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Abstract.  The properties of the Ramsey resonance and its sensitiv-
ity to the light shift of the atomic transition frequency are investi-
gated in the case of the hyper-Ramsey interrogation in an optically 
dense medium of cold atoms. The shape of the interrogating pulses 
varies significantly due to the processes of absorption and disper-
sion in the atomic medium, which leads to a distortion of the 
Ramsey resonance and a periodic change in the central minimum to 
the maximum and vice versa. The dependence of the position of the 
central resonance on the light shift of the atomic transition is found 
with the attenuation of radiation in the medium taken into account. 
It is shown that in a certain section of the medium this dependence 
becomes N-shaped.

Keywords: light shift, hyper-Ramsey interrogation scheme, optical 
frequency standard, two-level atom, optically dense medium.

1. Introduction 

The studies of magnetic resonance were started about 80 years 
ago [1]. Thanks to the improvement of the measuring tech-
nique, Rabi was able to increase the resolution of spectral 
lines and obtain much new information not only about atomic 
and molecular structures, but also about atomic properties 
[2]. Because a two-level atom is similar to a particle with a 
half-integer spin in a magnetic field, the basic dynamic equa-
tions describing the evolution of a two-level atom practically 
coincide with the equations describing spins. Therefore, the 
Bloch formalism for the spin vector, developed to describe 
magnetic resonance, can be transferred to optical resonance 
problems. 

Optical resonance at the transition between two (ground 
and excited) quantum levels can be used as a reference fre-
quency standard. The object on which the optical frequency 
standard can be implemented are single ions [3 – 5], neutral 
atoms in the optical lattice [6 – 8], and also the UV transition 
in the thorium-229 nucleus [9, 10]. The use of an optical tran-
sition as a reference made it possible to achieve atomic clock 
stability of 10–18 in one second. Such optical atomic clocks 
open up new possibilities for measuring the drift of funda-
mental constants [11], verifying the laws of quantum electro-
dynamics [11] and cosmological gravimetry [12], and detect-

ing dark matter [13]. It is expected that active research in this 
area will make it possible in the near future to overcome the 
stability threshold of 10–18 in one second [14].

In 1949, Ramsey proposed using a sequence of pulses sep-
arated by a dark pause instead of continuous radiation to 
interrogate atoms [15]. This scheme makes it possible to 
reduce the width of the resonance line, determined by the 
finite time of interaction of the particle with the field. This 
method quickly found application in quantum frequency 
standards, primarily in microwave standards [16, 17]. Later it 
found application in optical frequency standards by using a 
sequence of three, four (or more) pulses. 

When an atom interacts with laser radiation in a standard 
Ramsey interrogation scheme, due to the presence of non-
resonant atomic transitions, a light shift of the resonance fre-
quency (the Stark effect) occurs, which linearly depends on 
the intensity. In ultra-precise optical clocks, it is necessary to 
know the exact position of the resonance; however, the inten-
sity of the laser implementing the interrogation fluctuates, 
which limits the accuracy of determining the position of the 
resonance line and, therefore, the stability of the optical clock. 
In 2010, a paper was published in which the hyper-Ramsey 
interrogation scheme was proposed [18]. The idea was to use 
a sequence of pulses separated in time, which can have differ-
ent durations, frequencies and phases. For certain parameters 
of the pulse sequence, the dependence of the resonance line 
position on the light shift of the resonance transition fre-
quency is similar in shape to a cubic parabola. Therefore, 
there is a region near the resonance, where its position does 
not depend on the light shift. Thus, the use of such an inter-
rogation scheme can improve the stability of the optical clock. 
An experimental demonstration of the hyper-Ramsey method 
[19] gave a new impetus to research in this area. Thus, in a 
number of papers, the influence of various pulse parameters, 
frequencies, and phases on the position of the resonance was 
studied [20 – 22], and the role of the probe laser field fluctua-
tions in the hyper-Ramsey spectroscopic scheme was consid-
ered [23]. 

Ramsey spectroscopy is also widely used in the develop-
ment of microwave frequency standards in gas cells with alka-
line atoms. Thus, in a recent paper [24], an auto-balanced 
interrogation scheme for such frequency standards was pro-
posed, which was experimentally studied in Ref. [25], where 
the stability of 2.5 ́  10–15 in 104 s was achieved in atomic 
clocks based on the effect of coherent population trapping. 
While this scheme is fundamentally different from the hyper-
Ramsey one, since it is two-loop, both schemes are similar in 
that they use different pulse sequences. 

When constructing the microwave frequency standard in 
a gas cell with alkaline atoms, in order to enhance the signal, 
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one has to use higher concentrations of active atoms, increas-
ing the temperature. With growing temperature, the concen-
tration of atoms can reach such values that collective effects 
begin to appear, associated with the absorption of laser radia-
tion as it passes through the atomic medium. In this case, the 
medium becomes optically dense. In such a medium, the 
shape of the absorption resonance line changes in comparison 
with the shape of this line in an optically thin medium [26, 27]. 
Barantsev et al. [28] showed that the presence of an optically 
dense medium significantly distorts the shape of the reso-
nance line of coherent population trapping in the Ramsey 
interrogation scheme. The study of the auto-balance scheme 
in an optically dense medium seems to be a very important 
and urgent task. However, this scheme uses a more complex 
interrogation scheme. Based on the results of [28], one can 
expect that in the case of an optically dense medium, such an 
interrogation scheme will have a rather complicated picture 
of the propagation of pulses. In order to understand the phys-
ics of the processes with allowance for the laser radiation 
absorption, we solve in this paper the simpler problem of 
using the hyper-Ramsey interrogation scheme in an optically 
dense medium. The aim of our work is to study the physics of 
processes using a simpler example (hyper-Ramsey interroga-
tion design), which would allow us to rely on known results in 
limiting cases [29]. Thus, the problem to be solved is rather 
urgent from a fundamental point of view, since it helps to 
understand the physics of the processes that accompany the 
interaction of an atom with sequences of pulses of various 
types. Understanding the new features caused by the presence 
of radiation absorption in the medium, using the example of 
the hyper-Ramsey interrogation scheme, simplifies analysis 
and interpretation of the results of more complex interroga-
tion schemes for atomic systems. 

2. Mathematical model and basic 
approximations 

Let us consider the interaction of pulsed laser radiation with 
an atomic ensemble consisting of identical stationary atoms, 
in which the frequency wat of one of the transitions (| 1 ñ « | 2 ñ) 
is close to the carrier frequency of the external field n (the 
detuning is d = n – wat << wat). The ensemble has a length L 
along the z axis of the electromagnetic radiation propagation 
(Fig. 1). In this case, the mean free path of the photon is much 
shorter than the ensemble length, which makes the atomic 
medium optically dense (nasL > 1, where na is the concentra-
tion of atoms, and s is the cross section for scattering of pho-
tons by an atom). The ensemble is supposed to be sufficiently 
sparse, so that less than one atom corresponds to the average 
wavelength l of the incident radiation (nal3 < 1). This assump-
tion allows us to neglect the effects of recurrent scattering of 
light [30 – 33] and to consider the interaction of each atom 
with radiation independently from the point of view of quan-
tum correlations. However, the interaction of radiation with 
each atom of the ensemble is not completely independent due 
to its optical density. The radiation incident on the atoms of 
the far layers of the ensemble depends on the state of the 
atoms of the neighbouring layers, which is a manifestation of 
collective light scattering [34, 35]. 

Assuming that the electric field of the wave is a scalar, we 
define it by the expression

( , ) ( , ) . .e c cE z t E z t ( )i kz t
0= +

n- ,	 (1)

where E0(z, t) is the complex amplitude and k is the wave 
number. For the laser radiation intensities under consider-
ation, a semiclassical approach is applied, in which the radia-
tion is described classically, and the atoms and their interac-
tion with the field are described quantum mechanically. Then 
the Hamiltonian of the system has the form 

H H V0 '= +t t t ,	 (2)

where | |H n nnn0 e=t /  is the Hamiltonian of the atom in the 
absence of laser field; en are the energies of atomic levels (n = 
1, 2); 
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is the interaction operator in the rotating wave approxima-
tion; W = (2/ħ)d21E0 is the Rabi frequency of the interaction of 
the atom with the field; and d21 is the transition matrix ele-
ment of the dipole moment operator. 

We will describe the atomic system using the Liouville 
equation for the single-atom density matrix rt :

¶
¶

{ }H R,i
t '
r

r r=- +t t tt tt 7 A ,	 (4)

where { }R rtt t  is the superoperator describing the spontaneous 
decay of the excited atomic level. The radiation propagation 
in the plane wave approximation is described by the one-
dimensional wave equation for the complex amplitude: 
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where c is the speed of light in vacuum and P0(z, t) is the slowly 
varying amplitude of the polarisation of the medium. The 
polarisation of the medium is expressed, in turn, through the 
atomic density matrix and the operator of the transition 
dipole moment dt : 

( ) (SpP n d n d da a 21 12 21r r r= = + )12t t

	 *e eP P( ) ( )i it kz t kz
0 0= +
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Substituting expressions (2) and (3) into Eqn (4) and P0 from 
expression (6) into Eqn (5), we select in the off-diagonal ele-
ments of the density matrix the rapidly oscillating factor  

e ( )i t kz
12 12r r=

n -u . Using the rotating wave approximation, we 
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Figure 1.  (a) Levels of the atomic transition with frequency wat, inter-
acting with an electromagnetic field with frequency n, and (b) scheme of 
interaction of the field with an atomic ensemble optically dense along 
the coordinate z.
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obtain a system of Maxwell – Bloch differential equations 
describing the dynamics of the density matrix and the propa-
gation of the radiation field: 
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Here, the field propagation equation is written for the Rabi 
frequency and g is the spontaneous decay rate of the excited 
level. 

In the system of Eqns (7), the detuning  d(z, t) of the laser 
radiation frequency from the atomic transition frequency 
depends on the coordinate and time, since laser radiation, 
generally, interacts with other transitions of the atom, which 
causes a light shift of the resonance transition frequency | 1 ñ « 
| 2 ñ. Suppose that under the action of a rectangular laser pulse 
with amplitude W0, there occurs a shift in the transition fre-
quency by DLS. This shift takes place only under the influence 
of pulses, and during the dark pause, it is equal to zero. Thus, 
if the laser radiation frequency has a detuning d from the fre-
quency of the unperturbed transition in a dark pause, then 
during the pulse, the detuning will acquire an increment: d + 
DLS. However, laser pulses when passing through an optically 
dense medium change their amplitude and cease to be rectan-
gular. Since the light shift is proportional to the radiation 
intensity, the detuning of the laser field at time t at a point in 
space with coordinate z will have the form 
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3. Discussion of results 

In using the classical Ramsey interrogation scheme, a 
sequence of two identical pulses with an area of p/2 each 
affects atoms (Fig. 2a). The corresponding change in detun-
ing according to Eqn (8) at z = 0 is shown in Fig. 2b. 

In an atomic clock, the sensitivity of the Ramsey reso-
nance to fluctuations in the light shift DLS of the atomic tran-
sition directly affects their stability. We consider DLS as a free 
parameter, which in a real experiment is determined by the 
degree of interaction of laser radiation with nonresonance 
atomic transitions and radiation intensity. By the position of 
the resonance, we mean the position of its extremum S on the 
frequency axis. For the classical Ramsey interrogation 
scheme, the dependence S(DLS) is linear in the vicinity of 
point DLS = 0. Yudin et al. [18] proposed to use a sophisti-
cated sequence of pulses, which made it possible to reduce the 
sensitivity of the resonance position to the light shift (hyper-
Ramsey method). The pulse sequence shown in Fig. 2c allows 
the reduction of the dependence S(DLS) near zero to a cubic 
one, which significantly reduces the sensitivity of the reso-
nance to fluctuations of the light shift. In this sequence, the 
first pulse has the area p/2, and the second pulse consists of 
two parts with the areas –p and p/2. The change of the detun-
ing in time for such a sequence, according to Eqn (8), is shown 
in Fig. 2d. 

The Ramsey resonance for the coordinate z = 0 using the 
pulse sequence of Fig. 2c is shown in Fig. 3. The dependence 
of the position of its central minimum on the light shift is a 
cubic parabola (Fig. 4, z = 0). Let us analyse how the Ramsey 
resonance and the dependence S(DLS) change in the course of 
propagation through an optically dense medium. Usually, in 
experiments, the lifetime of an excited state of an atom is 
much longer than the duration of a hyper-Ramsey sequence 
of pulses; therefore, in the calculations we set the spontaneous 
decay rate g = 0. 
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Figure 2.  (a) Sequence of laser pulses of the Ramsey interrogation scheme at the input to the medium at the pulse areas  W0t1 = W0t2 = p/2  and (c) 
sequence of laser pulses of the hyper-Ramsey interrogation scheme at the entrance to the medium for the pulse areas W0t1 = W0t3 = p/2, W0t2 = –p , 
as well as (b, d) corresponding changes in the detunings of the frequencies of the laser field during the action of pulses by the value of the light shift 
DLS for the detuning d0 from the unperturbed transition.
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It can be seen from Fig. 3 that at the entrance to the 
medium the central resonance has the form of a minimum. 
Further, in the section with the coordinate z = 17 mm, it 
inverts and becomes a maximum. Then the process is repeated 
and in the section with the coordinate z = 98 mm, the mini-
mum takes place again. Thus, in the case of a fixed detuning, 
when the coordinate z changes, there occur oscillations of the 
upper level population. 

Figure 4 shows the dependences S(DLS) for the resonance 
at various z. For the maximum in the cross section with z = 
17 mm the dependence represents an N-shaped curve. In this 

case, near zero, there is a significant sensitivity to light shift in 
the linear portion of the N-shaped curve. The smallest sensi-
tivity to fluctuations in the light shift is achieved at its extre-
mums at  DLS » ±200 mHz. It should be taken into account 
that, as the coordinate z increases, the resonance amplitude, 
of course, decreases because of radiation absorption in the 
medium. 

With a further increase in the z coordinate, the pulse 
sequence shown in Fig. 2c is already significantly distorted 
due to the processes of absorption and re-emission of photons 
by the atomic medium. The latter process leads, in particular, 
to the fact that in the dark pause, the field re-emitted by atoms 
of previous layers acts on the atoms. The dependence S(DLS) 
in this case becomes linear, as in the classical Ramsey inter-
rogation scheme (Fig. 4, z = 56 and 98 mm). 

4. Conclusions

The theory of the hyper-Ramsey scheme for interrogating a 
two-level atom under the conditions of the finite optical thick-
ness of a rarefied medium and the presence of collective effects 
is developed. A cold atomic ensemble is considered. The 
mathematical model is a system of equations consisting of the 
dynamic part for the density matrix, which is solved together 
with the transport equations for the electromagnetic field and 
allows for collective effects. Within the framework of the 
developed model, it is found that the shape of the optical reso-
nance in the case of the hyper-Ramsey interrogation scheme 
changes substantially in the course of propagation through 
the medium, namely, the central resonance at zero detuning 
periodically changes from minimum to maximum and vice 
versa, while its amplitude decays exponentially. Analysis of 
the light shift shows that its dependence on the detuning has 
the form of a cubic parabola only for a thin medium (z = 0). 
With propagation through the medium, this cubic parabola 
changes and becomes linear. 
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