (x) will 
continue in an even or odd way.

Equation (5) has two types of solutions that disappear at 
infinity, depending on the relationship between the values of 
the propagation constant, attenuation coefficient, and unper­
turbed refractive index in the photonic crystal. The amplitude 
of the wave of the first type decays non-oscillatory when mov­
ing away from the dielectric layer in the depth of the photonic 
crystal, and the amplitude of the wave of the second type 
oscillates.

The solutions of the linear equation (6) are determined by 
the sign of the difference nL

2  – b2. Inside the layer, several 
types of the field distribution can arise, described either by 
nonperiodic or periodic solutions that are expressed in terms 
of hyperbolic and trigonometric functions (sines and cosines), 
respectively. In each of the sets of SWs generated by such 
solutions, in addition to the type of symmetry of the surface 
state, there are various forms of field attenuation arising with 
distance from the dielectric layer to the depth of the photonic 
crystal.

3. Main types of surface waves

1. Under the condition max(nL,  /n k4P
2 2

0
2m- ) < b < nP, there 

are two types of SWs, the field amplitude of which non-oscil­
latory decreases in the photonic crystal and is aperiodically 
distributed inside the dielectric layer.

Waves with a field profile distribution symmetric with 
respect to the centre of the dielectric layer in the region x < – a 
are described by the solution of equation (5), which can be 
expressed as

HP (x) = Ha exp[ m(x + a)/2] [ ( )]cosh x an +)

	 – 
/2e
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q2 = k0
2 (b2 – nL

2 );	 (13)

and На = Н(– а) is the field amplitude on the left boundary of 
the photonic crystal with the dielectric layer. Expression (10) 
extends to the region x > a in an even way.

Inside the dielectric layer, the profile of the SW field is 
described by a non-periodic even solution of equation (6) for 
b > nL:

HL(x) = Ha cosh(qx)/cosh(qa).	 (14)

Solutions (10) and (14) satisfy the boundary conditions (8) 
and (9). The field amplitude Ha plays the role of a control 
parameter.

Waves with the distribution of the field profile antisym­
metric with respect to the centre of the dielectric layer in the 
region x < – a are described by the solution of equation (5), 
which takes the form

HP (x) = Ha exp[ m(x + a)/2] [ ( )]cosh x an +)
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Solution (15) extends to the region x > a in an odd way.
Inside the dielectric layer, the profile of the SW field is 

described by a non-periodic odd solution of equation (6) for 
b > nL:

HL(x) = – Ha sinh(qx)/sinh(qa).	 (17)

Solutions (15) and (17) satisfy the boundary conditions (8) 
and (9).

2. Under the condition /n k4P
2 2

0
2m-  < b < min(nL, nP), 

there are two more types of SWs, the field amplitude of which 
non-oscillatory decreases in the photonic crystal and is peri­
odically distributed inside the dielectric layer.

Waves with a field profile distribution symmetric with 
respect to the centre of the dielectric layer in the region x < – a 
are described by the solution of equation (5) in the form

HP (x) = Ha exp[ m(x + a)/2] [ ( )]cosh x an +)
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k2 = – q2 = k0
2 (nL

2  – b2).	 (20)

Solution (18) extends to the region x > a in an even way.

Inside the dielectric interlayer, the profile of the SW field 
is described by a periodic even solution of equation (6) for 
b < nL:

HL(x) = Ha cos(kx)/cos(ka).	 (21)

Solutions (18) and (21) satisfy the boundary conditions (8) 
and (9).

Waves with a field profile distribution asymmetric with 
respect to the centre of the dielectric layer in the region x < – a 
are described by the solution of equation (5) in the form

HP (x) = Ha exp[ m(x + a)/2] [ ( )]cosh x an +)

	 – 
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Solution (22) extends to the region x > a in an odd way.
Inside the dielectric layer, the profile of the SW field is des­

cribed by a periodic odd solution of equation (7) for b < nL:

HL(x) = – Ha sin(kx)/sin(ka).	 (24)

Solutions (22) and (24) satisfy the boundary conditions (8) 
and (9).

3. Under the condition nL < b < /n k4P
2 2

0
2m- , there are 

two types of SWs, the field amplitude of which oscillatory 
decreases in the photonic crystal and is aperiodically distrib­
uted inside the dielectric layer.

The symmetric distribution of the profile of the field oscil­
latory decaying in the photonic crystal in the region x < – a 
is described by the solution of equation (5), which for b < 

/n k4P
2 2

0
2m-  can be represented as

HP (x) = Ha exp[ m(x + a)/2]cos[p (x + a) – j]/cos j,	 (25)

where the wave number

p2 = – n2 = k0
2 (nP

2  – b2) – m2/4.	 (26)

Solution (25) extends to the region x > a in an even way. 
Inside the dielectric layer for |x| < a, the field profile in a 
symmetric SW is described by expression (14). Substituting 
solutions (14) and (25) into the boundary conditions (8) and 
(9) leads to the dispersion relation

2
m
 + p tan j + ke = 0,	 (27)

where ke is defined by expression (12). The phase j here plays 
the role of a control parameter.

The antisymmetric distribution of the profile of the field 
oscillatory decaying in the photonic crystal in the region x < 
– a is described by expression (25), which extends to the region 
x > a in an odd way. Inside the dielectric layer for |x| < a, 
the field profile in the antisymmetric SW is described by 
expression (17). Substituting solutions (17) and (25) into the 
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boundary conditions (8) and (9) leads to the dispersion rela­
tion

2
m
 + p tan j + ko = 0,	 (28)

where ko is determined by expression (16).
4. Under the condition b < min [nL,  /n k4P

2 2
0
2m- ], there 

are two more types of SWs, the field amplitude of which oscil­
latory decreases in the photorefractive crystal and is periodi­
cally distributed inside the dielectric layer.

The symmetric distribution of the profile of the field oscil­
latory decaying in the photonic crystal in the region x < – a is 
described by expression (25), which extends to the region x > a 
(25) in an even way. Inside the dielectric layer for |x| < a, the 
field profile in a symmetric SW is described by expression 
(21). Substituting solutions (21) and (25) into the boundary 
conditions (8) and (9) leads to the dispersion relation

2
m
 + p tan j – ge = 0,	 (29)

where ge is defined by expression (19).
The antisymmetric distribution of the profile of the field 

oscillatory decaying in the photonic crystal in the region x < 
– a is described by expression (25), which continues to the 
region x > a in an odd way. Inside the dielectric interlayer for 
|x| < a, the field profile in the antisymmetric PV is described 
by expression (24). Substituting solutions (24) and (25) into 
the boundary conditions (8) and (9) leads to the dispersion 
relation

2
m
 + p tan j + go = 0,	 (30)

where go is defined by expression (23).

4. Results and discussion

4.1. Variation in the ranges of surface-wave existence

In each of these ranges of variation in the propagation con­
stant, there are two types of SWs, differing in the symmetry of 
the field distribution profile relative to the centre of the dielec­
tric layer. In the case of symmetric SWs, the field amplitudes 
at the left and right boundaries of the dielectric layer are iden­
tical: Н(а) = Н(– а) = На, and in the case of antisymmetric 
SWs they are identical in absolute value, but opposite in sign: 
Н(а) = – Н(– а) = – На.

It is important to note that in order to change such ranges 
of SW existence, for example, when moving from the region 

/n k4P
2 2

0
2m-  < b < min(nL , nP), where there are non-oscil­

latory decaying SWs, to the region nL < b < /n k4P
2 2

0
2m- , 

where there are oscillatory decaying SWs, it is not necessary 
to rigidly set the relation between the refractive indices of the 
photonic crystal and the dielectric layer, i. e., to change the 
types of materials of this layered structure. Such a transition 
can be made by changing only the damping coefficient m, the 
variation of which, in turn, can be carried out by changing the 
temperature. Consequently, in the layered structure, it bec­
omes possible to regulate the attenuation form (with or with­
out oscillations) of the SW excited in it by changing its tem­
perature.

4.2. Characteristics of aperiodically decaying surface waves

Symmetric and antisymmetric, non-oscillatory decaying SWs 
exist in two ranges: for max(nL,  /n k4P

2 2
0
2m- ) < b < nP and 

for /n k4P
2 2

0
2m-  < b < min(nL , nP). In both cases, the field 

distributions in the photonic crystal have the same character 
[see (10), (15) and (18), (22)]; however, they fundamentally dif­
fer within the dielectric layer. If in the first range, regardless 
of the type of symmetry, the field distribution is aperiodic [see 
(14) and (17)], then in the second range, the field has a peri­
odic distribution over the width of the dielectric layer [see (21) 
and (24)].

The period of spatial field oscillations in the dielectric 
layer for symmetric and antisymmetric SWs in both ranges is 
defined as

LL = 2p/k = 2p/[k0(nL2  – b2)1/2].	 (31)

The maxima of the field amplitude of symmetric and anti­
symmetric SWs and their positions in both ranges may not 
coincide with the field amplitude at the photonic crystal – die­
lectric layer interface. The maximum amplitude of the SW 
field can be reached inside the photorefractive crystal at a dis­
tance from the interface with the layer

xm e,o = lnF
2
1

,e on
,	 (32)
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and in the second range
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( / ) ( / )
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"
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here, the upper sign is chosen for symmetric SWs (subscript 
e), and the lower one – for antisymmetric SWs (subscript o).

The fundamental difference between the SWs of these ran­
ges lies in the fact that the SWs only in the second range can 
decay strictly monotonously into the depth of the photonic 
crystal with a certain relation between the propagation con­
stant and the characteristics of the photonic crystal and the 
dielectric layer.

4.3. Monotonically decaying surface waves

The wave monotonically decays into the depth of the pho­
tonic crystal when the dispersion equations

ge, о = m/2 ± n	 (33)

are satisfied.
In the case of a symmetric SW, which monotonically dec­

ays into the photonic crystal in the region |x| > a, the field 
distribution takes the form

HP (x) = Ha exp [± ge(x ± a)],	 (34)

and for an antisymmetric SW we have
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HP (x) = ±Ha exp [± go(x ± a)].	 (35)

The values of ge, о determined by expressions (19) and (23) 
for symmetric and antisymmetric SWs, respectively, have the 
meaning of attenuation coefficients. Since the attenuation 
coefficient must be positive, restrictions arise for the propaga­
tion constant during a monotonic decay of a SW. In this case, 
the requirement tan(ka) > 0 must be satisfied for symmetric 
SWs, which leads to a limitation of the wavenumber variation 
range, for example, in the interval 0 < k < p/2a, and the req­
uirement сot(ka) > 0 should be satisfied for antisymmetric 
SWs, which leads to a limitation of the wavenumber variation 
range, in particular, in the interval p/2a < k < p/a.

Thus, dispersion equations (33) determine such relations 
of the propagation constant with the physical characteristics 
of the layered structure for which a monotonic decrease in the 
amplitude of the SW field is observed with distance from the 
interface with the dielectric layer to the depth of the photonic 
crystal.

In the approximation ka << 1, which can be called long-
wavelength, from dispersion equations (33) with allowance 
for (19) for symmetric SWs, we explicitly obtain the depen­
dence of the propagation constant on the physical character­
istics of the layered structure (dispersion law):

b2 = 
( )

n n a

n n a1

L P

P L

2 2

2 2

m

m

-

-
.	 (36)

The attenuation coefficient of symmetric long-wavelength 
SWs is expresses as

ge = 
( )

n n a

ak n n n

L P

P L P

2 2

0
2 2 2 2

m-

-
.	 (37)

For the existence of monotonically decaying symmetric 
SWs in the long-wavelength range, the refractive index of the 
dielectric layer must be less than the unperturbed refractive 
index of the photonic crystal (nL < nP), and the width of the 
dielectric layer must be related to the attenuation coefficient 
in the photonic crystal and the refractive indices by the condi­
tion a > nL

2 /( mnP
2 ).

In the main approximation, for am << 1, the dispersion 
law (36) takes a simpler form: b2 = nP

2 (1 – am).
For the existence of a SW with such a dependence of the 

propagation constant, the thickness of the dielectric layer sho­
uld be less than the depth of the SW penetration into the pho­
tonic crystal. With a fixed thickness of the dielectric layer, the 
fulfilment of this condition can be achieved by reducing its 
temperature (because m ! Т ).

The period of spatial oscillations inside the dielectric layer 
(31) in the limiting case is determined by the expression

LL = 2p/[k0 ( )n n a1L P
2 2 m- - ].	 (38)

With increasing temperature, the LL period increases. In the 
main order, it will be determined only by the refractive index 
of the dielectric layer.

The dispersion law of long-wavelength monotonically dec­
aying antisymmetric SWs can also be obtained in explicit 
form from (33) with allowance for (23):

b2 = n
a k n n

n
a1 1

P
L L

P2
2

0
2 2 2

2

m+ -e o= G.	 (39)

For the attenuation coefficient of antisymmetric long-
wavelength SWs with allowance for (23), we have

go = nP
2 /(anL

2 ).	 (40)

It follows that the depth of penetration of the antisymmetric 
SW of the long-wavelength range, lo = 1/ go = anL

2 /nP
2 , in the 

photonic crystal can be directly controlled by choosing the 
thickness of the dielectric layer a and the ratio between the 
unperturbed refractive indices of the layered structure. Con­
sequently, near the dielectric layer of small thickness, the anti­
symmetric SW will propagate with the localisation of a larger 
fraction of the energy in narrower near-surface layers. The 
same effect of narrowing the spatial localisation of the SW 
energy can be obtained by selecting the ratio of the refractive 
index of the dielectric ilayer to the unperturbed refractive 
index of the photonic crystal.

4.4. Characteristics of oscillatory decaying surface waves

Symmetric and antisymmetric, oscillatory decaying SWs also 
exist in two ranges: for nL < b < /n k4P

2 2
0
2m-  and for b < 

min (nL,  /4n kP
2 2

0
2m- ). In both cases, the field distributions 

in the photonic crystal have the same character [see (25)], and 
inside the dielectric layer, as for aperiodically decaying SWs, 
regardless of the type of symmetry, the field distribution in 
the first range will be aperiodic [see (14) and ( 17)], while in the 
second range the field has a periodic distribution over the 
width of the dielectric layer [see (21) and (24)].

The period of spatial oscillations of the field attenuation 
in a photonic crystal with a symmetric (antisymmetric) profile 
of the first range is determined by the expression

LP = 2p/p = – 2p tanj/(ke, o + m/2).	 (41)

In this case, the wave penetrates into the crystal at a distance 
of l = 2/m = e/(k0

2 nP
4 reff kBT ). With increasing temperature, the 

depth of energy localisation of oscillatory decaying SWs dec­
reases. The LP period actually determines the period of the 
photorefractive diffraction grating formed by the SW field 
due to the photorefractive effect, when the change in the ref­
ractive index distribution in such a diffraction grating has the 
form DnP !E sc(x), where E sc is the induced intracrystalline 
field associated with the SW field (25 ) [11]. In particular, in 
the case where the diffusion mechanism of nonlinear response 
formation prevails, we used expression (3) to estimate D nP.

It follows from dispersion equations (27) and (28) that the 
oscillatory decaying SWs of the first range can exist only for 
such values of phase for which tanj < 0. For the oscillatory 
decaying SWs to exist in the second range, this condition is 
not required , which follows from dispersion equations (29) 
and (30).

In the approximation qa << 1, from the dispersion equa­
tion (27), we obtain in explicit form the dispersion law of sym­
metric oscillatory decaying SWs of the first range:

b2 = 
( )

( ) ( ) /

tan

tan tan
n

k n a n

k n a 1 4
L

P L

P2

0
2 2 2 2

0
2 2 2 2 2

m j

m j m j

+

+ - +
.	 (42)

The existence of such a wave relies on an additional condi­
tion 

nP
2  < 

( )

( )

tan

tan

k a4

1

0
2 2

2 2

j m

m j

+

+
.
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In the limiting case nL >> nP in the main approximation, the 
dispersion law (42) takes a simpler form:

b2 = nP
2  – ( )cot

k4
1

0
2

2
2m
j+ .	 (43)

The period of spatial oscillations of the field attenuation 
in the photorefractive crystal in this limiting case is related to 
the attenuation coefficient: LP = – 4p tanj/m. It follows that 
with increasing temperature of the layered structure, both the 
period of spatial oscillations of the field attenuation in the 
photonic crystal and its penetration depth decrease.

From the dispersion equation (28) in the approximation 
qa << 1, we explicitly obtain the dispersion law of antisym­
metric oscillatory decaying SWs of the first range:

b2 = nP
2  – cot

k an

n

4 2 L

P

0
2

2

2

2 2
2m m
j- +e o .	 (44)

For the existence of antisymmetric SWs, taking into account 
the dispersion law (44), it is sufficient to satisfy the condition 
tanj < 0.

The period of spatial oscillations of the field attenuation 
in a photonic crystal with a symmetric SW profile of the sec­
ond range, taking into account (29), has the form

LP = 2p tanj/(ge – m/2).	 (45)

The phase j = 0 corresponds to the case when the attenuation 
coefficients are related (ge = m/2) and the oscillation period is 
2p. From this, taking into account (19) in the long-wavelength 
approximation for ka << 1, we obtain explicitly the expres­
sion for the dispersion law of symmetric SWs of the second 
range:

b2 = n
ak n

1
2

L
P

2

0
2 2

m
-c m.	 (46)

It should be noted that the SWs with a zero phase in the 
first range and antisymmetric long-wavelength SWs in the 
second range do not exist.

From (31) and (46) we find the period of spatial field oscil­
lations in the dielectric layer for long-wavelength symmetric 
SWs of the second range:

LL = p n
n a2
L

P

m .	 (47)

As follows from (47), this period can be reduced by increasing 
the temperature at fixed refractive indices and fixed thickness 
of the dielectric layer. It also follows from expression (47) that 
the thicker the dielectric layer, the longer the period of field 
oscillations inside it.

For the period of spatial oscillations of the field attenua­
tion in a photonic crystal with an antisymmetric SW profile of 
the second range with allowance for (30) we have

LP = –2p tanj/(go + m/2).	 (48)

For such long-wavelength SWs, the period takes the form

LP = – 
tan

n a n

an

2

4

P P

L

2 2

2p
m

j

+
.	 (49)

For these waves, as well as for oscillating SWs of the first 
range, the condition tan j < 0 should be met. It follows from 
(49) that the period of spatial oscillations can be controlled by 
changing the temperature and the ratio of the refractive index 
of the dielectric interlayer to the unperturbed refractive index 
of the photonic crystal. At fixed refractive indices, an increase 
in temperature leads to a decrease in the period of spatial 
oscillations of the SW amplitude attenuation in the photonic 
crystal.

5. Conclusions

We have found that TM-polarised surface waves, which differ 
in the character of attenuation and the symmetry of the field 
profile, can propagate along the dielectric layer inside the 
photorefractive crystal. The waves of one type decay without 
oscillations when moving away from the interface into the 
depth of the photorefractive crystal, while the waves of the 
other type decay with oscillations. The waves of the first type 
can decay monotonously under certain conditions of relation 
between the propagation constant, refractive indices, and 
other physical characteristics of the layers.

Surface TM waves can exist in four different ranges of the 
propagation constant b:

1) for max(nL,  /n k4P
2 2

0
2m- ) < b < nP, the SW field 

decreases without oscillations in the photonic crystal and is 
aperiodically distributed inside the dielectric layer;

2) for /n k4P
2 2

0
2m-  < b < min(nL , nP), the SW field 

decreases without oscillations in the photonic crystal and has 
a periodic distribution inside the dielectric layer;

3) for nL < b < /n k4P
2 2

0
2m- , the SW field decreases with 

oscillations in the photonic crystal, and its distribution inside 
the dielectric layer is aperiodic; and

4) for b < min(nL,  /n k4P
2 2

0
2m- ), the SW field decreases 

with oscillations in the photonic crystal and is periodically 
distributed inside the dielectric layer.

In each of the indicated ranges, there are symmetric (rela­
tive to the centre of the dielectric layer) SWs with coinciding 
amplitudes at the left and right interfaces and antisymmetric 
SWs with amplitudes identical in absolute value and opposite 
in sign. In fact, such types of SWs correspond to in-phase and 
out-of-phase field oscillations of the field at the layer bound­
aries.

The required propagation regime of TM-polarised SWs 
can be implemented as a result of the transition of b from one 
range to another by changing the temperature of the layered 
structure in question.

For all types of SWs considered in the work, their charac­
teristics are analytically determined and dispersion equations 
are obtained. The dependences of the propagation constant 
on the characteristics of the photonic crystal and the dielectric 
layer for the ‘long-wavelength’ regime of SW propagation are 
found, and the conditions for their existence are indicated.

The penetration depth of the SW into the photorefractive 
crystal and the periods of their oscillations in the photorefrac­
tive crystal and inside the dielectric layer for the considered 
types of the waves are determined. It is shown that an increase 
in temperature leads to a decrease in the depth of the energy 
localisation of oscillatory decaying SWs, as well as to a dec­
rease in the period of spatial oscillations of the field attenua­
tion in the photonic crystal and in the dielectric layer.

The estimates of the periods of oscillations obtained in 
this work allow us to take into account the effect of the size of 
the dielectric layer in order to control the parameters of the 
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formed photorefractive diffraction grating. These estimates 
should be taken into account when designing optical elements 
from layered crystal structures with a photorefractive effect.

The possibility of the existence of the waves with the oscil­
latory decaying field amplitude fundamentally distinguishes 
heterostructures based on optical media with a photorefrac­
tive effect from layered structures consisting of other optical 
media. The methods for suppressing oscillations and adjust­
ing the depth of the field energy localisation along the layers 
indicated in this work can be useful in developing various 
optical devices based on the use of the photorefractive prop­
erties of crystals in multilayer structures.
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