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Abstract.  The possibility is shown for increasing the contrast ratio 
of intense (TW cm–2) femtosecond laser pulses by using a nonlinear 
Mach – Zehnder interferometer, and also under the conditions of 
cascade quadratic nonlinearity in two tandem uniaxial crystals 
detuned from the matching direction to opposite sides. In both the 
cases, the peak intensity slightly falls (by ~10 %) and with addi-
tional chirp mirrors may even exceed the initial intensity.

Keywords: nonlinear Mach – Zehnder interferometer, terawatt laser 
pulses, contrast ratio.

1. Introduction

The peak power and time-domain contrast of ultrahigh-
power laser pulses are the key parameters in investigations of 
substance behaviour in extremely ultraintense light fields and 
in generation of charged particle bunches. Hereinafter, under 
the contrast ratio (or contrast) is meant the ratio of a pulse 
peak intensity to that in the pulse tails. A high contrast pre-
vents target destruction prior to the main pulse arrival, 
whereas a higher peak intensity of laser pulses focused onto 
a  target will help solve formerly inaccessible experimental 
problems related to investigations of vacuum nonlinearity, 
electron – positron pair generation, etc. Note that presently 
the record peak intensity reached in experiments is 1022 W cm–2 
[1]. Further increase may be realised by improving the beam 
focusing quality, increasing the pulse energy, and/or shortening 
pulse duration [2 – 6]. In addition, presently, further time 
compression is experimentally demonstrated for terawatt-
level femtosecond laser pulses with self-phase modulation 
and chirped mirrors [4, 6, 7]. Several successive stages of time 
compression will finally yield petawatt-power laser pulses 
with a duration of several periods of light field oscillations [5], 
which has not been realised experimentally yet.

The profile of a laser pulse is conventionally divided to the 
sections of far and near contrast. These sections are separated 
by a 1-ps boundary from the main maximum. The near con-
trast depends on the matching of the stretcher – compressor 
pair, whereas the far contrast is affected by the methods of 
pulse amplification employed. The required level of the far 
contrast is determined by the peak intensity and threshold of 
plasma generation. The contrast is conventionally increased 

by using the devices in which the transmission (or reflection) 
coefficient for a laser radiation depends on the intensity. For 
improving the pulse time profile, plasma mirrors [8 – 10], cross-
polarised wave (XPW) generation [11 – 13], second harmonic 
generation [2, 14 – 16], and other methods are currently used. 
Plasma mirrors and (or) second harmonic generation can be 
directly applied for obtaining petawatt laser pulses. The XPW 
method is conventionally used in input stages of petawatt 
laser systems [13]. This is mainly explained by the lack of 
large-aperture crystals (more than 10 cm) and a low conver-
sion efficiency (~30 % in energy) [11, 13, 17]. Note than 
XPWs are generated by using nonlinear crystals with an aniso-
tropic tensor of cubic nonlinearity (such as CaF2 and BaF2). 
A nonlinear-optical process of XPW generation broadens the 
spectrum of intense laser pulses and introduces the frequency 
modulation of phase, which can be compensated for due to 
reflection from chirped mirror surfaces. This can preserve and 
even increase the peak pulse power with a better contrast.

In the present work we analyse the possibility of using 
two methods for increasing the contrast ratio of superpower 
laser pulses. The first method is based on Kerr nonlinearity 
in transmitting elements of a Mach – Zehnder interferome-
ter. Note that the employment of a Mach – Zehnder interfer-
ometer for producing the optical shutter in which the trans-
mission coefficient depends on radiation intensity was earlier 
considered in [18 – 20]. The second method implies the 
employment of cascade nonlinearity in two tandem uniaxial 
crystals detuned from the matched position to opposite sides 
similarly to [21].

2. Employment of a nonlinear Mach – Zehnder 
interferometer for increasing the contrast  
of ultrahigh-power laser pulses

Double-beam Mach – Zehnder interferometers are widely used 
in precise measurements of the phase inhomogeneities 
acquired by a laser beam in one of its channels. A schematic of 
such an interferometer is shown in Fig. 1. The interferometer 
comprises two splitting plates ( 1 ), which are transmitting 
optical elements, and two mirrors ( 2 ). An interferometer of this 
kind can also be used for increasing the contrast ratio [22].

Possibilities of increasing the contrast of intense (with 
a power density of several TW cm–2) laser pulses by using a 
Mach – Zehnder interferometer can be demonstrated with 
a  simplest mathematical model. Assume that transmission 
elements ( 1 ) are similar and have the transmission and reflec-
tion coefficients, respectively, T and R satisfying the relation-
ship R + T = 1. We will also assume that mirrors ( 2 ) intro-
duce no losses and do not modulate the spectral phase of a 
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pulse, and that the splitting plates are ideal without parasitic 
reflections from rear faces. Note that it is not always possible 
to completely exclude parasitic reflections in experiments. In 
those cases, reflected in this way pre-pulses or amplified 
spontaneous luminescence may interact with each other at the 
interferometer output. This effect can be reduced if rear faces 
of the splitting plates are arranged at the Brewster angle. For 
example, splitting plates from fused silica with reflection at the 
Brewster angle may reduce the intensity of a homogeneous wide-
band radiation with a bandwidth of 0.2 w ( w = 2.07 ́  1015 s–1 
is the carrying frequency corresponding to the wavelength of 
910 nm) by a factor of approximately 107. In the frameworks 
of this approximation, the expressions for intensities I1 and I2 
at outputs of the arms (ports) have the form:

I1(t) = 
8
c
p |A1|2 = {1 – 2(1 – R)R 

	 + 2(1 – R)R cos [DjL + 2(1 – R)B(t)]}I0(t),	
(1)

I2(t) = 
8
c
p |A2|2 = {2(1 – R)R 

	 – 2(1 – R)R cos [DjL + 2(1 – R)B(t)]}I0(t).

Here, I0 is the intensity at the interferometer input 
(I0 = I1 + I2); D jL is the linear phase difference which pulses 
acquire while propagating along the interferometer arms; 
B(t)  = (2p/l)I0(t) gh is the nonlinear phase (B-integral); h is 
the  optical thickness of the splitting plates; l is the wave-
length; and g is the cubic nonlinearity factor. Note that this 
model does not take into account the influence of group 
velocity dispersion on the laser pulses passed through the 
beam splitters, because the interferometer is assumed to 
operate in the conditions where the dispersion length Ld 
[Ld = t2/k2, where t is the duration and k2 is the parameter of 
group velocity dispersion (in fs mm–1)] substantially exceeds 
the optical thickness of the beam splitters and the characteristic 
spatial scale Lb, in which B(0) = 1. For example, for the plates 
from fused silica and radiation of duration 50 fs with the cen-
tre wavelength of 910 nm and intensity of 1 TW cm–2 we have 
Ld = 86 mm, whereas h = pLb = 1.9 mm.

In the linear case (B = 0), the value of I1 in (1) may be 
exactly zero at D jL = p and R = 0.5. At elevated intensity, 
cubic nonlinearity effects become substantial; the pulses accu-
mulate a nonlinear phase and the phase balance breaks. In the 
result, the dark port of the interferometer becomes bright at 
B(0) = p. Note that the strongest phase mismatch is observed 
only for a central part of the pulse and is actually absent in 
the tails. In the pulse tails, the interferometer remains closed. 
Obviously, in the conditions D j = p, R = 0.5, and B(0) = p, 
intensity I1 takes a maximal value. For this case, profiles of 
the initial pulse of duration 50 fs with the far contrast level 
of  10–7 are presented in Fig. 2 along with the pulses at the 
output of port 1.

According to Fig. 2, the far contrast of the pulse increases 
from 10–7 to 10–20, its duration shortens from 50 fs to 38 fs, 
and the peak intensity remains the same I1(0) = I0(0). Note 
that an intense laser pulse propagating in transmitting 
optical elements broadens its spectrum and its phase acquires 
a frequency modulation. The employment of chirped mir-
rors similarly to the method described in [2 – 6] makes it 
possible to  additionally reduce the pulse duration to 24 fs 
and increase the intensity by a factor of 1.56 as compared to 
the initial value. A profile of the pulse with an enhanced 
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Figure 1.  Schematic of a Mach – Zehnder interferometer: 	
( 1 ) transmitting optical elements; ( 2 ) mirrors; I0 is the initial intensity; 
I1 and I2 are the intensities at interferometer outputs for ports 1 and 2, 
respectively.
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Figure 2.  Enhancement of the contrast by using a Mach – Zehnder interferometer. Intensity distributions of the following pulses are shown: ( 1 ) ini-
tial, ( 2 ) at the output of port 1 of the interferometer, and ( 3 ) after the additional time compression with chirp mirrors in the (a) linear and (b) loga-
rithmic scales.
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contrast after reflection from the chirped mirrors is shown in 
Fig. 2 [curve ( 3 )].

Let us now analyse how the interferometer operation is 
affected by imperfectly produced splitting plates [R is distinct 
from 0.5 (Fig. 3) and the optical thickness is not homo
geneous (Fig. 4)] and by intensity instability from pulse to 
pulse [violated condition B(0) = p (Fig. 5)].

According to formulas (1), a distinction of reflection coef-
ficient R from 0.5 results in inessential reduction of the peak 
intensity for a pulse with improved contrast. At R = 0.45, 
the peak intensity falls by 3 % only. However, this distinction 
affects the value of the far contrast more noticeably (Fig. 3). 
Note that correction of the spectrum phase with chirped 
mirrors makes it possible to shorten the pulse duration and 
increase its intensity by a factor of approximately 1.6 as 
compared to the initial value (see Fig. 3a).

The far contrast is mostly affected by the linear phase 
mismatch which arises due to imperfect surfaces of mirrors 

or beam splitters. In this case, the expression D jL in (1) takes 
the form: DjL = (2p/l)(n – 1)D, where D is the random value 
with a root-mean-square deviation DL and n is the refraction 
index of a plate or mirror substrate. Time profiles of the ini-
tial pulse and pulses with improved time-domain contrast at 
DjL = p and DL = l/[10(n – 1)] are shown in Fig. 4 for the case 
R = 0.5 and B(0) = p in the linear and logarithmic scales. The 
path difference error DL = l/[10(n – 1)] substantially worsens 
the contrast (see Fig. 4b). Thereby, the accuracy of surface 
fabrication of mirrors and beam splitters used in the inter
ferometer should be substantially better than l/[10(n – 1)].

Fluctuations of the peak intensity at the interferometer 
input change the pulse parameters at output from an opened 
port. The peak intensity in this case insignificantly falls. For 
example, a reduction (increase) in the intensity by 20 % at 
R = 0.5 and D jL = p reduces the peak intensity by only 10 % 
(Fig. 5a) and a variation of the peak intensity does not affect 
the level of the far contrast (Fig. 5b).
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Figure 3.  The same as in Fig. 2 at B(0) = p, D jL = p and R = 0.45.
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Figure 4.  Profiles of ( 1 ) laser pulses at interferometer input and of ( 2, 3 ) pulses with improved contrast at ( 2 ) R = 0.5, D jL = p, B(0) = p and ( 3 ) 
R = 0.5, D jL = p, B(0) = 0.8p in the (a) linear and (b) logarithmic scales.
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Under varied interferometer parameters, the profile of a 
pulse with an enhanced contrast most strongly depends on 
the  linear effects: the beam path difference and distinction 
of the beam splitter reflection coefficient R from 0.5.

3. Increase in the contrast by using cascade 
second harmonic generation

3.1. Idea of the method

It is known [20, 23, 24] that detuning from the phase matching 
direction in the process of frequency doubling results in an 
effective addition to the refraction index, which linearly 
depends on the intensity and has the sign determined by that 
of the mismatch between the wave vectors of the interacting 
first and second harmonic waves Dk. It is commonly supposed 
that this addition is related to manifestation of the cascade 
quadratic nonlinearity [23]. Control of the sign of the wave 
vector mismatch by varying the propagation direction of the 
fundamental wave in a frequency-doubling crystal makes it 
possible to monitor the contribution of Kerr nonlinearity and 
the efficiency of accompanying effects [25, 26]. Physically, the 
addition to the reflection index is related with the fact that 
if  there is deviation from the phase matching direction, the 
phase velocities for the fundamental and second-harmonic 
waves differ from each other and the energy is backward 
re‑pumped in the process of conversion to second harmonic. 
Photons generated from the second-harmonic wave have a 
phase velocity distinct from that of initial photons of the 
fundamental wave, which explains the phase shift. This effect 
may be used for fabricating optical devices with an intensity-
dependent absorption coefficient [21].

Consider the problem on a possible increase in the time-
domain contrast by using the optical scheme, which comprises 
two tandem uniaxial crystals with the orthogonal matching 
planes (these are also called interaction critical planes) and a 
polariser (Fig. 6). A laser pulse linearly polarised in the plane 
xy (at an angle of 45° with respect to yz plane) is sequentially 
directed to crystal 1 and then to crystal 2. The polariser is 
adjusted in such a way that at low intensity (when quadratic and 
cubic polarisation effects are not essential) the output radia-
tion completely passes through the polariser. For increasing 

contrast, both the crystals should be detuned from the phase 
matching directions in opposite sides: for the first crystal in 
the xz plane and for the second crystal in the yz plane. The 
efficiency of second harmonic generation (we limit ourselves 
by the oo-e synchronism) in both the crystals should be neg-
ligible. In the first crystal, the fundamental wave polarised 
along the y axis participates in frequency doubling and in the 
second crystal it does the fundamental wave polarised along 
the x axis (see Fig. 6). The fundamental and second-harmonic 
waves undergo self- and cross-interaction effects due to mani-
festation of the frequency dispersion of the linear part of the 
refraction index.

If crystal thicknesses and their angular detuning from the 
phase-matching direction are properly chosen, one can make 
the phase difference arisen due to quadratic and cubic non
linearity close to p at the output from the second crystal 
for the orthogonal components of the fundamental wave. The 
phase difference related to nonlinearities arises only at a 
sufficiently high pulse intensity, that is, near the maximum. 
In this region, the polarisation turns by 90° relative to the 
initial polarisation. In the result, by using a polariser one can 
select this region and increase the contrast.

The problem of contrast enhancement with the employ-
ment of two uniaxial crystals and a polariser can be stated as 
follows: at a prescribed pulse intensity, it is necessary to find 
the crystal thicknesses and the angles of detuning from the 
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Figure 5.  Profiles of ( 1 ) the initial pulse and of ( 2, 3 ) pulses with improved contrast at ( 2 ) R = 0.5, B(0) = p, D jL = p and ( 3 ) R = 0.5, B(0) = p, 
D jL = p + 2p/10 in the (a) linear and (b) logarithmic scales.
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Figure 6.  Schematic of contrast enhancement with two tandem uniaxial 
crystals; o.a. is the optical axis.
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phase matching direction that would provide the maximal 
peak intensity for the pulse reflected from the polariser with 
an enhanced contrast.

3.2. Employment of the method as applied to intense  
femtosecond laser pulses

In the quasi-optical approximation, modification of the pulse 
parameters of the fundamental and second-harmonic waves 
in crystal 1 in the case of oo-e interaction can be described by 
the system of equations:
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Here, A1 and A2 are the field envelopes of the fundamental 
wave; A3 is the second-harmonic wave field; b and gi, j are the 
nonlinear coupling coefficients for the second- and third-
order waves; uj (  j = 1, 2, 3) are the group velocities; and k2 j = 
¶2kj /¶w2. In equations (2), the nonsynchronous generation 
of second harmonic by wave 2 with envelope A2 is neglected. 
The initial boundary conditions are:

A1(z = 0, t) = A10 exp[–2 ln2(t2/t2)] ,

A2(z = 0, t) = A10 exp[–2 ln2(t2/t2)] ,	 (3)

A3(z = 0, t) = 0.

Here, t is the half-height intensity pulse duration, and A10 
is  the field amplitude at input to the nonlinear crystal for 
waves 1 and 2.

System (2) is also applicable for wave propagation in 
crystal 2 except for that the expressions for waves 1 and 2 
swap and the fields of a fundamental wave from output of the 
first crystal are used as the initial boundary conditions.

We now analyse possibilities of the method on an example 
of a BBO crystal. Quadratic and cubic coefficients of wave 
coupling for this crystal are given in [27]. We will assume that 
at the input of the nonlinear crystal, wave 1 is ordinary one 
and wave 2 is extraordinary. The phase matching angle in a 
uniaxial crystal can be found from the formula:

( ) (2 )
( ) ( )

sin
N N
N N

2
2

s
e o

o o2
2 2

2 2

q
w w
w w

=
-

-
- -

- -

.	 (4)

Here, No(w) and Ne(w) are the principal values of the refractive 
index ellipsoid. The linear dispersion of the refractive index 
results in that pulses of the fundamental and second-harmonic 
waves scatter in time; moreover, the pulses of fundamental 
wave also recede from each other due to refractive index 
anisotropy. The time delay between pulses of the fundamental 
wave can be found from the following considerations. A pulse 
of fundamental wave 1 runs through the first nonlinear crystal 
in the time interval t1 = L1/u1( l), and the pulse of the funda-
mental wave 2 – in the time interval t2 = L1/[u2( l, qs + Dq1)] 
(Dq1 is the angular detuning from the matching position). The 
time difference Dt = |t1 – t2| is just the time delay between the 
pulses of the fundamental waves 1 and 2 in the first crystal (of 
thickness L1). Since the pulses of waves 1 and 2 in the second 
crystal swap (the ordinary pulse becomes extraordinary and 
vice versa), those overtake each other. For each propagation 
direction in the second crystal relative to the optical axis, one 
can find the thickness L2

u  at which the pulses will exactly coin-
cide. Thickness of the second crystal L2 is chosen maximum 
closely to L2

u  in order to make the difference of linear phases 
for both fundamental waves at output be multiple of 2p.

Consider the propagation of intense laser pulses with a 
centre wavelength of 910 nm, duration of 50 fs, and peak 
intensity of 1.5 TW cm–2 in a BBO crystal. Let the far contrast 
of the pulse be 10–7. We will assume that the shear angle of the 
first and second crystals in the noncritical plane j is equal 
to  –90°, and the angles in the critical interaction plane are 
parameters. The phase-matching angle with respect to the 
optical axis is 25.9°. For these parameters of laser pulses, 
the  maximal peak intensity of the pulse reflected from the 
polariser is attained at the crystal thicknesses L1 = 700 mm 
and L2 = 138 mm and at the angular deviations from the 
matching direction Dq1 = –2.26°, Dq2 = 64°. In the second 
crystal, the radiation propagates at the angle of 90° with 
respect to the optical axis. Pulse profiles of the fundamental 
and second-harmonic waves, nonlinear phases, and their 
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difference at output of the first crystal are presented in Fig. 7, 
and for the second crystal in Fig. 8.

At the output from the second crystal, the pulses com-
pletely coincide in time, and the phase difference in the pulse 
statistical centres is close to p. Figure 9 shows the pulse 
profiles before and after enhancing the contrast by the 
scheme with two crystals and a polariser 9. The pulse with 
the enhanced contrast exhibits negligible distortions of the 
intensity time profile, which are related to the joint manifesta-
tion of linear (group recession and dispersion spreading of the 
pulses) and nonlinear effects. A duration of the pulse with 
the enhanced contrast reduces to 35 fs.

The peak intensity of the pulse with the enhanced contrast 
reduced by 11 % from the initial value, the pulse duration in 
this case shortened from 50 fs to 35 fs. The employment of 
chirped mirrors for spectrum phase correction reduces the 
duration of the pulse with enhanced contrast to 23 fs and 
increases its peak intensity by a factor of 1.2 as compared to 
the intensity of the initial pulse at input of the first nonlinear 
crystal (see Fig. 9). Note also that a variation of the input 
intensity by 10 % with other parameters  (crystal thicknesses 
and angles of detuning from the phase matching direction) 
being the same results in only 3 % fall in the peak intensity for 
the pulse with enhanced contrast. The degree of contrast 
enhancement does not change in this case.

Thus, according to the results of the numerical simula-
tion, the suggested scheme with two uniaxial crystals makes 
it possible to increase the contrast of the pulse of the funda-
mental wave by a factor of approximately five orders in 
magnitude.

4. Conclusions

In the present work, two nonlinear-optical methods are 
suggested and analysed, which can increase the contrast of 
laser pulses. The first method based on a nonlinear 
Mach – Zehnder interferometer will noticeably increase the 
far contrast if the optical quality of optical elements is 
high. However, the efficiency of the method falls if the sur-
faces of interferometer optical elements are produced with 
an accuracy worse than l/10. The second method based on 
the employment of cascade quadratic nonlinearity in two 
tandem uniaxial crystals detuned from the matching direc-
tion makes it possible to enhance the far contrast by a few 
orders in magnitude. Both the methods negligibly (~10 %) 
reduce the peak pulse intensity. The employment of spectrum 
phase correctors at output of the devices described may not 
only compensate a reduction of the peak intensity relative 
to that of the initial pulse, but also exceed the latter due to 
a shorter pulse duration.

800

600

400

200

0

In
te

n
si

ty
/G

W
 c

m
–2

–200 –100 0 100 200

Time/fs
a

1

0

–1

–2

–3

–4

A
n

gl
e /

ra
d

–200 –100 0 100 200

Time/fs
b

4

2

3

0

1

–1

A
n

gl
e /

ra
d

–200 –100 0 100 200

Time/fs
c

1
2

3

j1

j2

j1 – j2

Figure 8.  The same as in Fig. 7 at the output from the second BBO crystal of thickness 138 mm.
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