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Abstract.  Phase locking of laser arrays is a promising approach for 
obtaining high-brightness light. A variety of experimental methods 
have been employed to ensure phase locking. Concurrently, com-
plex theoretical models were developed and nontrivial physical 
effects were found. Here we review experimental data on passive 
phase locking and discuss current views on the potentialities of this 
method.
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1. Introduction

The modular approach to designing high-power laser sys-
tems is very attractive from the technological viewpoint. It 
allows the total laser output power to be scaled up by com-
bining output beams on a target. In the case of fibre lasers, 
the beams of individual lasers can be combined in a large-
core output fibre. In both cases, the divergence of the com-
bined beam is determined by that of the beams emerging 
from the individual, small-aperture modules. Since the 
numerical aperture of the combined output beam typically 
rises in proportion to the number of modules in the system 
(N), the optical quality of the combined beam is significantly 
lower than the quality of the beam of a single-mode laser 
having a total output power equal to the overall power of 
the laser array and, accordingly, a numerical aperture N 
times that of one module. The situation can be improved if 
the fields of all laser modules are coherent with each other. 
However, in the general case there is an additional require-
ment that the fields of all beams have the same phase at the 
output aperture or, at least, that the phase structure of the 
combined beam remain unchanged over time. In the latter 
case, the wavefront of the combined field can be flattened by 
phase correctors. The coherent combining of the output 
beams of modules allows one, in principle, to raise the axial 

brightness of the combined beam by N times relative to far-
field incoherent beam combining.

An alternative is incoherent laser beam combining tech-
niques (see e.g. Refs [1, 2]). In particular, in the case of spec-
tral combining [3, 4] laser beams of different frequencies are 
incident on a beam-combining grating at specially adjusted 
angles such that, after the grating, all the beams propagate in 
the same direction. Also possible is a multistep system that 
ensures both spectral beam combining and phase locking 
[5, 6]. At present, advances in coherent beam combining tech-
niques are ensured by adaptive optics techniques [7, 8] and 
optical coupling between modules, which leads to spontane-
ous coherence of the combined field [9, 10].

The oldest approach for obtaining high optical power in 
conjunction with high output beam quality, employed by 
Meyman as early as 1960, is optical pumping of a laser by 
light with poor optical quality. At present, high-power semi-
conductor lasers with a low output beam quality are widely 
used as pump sources. This approach has an important 
advantage over lamp pumping because the laser linewidth is 
here far smaller, which allows for selective pumping of both 
gases [11] and solids [12, 13]. The energy efficiency of a laser 
pumped by another laser can be rather high if one can select 
similar pump and lasing frequencies. In the case of fibre 
lasers, use is made of not only optical pumping but also non-
linear processes – stimulated Raman scattering (SRS) [14] and 
stimulated Brillouin scattering (SBS) [15] – to improve the 
optical quality of the beam. Since the fundamental mode of 
fibre has a higher gain than do the higher order transverse 
modes, the output beam at a Stokes frequency can have high 
optical quality.

Generally speaking, it is necessary to switch to a modular 
design of laser systems for any type of laser starting at a cer-
tain output power level. The first to encounter this issue were 
designers of semiconductor lasers at an output power of an 
individual laser element under 1 W [16]. A natural approach 
to laser output power scaling is to increase the volume of the 
active region. Because of the small size of the heterostructure 
in the direction of the current and the limitation on the diode 
laser length due to the large gain coefficient, it is necessary to 
increase the lateral size of the active layer. Direct attempts to 
increase the lateral size encountered an obstacle in the form of 
filamentation. Producing a laser array with distributed opti-
cal coupling, the segmentation of the active layer in the lateral 
direction encountered difficulties that have not yet been over-
come [17].

At present, the purpose of studies of high-power semicon-
ductor lasers intended to pump solid-state, gas and fibre 
lasers [11 – 13] is to maximise their efficiency. In particular, as 
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part of the DARPA Super High Efficiency Diode Sources 
(SHEDS) programme (USA) a 500-W diode laser bar with a 
70 % efficiency was demonstrated [18]. The possibility of 
directly utilising high-power semiconductor lasers in materi-
als processing and other applications stimulates the develop-
ment of semiconductor laser systems consisting of separate 
modules and offering high optical quality of their output 
beam [19]. In 2005, the goal of the DARPA Architecture for 
Diode High Energy Laser Systems (ADHELS) programme 
was formulated: to develop a coherent beam combining tech-
nique for semiconductor lasers with a combining efficiency of 
80 %, output power of ~10 kW and near diffraction-limited 
beam divergence (М 2 = 1.2) [18].

In some gas lasers, huge power levels were reached in a 
quasi-cw mode [20, 21], but the output beam quality was 
markedly poorer than the diffraction limit, thus limiting their 
potential applications. Examples of the phase locking of gas 
laser arrays were examined in a review by Glova [10]. In 
recent years, significant advances have been made in beam 
brightness scaling of diode-pumped solid-state lasers owing 
to the transition to a thin-disk gain element geometry [22, 23]. 
Mende et al. [24] discussed the feasibility of a transition to a 
modular design based on such elements, with subsequent 
beam combining.

In fibre lasers, a transition to multistep systems having a 
large core area amplifier as the final stage allowed a single-
mode power level of ~10 kW to be reached. Note that the 
output stage of amplification at a wavelength l = 1070 nm 
can be pumped by a fibre laser at l = 1018 nm [25] (tandem 
pumping scheme). A detailed analysis of the factors limiting 
the single-mode lasing power level was presented by Dawson 
et al. [26] for an Yb-doped fused silica fibre amplifier. In par-
ticular, at a fibre length of 40 m and core diameter of 90 mm, 
the maximum laser output power was estimated at 36.6 kW 
for a multimode amplifier and 1.86 kW for a single-frequency 
amplifier at a pump brightness of 0.021 W m–2 sr–1 [26]. As the 
fibre length increases, SRS and/or SBS becomes a limiting 
factor, whereas increasing the diameter of the active core 
makes thermal lensing a limiting factor. An increase in pump 
brightness by five times would allow the same output power 
to be reached at a fibre length of 10 m and core diameter of 
60 mm. The output power would then be limited by the optical 
damage threshold of the glass. In the case of short pulse 
amplification, the peak power is much higher, so self-focusing 
processes [27] and re-emission to other modes of the fibre 
come to the fore.

Fibre laser beam combining has been the subject of very 
extensive studies (see a review by Augst et al. [28]). A note-
worthy feature of fibre lasers is that their active cores differ in 
characteristics at a long fibre length, which leads to an uncon-
trolled scatter in phase shift at a given frequency, up to hun-
dreds of radians. In such a situation, the problem of passive 
phase locking of the fields of all lasers should be examined in 
terms of probability theory [29, 30].

The simplest approach for combining single-mode mod-
ules into an array is to use a master oscillator whose output 
beam is split into several beams, which are then launched 
into a set of amplifier modules (Fig. 1a). Since the amplifier 
modules differ in optical properties, the channels differ in 
phase shift, which leads to a reduction in coherent beam 
combining efficiency. Such a scheme can find application 
only at a small difference in phase shift between the ampli-
fiers involved (see e.g. Glova et al. [31]). An increased scatter 

in field phases in the amplifiers can be compensated for [32] 
via reflection from a mirror with wavefront conjugation 
(WFC) of the combined beam and subsequent beam propa-
gation through the amplifier system in the opposite direc-
tion. It is also worth noting a report by Bogachev et al. [33], 
who effectively utilised phase-conjugate mirrors supple-
mented by systems of Fresnel lenses for phase compensation 
in a system of four parallel amplifiers. 

Master oscillator signal injection into a system of lasers 
(Fig. 1b) involves the problem of locking stability in the 
lasers. The eigenfrequencies of the master oscillator and slave 
lasers should be matched with high accuracy.

The purpose of this work is to discuss the current state of 
the art in passive coherent laser beam combining, taking into 
account the specifics of various types of lasers. Section 2 
addresses general issues pertaining to optical coupling in a 
laser array and a number of approaches for ensuring it. In 
Sections 3 and 4, we examine locking methods for multichan-
nel lasers with distributed diffractive coupling (DDC) and 
Talbot filters, respectively. Section 5 describes theoretical 
models that are employed in calculations of laser arrays. 
Finally, in Section 6 we discuss possible operation modes of 
an optically coupled laser array.

2. Optical coupling schemes

Interaction between lasers via diffractive field exchange was 
first considered by Basov et al. [34], using two lasers with 
closely spaced Fabry – Perot cavities as an example. 
Subsequently, Perel’ and Rogova [35, 36] derived dynamic 
equations for fields in a system of two resonators coupled via 
a semi-transparent mirror, with an active medium present in 
only one resonator. The stability of one common laser mode 
was analysed by Spencer and Lamb [37]. As shown by 
Likhanskii and Napartovich [9] for a laser array, the genera-
tion of a common supermode is most stable to scatter in 
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Figure 1.  Schematics of (a) a fibre laser with a system of amplifiers and 
(b) a system of lasers locked to a master oscillator: ( 1 ) Bragg reflector; 
( 2 ) master oscillator; ( 3 ) coupler; ( 4 ) amplifiers; ( 5 ) output coupler.



991Coherent beam combining in optically coupled laser arrays

eigenfrequencies if the lasers are coupled to each other with 
identical coupling coefficients (another name is global cou-
pling [38]). Bondarenko et al. [39] were the first to experimen-
tally demonstrate the development of the self-oscillation 
regime as the optical coupling strength between two CO2 
lasers decreases because of the detuning of the eigenfrequen-
cies of their cavities. A detailed survey of early research into 
the operation of two optically coupled lasers can be found in 
Ref. [9] and a paper by Roy [40], who discussed the phase 
locking of lasers in chaotic mode as well.

The kind of optical coupling between laser elements 
depends on the type of laser. In the case of multielement 
semiconductor and fibre lasers, designs were demonstrated 
with diffractive field exchange between neighbouring ele-
ments during light propagation [16, 41, 42]. If diffractive 
exchange is low effective (for example, at a large optical 
mode area), field exchange between different lasers can be 
ensured by a special external device. In particular, Veldkamp 
et al. [43] proposed using a transparent diffraction grating 
with identical emission intensities in different orders of dif-
fraction. The grating made by them had a 75 % efficiency for 
splitting a beam into seven diffraction orders and was used 
to couple two or three He – Ne lasers. In an experiment with 
an analogous grating and an additional filtering aperture in 
the far field, Leger et al. [44] demonstrated the locking of six 
out of ten elements of a diode bar with a 68 % efficiency. 
Morel et al. [45] reported the phase locking of three fibre 
lasers with a 70 % efficiency.

Recently [46], five semiconductor lasers were locked using 
a diffraction grating that split an input beam with a 98 % effi-
ciency. An analogous grating combined the beams emerging 
on the other facet of the bar. At a current of 4 A, the power in 
the zeroth order of diffraction was 6 W and remained con-
stant in time. At a current of 5 A, it was 7.5 W out of the 12 W 
of total power, but lasing became unstable. Subsequently, 
Schimmel et al. [47] proposed separating the problems of 
beam combining and phase locking using a semiconductor 
laser with a distributed feedback grating as a master oscilla-
tor. As a result, stable phase locking persisted up to a current 
of 6 A and was ensured by an output power of 11.5 W in the 
zeroth order of diffraction at a combining efficiency of 78 %. 
As the next step in the development of the concept, a system 
for active phase shift tuning in amplifying channels was added 
to a multichannel amplifier, in which a diffraction grating was 
only used for combining its output beams into a single beam. 
Owing to the high quality of diffractive optical elements in 
such systems, Redmond et al. [48] and Thielen et al. [49] dem-
onstrated beam combining into a beam with a quality factor 
М 2 = 1.1 from five fibre amplifiers with an efficiency of 79 % 
and power of 1.93 kW and from a 3 ´ 5 two-dimensional (2D) 
amplifier array with an efficiency of 68 % and power of 600 W, 
respectively.

The out-of-phase mode of an array has two main beams 
in the far field, which diverge at an angle l/(2L) with respect 
to the optic axis, where L is the period of the structure. 
Placing an angle-selective mirror, which returns only the 
field of one of the beams, one can ensure lasing only on this 
mode [50]. 

To date, a number of approaches have been employed to 
ensure optical coupling between lasers through field rescatter-
ing by spatial amplitude filters, whose part can be played as 
well by the periodic structure in the arrangement of amplifiers 
in a laser array [9].

2.1. Optical coupling through a filter in the focal plane

A priority issue in laser engineering is the ability to minimise 
the far-field intensity distribution width, so a natural way of 
selecting supermodes is by filtering the field distribution in the 
focal plane of a lens or mirror in the output section of the 
system. To minimise the beam divergence of a large-aperture 
solid-state laser in their experiments, Gerasimov et al. [51, 52] 
used a limiting circular diaphragm in the focal plane of one of 
its mirrors, which selected out the laser mode with the small-
est far-field divergence, suppressing all other supermodes. He 
et al. [53] demonstrated phase locking of radiation from two 
fibre lasers with a 88 % efficiency with the use of a focal filter. 
Wan et al. [54] presented a detailed numerical analysis of how 
parameters of a focal filter influence supermode separation 
selectivity in systems of two and three lasers. In such geome-
try, however, the edge of the diaphragm is exposed to high-
power radiation and one loses the field in side diffraction 
orders in the focal plane. These drawbacks were partially 
overcome in experiments reported by Aleksandrov et al. [55], 
where the radiation from a CO2 laser array was phase locked 
by passing it through a diaphragm with a system of holes cor-
responding to maxima in the far-field intensity distribution of 
the in-phase mode. An analogous spatial filter was used by 
Rediker et al. [56] to phase-lock the radiation from an array 
of five semiconductor lasers.

Fridman et al. [57] studied a 5 ´ 5 array of fibre amplifiers 
differing in length and coupled through a system of mirrors in 
the focal plane. At the output in the far field, they observed 
radiation with a rapidly varying brightness. In addition, at the 
instants corresponding to the average axial brightness the far-
field intensity distribution corresponded to the output of one 
laser, whereas at the instants corresponding to maximum 
brightness they observed the structure of a combination of 
supermodes of the array. In the case of a 2D square array, the 
time-averaged efficiency decreased from 90 % for 3 lasers to 
29 % for 25 lasers, but 90 % locking efficiency was reached for 
some time even at a larger number of lasers (N): 0.1% of the 
time at N = 12, 0.012 % at N = 16, 0.004 % at N = 20 and 
0.001 % at N = 25. In addition, Fridman et al. [30] showed 
that, under the experimental conditions of their study, the 
average size of a cluster of locked lasers had a Gaussian prob-
ability distribution with a mean size of ~7.

For a fibre laser array, single-mode fibre can be used as a 
spatial filter, with a small part of the output beam of a system 
of fibre amplifiers focused onto its input end [58]. The field 
produced in the single-mode fibre is delivered to the input of 
the amplifier system to form a common ring cavity (Fig. 2). 
Separating the in-phase mode in such a laser configuration, 
Shalaby et al. [59] achieved the phase locking of fields in an 
active 19-core fibre. To demonstrate the feasibility of the 
phase locking of two multicore lasers in a ring cavity configu-
ration, Shalaby et al. [60] imitated lasers by two parallel pas-
sive seven-core structures and a common amplifier based on 
single-mode fibre, which served as a spatial filter as well. In 
those experiments, the in-phase mode separation efficiency 
was above 95 %, but the fraction of the power coupled into 
the single-mode fibre was far below 1 %.

To improve the efficiency of common supermode separa-
tion in ring geometry, Yang et al. [61] proposed placing a dif-
fraction grating between a focusing lens and single-mode 
fibre, so that the beams from three separate amplifiers propa-
gated in diffraction order directions of the grating. Even 
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though the efficiency of beam combining on the grating was 
relatively low, 61 %, they demonstrated phase locking with 
20 W of output power. In this process, 1.5 mW of power was 
coupled into the fibre.

At high output powers, most of the light leaves the ring 
cavity. Since the optical fields in the individual amplifiers are 
phased, output beams can be combined on a diffraction grat-
ing. Using such a configuration with three fibre amplifiers, 
Liu et al. [62] obtained 206 W of output power at a beam 
quality factor М 2 = 1.38.

2.2. Fourier coupling

A natural development of the far-field filtering method is the 
use of the output end faces of a laser array as a selecting aper-
ture in the Fourier plane (Fig. 3). The image at the focus of a 
lens coincides with the structure of the emitting laser end faces 
under the condition that L2 = lF, where F is the focal length 
of the lens. Such a compound cavity with Fourier coupling 
was first used by Corcoran and Rediker [63] to phase-lock 
five fibre-coupled semiconductor lasers. Later, an analogous 
configuration was used to phase-lock seven fibre lasers [64]. 
The theory of phase locking of a Fourier-coupled laser array 
is discussed in Section 5.

2.3. Optical coupling through nonlinear cells

Field coupling of two lasers in four-wave scattering pro-
cesses in nonlinear cells was first considered theoretically 
by Likhanskii et al. [65] and demonstrated experimentally 
in gas lasers with different nonlinear cells by Baranov et al. 
[66] and Bondarenko et al. [67]. Beams counterpropagating 
in an active medium produce gain gratings, which allows 
gain elements to be used as coupling cells based on the 
four-wave scattering effect [68, 69]. Basiev et al. [70, 71] 
demonstrated coupling of two and three Nd : YAG lasers 
in such geometry. In the latter case, they obtained pulses 
with an energy of 0.94 J at a wavelength of 1.34 mm and a 
repetition rate of 10 Hz.

2.4. Interference coupling

If two fibre lasers are coupled by a 2 ́  2 coupler and reflection 
from the fibre end face is eliminated in one of the coupler 
ports, such a compound cavity, equivalent to a Michelson 
interferometer, will ensure frequency tuning of the lasers to a 
common lasing frequency at which the loss due to emission 
through the open port will be zero [72]. Theoretically, sequen-
tial pairwise coupling with couplers allows any number of 
lasers to be coupled to each other. In experiments, stable cou-
pling of seven or eight fibre lasers with a relatively low power 
was demonstrated [73, 74]. The drawbacks to this approach 
are that the output of the entire array is coupled into single-
mode fibre and that lasing is unstable in time [75]. Bruesselbach 
et al. [76] experimentally studied a system of ten lasers, each 
with an output power of ~100 W in the case of independent 
lasing. According to their results, eight lasers can be success-
fully phase-locked at a low output power, whereas increasing 
the array to nine or ten lasers leads to a reduction in phase 
locking efficiency (h), determined as the fraction of the power 
outcoupled through output fibre. At an increased power, the 
efficiency drops sharply as the number of coupled lasers 
increases.

Wang et al. [77] studied coherent combining of two large 
mode area fibre laser beams in a configuration with interfer-
ence coupling. At an individual laser power of ~27 W, an 
output power of 50.1 W was reached (h = 92.8 %). Reducing 
the active core size led to a more rapid decrease in efficiency 
with increasing power. As the difference in optical length 
between the lasers was increased, h became independent of 
pump power. Kabeya et al. [78] studied in detail the reduction 
in h with increasing pump power in a two-arm ring fibre laser 
system. It was shown that h decreased to 90 % and that the 
emission spectrum at the loss port followed the phase-locked 
emission spectrum except in narrow regions near peak posi-
tions in the latter spectrum. To interpret this effect, it was 
assumed that, at a high pump power, the width of the mode 
spectrum was determined by the gain band and the fraction 
cut from the emission spectrum by the external coupling sys-
tem gradually decreased.

Multiple-beam interferometer geometry with a system of 
semi-transparent mirrors was successfully used by Ishaaya et 
al. [79] to couple 16 solid-state amplifiers. Zhao et al. [80] 
coupled three Nd : YAG lasers in an interferometer with 
additional far-field filters. As a result, a single beam with М 2 
= 1.35, containing 76 % of the energy (124 W) in the central 
maximum, was obtained instead of three output beams with 
М 2 = 5.5. For semiconductor lasers, interference coupling 
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Figure 3.  Schematic of a cavity with Fourier coupling.
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Figure 2.  Schematic of a cavity with single-mode fibre filtering: ( 1 ) 
single-mode fibre; (2 ) 1–N coupler; ( 3 ) fibre amplifiers; ( 4 ) semitrans-
parent mirror; ( 5 ) optical isolator; ( 6 ) preamplifier; ( 7 ) lens.
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was ensured by rotating the plane of polarisation of half of 
the beams and then bringing them together using a birefringent 
plate. Phase-coupling four lasers in this way, Purnawirman 
and Phua [81] reduced their output power from 10.2 to 7.2 W 
and their lateral М 2 factor by 20 times.

3. Distributed diffractive coupling

DDC systems include semiconductor laser bars (integrated 
arrays) and multicore fibre lasers in which field exchange 
between elements occurs through diffraction of light.

3.1. Semiconductor lasers

Early work on the phase locking of diode laser arrays was 
reviewed by Goldobin et al. [16] and Botez [41], and that on 
lasing dynamics, by Winful and Defreez [82]. It became clear 
as early as the 1980s that diode laser bars, consisting of active 
waveguides separated by passive regions with a lower refrac-
tive index (RI), were unsuitable for the stable phase locking of 
the in-phase mode [41]. As a result of the optical loss in inter-
element gaps, weak optical coupling due to the rapid decrease 
in the field tunnelling from active fibres and variations in RI 
due to heating of the contact and changes in carrier concen-
tration in quantum wells, the out-of-phase mode prevails or 
single-mode lasing becomes unstable with increasing pump 
current.

Advances in single-mode diode bar scaling were made 
after a transition to antiguided structures with gain regions 
separated by passive waveguides. Optical coupling in such 
structures is ensured by travelling waves and, provided 
there is resonance wave propagation through interelement 
gaps, is similar in properties to global coupling [41]. In an 
antiguided 20-element laser bar, stable in-phase mode las-
ing was obtained with 500 mW of power in continuous 
mode [83] and 2 W in pulsed mode [84]. In a 40-element 
laser bar, Yang et al. obtained 10 W of power in pulsed 
mode [85] and 1.6 W in continuous mode [86] at a beam 
divergence exceeding the diffraction limit by a factor of 2 
and 1.8, respectively.

In vertical-cavity surface-emitting lasers (VCSELs), 
stable phase locking was obtained in square antiguided 
arrays consisting of 100 [87] and 400 [88] elements. In 
recent years, the advent of quantum cascade lasers has 
revived interest in antiguided laser bars. Kirch et al. [89] 
demonstrated a five-element bar with 5.5 W of output 
power at a wavelength l = 8.35 mm in pulsed mode. Note 
that the central peak, with a divergence exceeding the dif-
fraction limit by a factor of 1.65, accounted for 4.5 W of 
power. At l = 4.7 mm, Sigler et al. [90] obtained 3.6 W of 
peak output power in a five-element laser bar with diffrac-
tion-limited beam divergence.

3.2. Fibre lasers

One way of increasing the fundamental mode area in fibre 
lasers is by using multicore structures. In pioneering work by 
Glas et al. [91], to raise the pump absorption coefficient the 
centres of 38 circular active cores 6.9 mm in diameter were 
arranged on a 115-mm-diameter circle near the outer fibre 
cladding. According to calculation of core coupling constants 
in this configuration [92], diffractive field exchange between 
neighbouring cores will occur over a propagation distance of 

~1.3 mm. Experimental data demonstrate that, nevertheless, 
such coupling is insufficient for phase-locking the fields in the 
cores.

Huo et al. [93, 94] demonstrated the operation of fibre 
lasers with hexagonal arrays formed by 7 and 19 active cores, 
respectively, with a diameter of 7 mm and a period of 10.5 mm. 
They observed spontaneous phase locking of the fields in the 
cores as the pump power was raised.

A hexagonal structure of active cores was also studied in 
photonic crystal fibres with an ordered array of air holes, 
which formed a 2D photonic crystal with defects containing 
active components. The technology and properties of micro-
structured fibres were discussed in a review by Russel [95]. In 
a photonic crystal fibre laser [96] having six ytterbium-doped 
active cores, single-mode generation of pulses 26 ns in dura-
tion and 2.2 mJ in energy was achieved at a mode area of 
4200 mm2. Using such fibre, with seven cores, as a final ampli-
fier in a standard pulse stretching – amplification – compres-
sion scheme, Fang et al. [97] obtained 110-fs pulses with a 
peak power of 150 MW and mode area of 5000 mm2. Fang et 
al. [98] utilised a photonic crystal fibre with 18 active cores as 
an amplifier in a passively Q-switched laser. Its output had a 
relatively high optical quality (M 2 = 1.52). Next, the pulses 
were compressed by an external system to a duration of 690 fs. 
These results suggest that multicore fibre is promising for the 
generation of microjoule pulses shorter than 100 fs at a repeti-
tion rate of 50 MHz [99].

Beach et al. [100] proposed a ribbon fibre structure com-
prising a periodic sequence of active and passive segments 
(Fig. 4a), embedded in a reduced-index cladding region. 
According to calculations for a five-element structure with a 
varied index difference between the active and passive regions, 
such a structure is most effective at an index modulation 
under 0.001. The theoretical predictions were confirmed by 
experimental data [101] for a waveguide amplifier with five 
Nd-doped active cores, in which an in-phase mode with a uni-
form intensity distribution was realised.
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Figure 4.  Schematic of fibre with (a) a planar and (b) a circular ribbon 
waveguide [107]: ( 1 ) cladding; ( 2 ) active core; ( 3 ) passive section of the 
ribbon waveguide; n1 – 3 are the corresponding RIs (n3 ³ n2 > n1).
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The structure analysed by Beach et al. [100] is similar to 
that of antiguided semiconductor laser bars [41], differing 
only in that there is no absorption in the passive sections and 
that the edges of the structure have high reflectivity. 
Theoretical analysis by Vysotsky et al. [102] generalised the 
results presented in Ref. [100] and included the case of a large 
index difference between the active and passive regions. The 
latter is important for practical applications because the index 
difference determines the acceptable processing-induced scat-
ter in RI. They derived explicit expressions for the maximum 
higher mode discrimination level and the largest number of 
phase-locked cores. For a resonant antiguided ribbon fibre 
laser structure, higher mode discrimination was independent 
of the number of elements up to ~1000 elements.

Dawson et al. [103] proposed increasing the ribbon struc-
ture thickness by adding thin increased-index layers, which 
would allow a mode with a flat intensity profile across the rib-
bon to be produced in each element. Mode profile flattening 
raises the threshold power for nonlinear processes and allows 
the single-mode lasing output power to be increased.

Drachenberg et al. [104] demonstrated multimode opera-
tion of a ribbon waveguide laser with an output power of 
40 W and beam spot area of 600 mm2. To achieve single-mode 
operation, the fibre was used as an amplifier with single-mode 
light injection [105]. An alternative approach is to place an 
external filter in the far field. As demonstrated by Anderson 
et al. [106], the use of a bulk Bragg grating with an angular 
reflection bandwidth of 4.7 mrad as an external mirror allows 
the output beam quality to be improved to М 2 = 1.45. This is 
accompanied by a drop in the optical efficiency of the laser 
from 76 % to 53 %.

A further development of the ribbon fibre laser concept 
is the structure represented in Fig. 4b [107]. Here, the active 
structure has the form of a ribbon waveguide rolled around 
the fibre axis and having alternating increased- and reduced-
index regions. The reduced-index regions contain active 
dopants (Er, Yb and others). This design allows one to 
sharply increase the optical mode area, while maintaining a 
high degree of fundamental mode selection. Calculations 
[108] show that, in the case of a ring waveguide (RW) having 
seven active sectors, an inner radius of 18.5 mm and outer 
radius of 34.5 mm, the in-phase mode can be reliably selected 
at index differences in the range 0.0015 < Dn < 0.0025. The 
addition of circular passive layers with an RI exceeding that 
of the active elements will lead to the same advantageous 
effects as were predicted by Dawson et al. [103] for a ribbon 
laser.

The sliced slab CO2 laser design reported by Sha et al. 
[109], with a laterally modulated RF pumping and weak index 
modulation, is in effect of the same type as the ribbon fibre 
laser design. Sha et al. [109] demonstrated the phase locking 
of ten overlapping laser beams, so that the far-field intensity 
distribution had one peak, without sidelobes.

4. The use of the Talbot effect

In 1836, Talbot [110] discovered the reproduction of periodic 
structures at a certain distance (referred to as the Talbot dis-
tance, LT) from an emitting aperture. The effect was explained 
in 1881 by Rayleigh [111]. Antyukhov et al. [112] proposed 
using the self-reproduction of a periodic field distribution for 
the phase locking of a hexagonal array formed by 56 wave-
guide CO2 lasers. Phase locking efficiency, determined as the 

ratio of the output powers obtained with the external plane 
mirror placed distance LT/2 from and next to the waveguide 
end facets, was 20 %, but the far-field axial brightness 
increased by ten times. Along with an in-phase supermode, a 
mode with phase modulation was found experimentally. 
Later, Golubentsev et al. [113] showed theoretically that, in 
the case of an infinite hexagonal laser array, three modes were 
exactly reproduced at the Talbot distance [LT = 3L2/(2l)]: in-
phase mode and two modes with phase modulation in a trian-
gular unit cell (Fig. 5b). If the arrangement of laser end facets 
has square geometry, along with a constant-phase field distri-
bution an additional three supermodes are reproduced at a 
distance LT = 2L2/l (Fig. 5a).

In an infinite 1D laser array, the periodic field structure is 
exactly reproduced over the Talbot distance for both the in-
phase and out-of-phase modes. At a distance LT/2, the image 
of the out-of-phase mode is identical to the parent image, 
whereas the image of the in-phase mode is displaced by half a 
period relative to the parent structure, i.e. the external Talbot 
cavity of length LT/4 selects the out-of-phase mode. Field 
phases at the output aperture can be compensated for by 
phase correctors with an optical thickness equal to half the 
wavelength [114].

The shift of the image of the in-phase mode at a distance 
LT/2 can be compensated for (Fig. 6a) by an appropriate tilt 
of a mirror placed at a distance LT/4. In this manner, the in-
phase mode was selected in 1D arrays of gas [115] and semi-
conductor [116] lasers.

The shift of the image of the in-phase mode of an emitter 
array by half a period at a distance LT/2 was also utilised in a 
study by Mawst et al. [117], where two antiguided semicon-
ductor laser bars, each having ten cores, spaced distance LT/2 
apart along the optic axis, were displaced relative to each 
other by half a period (Fig. 6b). As a result, they were able to 
concentrate ~75 % of the output power in the central peak in 
the far field. An analogous scheme was used by Jia et al. [118] 
to phase-lock an array of 11 quantum cascade lasers. Stable 
in-phase mode lasing was demonstrated at a current almost 
twice the threshold one.

For a circular active medium, Napartovich et al. [119] 
proposed using the difference between the images of the in-
phase and out-of-phase modes of arrays by rotating periodi-
cally segmented plane mirrors forming a common cavity 
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Figure 5.  Self-reproducing modes in a unit cell of infinite (a) square and 
(b) hexagonal arrays [113].
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through half a period (Fig. 6c). Numerical simulation of a 
CO2 laser having the described compound cavity predicts 
stable in-phase supermode lasing at a pump power 70 % above 
threshold. This cavity design has not yet been verified experi-
mentally.

In a plane corresponding to a fraction of the distance LT, 
supermodes differ in structure, and the loss degeneracy of the 
supermodes can be lifted using a spatial filter [120]. This 
approach was used to phase-lock a linear array of seven semi-
conductor lasers [121]. In a study by Golubentsev et al. [122], 
a Talbot filter in the form of a metallic grating placed in one 
of the field reproduction planes outside the focal plane of an 
external forming system phase-locked the radiation from a 
square array of 36 waveguide CO2 lasers with a phase locking 
efficiency near 60 %. Displacing the filter in a transverse plane 
allowed various supermodes of the array to be selected. In a 
hexagonal array of 85 waveguide CO2 lasers, in-phase super-
mode lasing was demonstrated experimentally by filtering the 
overall field in a plane spaced distance LT/3 apart from the 
array [123].

Using masks, Tradonsky et al. [124] imitated a square 
array of 450 lasers, a triangular array of 1050 lasers or a hex-
agonal array of 700 lasers in a cylindrical Nd : YAG crystal 
10 mm in diameter. To raise degeneracy, an additional filter 
comprising two lenses and an aperture in the focal plane was 
placed in the far field behind an external Talbot filter. One 
mode of the array was observed in all cases.

A distinctive feature of the in-phase mode is that its wave-
front is perpendicular to the optic axis, whereas the radiation 
of the out-of-phase mode comprises two components, with a 
rather large angle between them in the case of semiconductor 
laser bars. The in-phase mode can be selected by placing not a 
conventional mirror, but a bulk Bragg grating with a high 
angular selectivity of reflection at a distance LT/4 [125]. Using 
such a scheme, Liu and Braiman [126] recently demonstrated 
the phase locking of a linear array of ten semiconductor lasers 
with 4.8 W of output power.

An obvious problem related to the use of the Talbot effect 
for phase-locking a real laser array is that periodicity condi-
tions are violated at the edges of the array. To compensate for 
boundary effects, it was proposed to use phase compensators 
[127] or a stable resonator instead of a plane-parallel one 
[128], but to the best of our knowledge there was no experi-
mental verification. As shown theoretically [129] and experi-
mentally [130], the Talbot effect takes place as well in a planar 
waveguide with perfectly reflective lateral walls. In integrated 
optics, this effect is thought of as a particular case of multi-
mode interference (see the reviews in Refs [131, 132]). Recent 
results demonstrate the phase locking of linear arrays of three 
[133] and six [134] quantum cascade lasers integrated on one 
crystal with a waveguide Talbot filter. In the case of six lasers, 
the out-of-phase mode or a mixture of the in-phase and out-
of-phase modes of the array was generated.

A further development of the concept of filter based on 
the fractional Talbot effect is the 1–N scheme, in which the 
length of an external planar waveguide with reflective lateral 
walls is LT/(2N). In this waveguide, the beam arriving from a 
single-mode waveguide is split into N copies (Fig. 6d) [135]. 
We have found no examples of experimental implementation 
of such a scheme, but passive 1–N couplers are used in tele-
com systems.

In a fibre laser with active cores arranged along a ring, a 
Talbot filter had the form of fibre butt-coupled to the laser, 
with an RW of certain length and size [136]. Under such con-
ditions, most of the output power was accounted for by the 
out-of-phase supermode, even though the scatter in the opti-
cal length of the cores far exceeded the wavelength. Without 
an RW, radial diffraction degrades the Talbot effect. 
Nevertheless, the periodic structure self-reproduction effect 
makes it possible to ensure the phase locking of the fields in the 
cores by placing an external plane mirror at a preset distance 
[137]. Numerical simulation [138] suggests that the use of a con-
cave mirror instead of a plane mirror improves field phase-
locking efficiency and reduces diffraction losses.

Lasing in multicore fibres with a hexagonal structure of 
their active regions and optical coupling between the cores 
due to field diffraction in a butt-coupled passive multimode 
fibre was studied by a group at the University of Arizona 
[139, 140]. Because of the finite size of the outer fibre clad-
ding, the Talbot effect is modified and numerical calculations 
are needed to find passive fibre parameters at which the high-
est Q is offered by the in-phase mode. As a result, Li et al. 
were able to phase-lock the output of fibres having 19 [139] 
and 37 cores [140], each 7.6 mm in diameter. The beam diver-
gence at l = 1.5 mm was 50 and 30 mrad, respectively.

Wrage et al. [141] and Vysotsky et al. [142] described the 
phase locking of a 5-W 18-core fibre laser having a ring struc-
ture. Diffractive coupling between the cores was negligible. 
Four images of the in-phase mode field emerged distance LT/8 
from the fibre end face, one of which was backreflected by a 
sector mirror in which the number of reflective sectors was the 
same as the number of cores (Fig. 7a). At an angular width of 
the mirror sectors equal to a quarter of the period, only one of 
the four beams was returned. The phase difference between 
the central and two side beams transmitted through the mir-
ror (Fig. 7b) was LT/8 per period, so that their fields were 
effectively added in the far field. The angular halfwidth of the 
output beam in the far field was 12 mrad. Although exceeding 
the calculated halfwidth of the in-phase mode, this is substan-
tially smaller than that in the case of one core.

LT/4

LT/2 LT/(2N)

LT/2

q

0

2p

a b

c d

Figure 6.  In-phase mode selection schemes utilising the Talbot effect: 
(a) external filter with a mirror inclined at an angle q; (b) two inte-
grated arrays displaced laterally by half a period; (c) active RW of 
length LT/2 with two sector mirrors tilted by half an angular period; 
(d) 1–N scheme.



	 D.V. Vysotsky, A.P. Napartovich996

5. Theoretical methods for analysis  
of optically coupled systems

5.1. Distributed coupling systems

5.1.1. Т-matrix method

Characteristics of multielement linear arrays of semiconduc-
tor lasers are usually calculated using Maxwell’s equations or 
the wave equation [82, 143]. Along with numerical calcula-
tions using Maxwell’s equations, an analytical approach 
based on simplified models of structures was developed. The 
effective RI (ERI) approximation (see e.g. Ref. [143]) relies on 
the large difference between the length scales of structures in 
transverse and lateral directions and reduces to averaging the 
product of the RI and optical mode profile over the trans-
verse coordinate in the plane of the laser diode at a constant 
lateral coordinate. As a result of averaging and the use of 
approximate expressions relating the gain coefficient (GC) to 
the population inversion in a quantum well (QW), calculation 
of laser structures reduces to solving a system of 1D equations 
for the field and inversion density.

In the ERI approximation, the problem of finding a 
supermode of an antiguided diode laser bar consists in 
finding eigenfunctions in a planar waveguide with periodic 
step profiles of the ERI (neff) and G-factor, which charac-
terises the overlap between the transverse mode and gain 
profiles. G-factor modulation can be accounted for by 
field pulling from the active layer to passive waveguides 
responsible for ERI modulation. The lateral amplitude 
profile of a U(x)exp(ibz) field is determined by the equa-
tion [41]
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where b is the propagation constant; w is the emission fre-
quency; and c is the speed of light in vacuum.

Within each period of the structure, the field can be repre-
sented as the sum of two linearly independent solutions to 
Eqn (1): ( ) ( ),U a x b xF Gl l l l= +  where the xl coordinate is 
determined within the lth cell. The field distributions in the 
extreme cells of the structure are taken as basis solutions. At 
the boundaries of the laser bar, the amplitude of the field 
reflected from the boundary should be zero. The coupling of 
fields in neighbouring cells is determined by the joining of 

fields at each index step, which leads to linear recurrent rela-
tions for the coefficients of expansion of the field in terms of 
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where the components of the unimodular transfer matrix T 
can be expressed through the basis functions and their deriva-
tives on cell boundaries [144].

Since any matrix satisfies its secular equation, we can 
derive an equation relating the amplitudes of the F -wave in 
three neighbouring cells:

( )Spa T a a 0l l l1 1- + =+ - ,	 (3)

where SpT = T11 + T22 is the trace of the matrix. A similar 
equation is valid for the amplitudes of the G -wave. The gen-
eral solution to Eqn (3) has the form al = c1exp(ilQL)  + 
c2exp(–ilQL), where Q is the Bloch vector, playing the role 
of an eigenvalue, and the constants c1 and c2 can be deter-
mined from boundary conditions. At SpT = 2, the equation 
for exp(iQL), following from (3), has the doubly degenerate 
solution exp(iQL) = 1, whereas at SpT = – 2 we have 
exp(iQL) = – 1. These two limits correspond to the in-phase 
and out-of-phase modes. Side waves resonantly travel through 
such a periodic structure with a phase shift of 2sp or (2s + 1)p 
per cell (where s is an integer). In terms of Bloch waves in a 
periodic crystal, solution degeneracy corresponds to the dis-
appearance of the gap in the spectrum of the waves. Near 
both resonances, it is convenient to represent Eqn (3) in the 
form

al + l ± 2al + al – l = (SpT ± 2)al.	 (4)

Even though, formally, diffractive exchange occurs between 
nearest neighbours, it plays a decisive role at |SpT ± 2| << 1, 
because the right-hand side of (4) is small, and leads to effec-
tive phase locking of the elements, which is referred to as par-
allel coupling [41].

The described procedure was brought to analytical expres-
sions [144, 145] for eigenvalues of the in-phase and neigh-
bouring modes of an antiguided linear array as functions of 
the detuning of parameters of the structure from resonance. 
In the case of a resonance configuration, the fundamental 
mode and the neighbouring one turned out to have the same 
lasing threshold. To ensure discrimination of the neighbour-
ing mode, it is necessary to move away from the resonance 
structure or introduce absorption in waveguide gaps.

A semiconductor amplifier was analysed in the limit of an 
infinite lateral size of an array of elements near resonance 
[146]. In such a case, after the field in the structure passes 
some distance, dependent on the input profile, the change in 
field per period of the structure becomes small, which allows 
the discrete equation (4) to be replaced by a differential equa-
tion for the lateral smooth field envelope. As shown earlier 
[146], in the case of a linear medium without absorption the 
type of this differential equation in x and z variables changes 
from elliptic to hyperbolic as resonance is approached. 
Because of this, an optical field in a resonance array propa-
gates along straight lines at an angle to the optic axis, which 
depends on the geometric parameters of the structure, in 
agreement with experimental data [147] on light propagation 
in a 21-element resonant antiguided array.

a b

Figure 7.  (a) Front view of the sector mirror and (b) comparison of ex-
perimental data (left side) and calculation results (right side) on the in-
tensity distribution of an 18-core fibre laser behind a mirror located 
distance LT/8 from the fibre end face [142].
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In the general case, gain saturation and the associated 
positive change in RI can lead to field filamentation. It was 
found [146] that, at relatively low intensities of a field being 
amplified, self-focusing occurred if the following constraint 
on the difference D between the ERI step on the waveguide 
boundary and that corresponding to a resonance structure 
was fulfilled:
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where a is the line broadening factor; I is the local intensity of 
the overall field; Isat is the saturation intensity; g0 is the small-
signal GC; and aT is the absorption coefficient of the wave-
guide gaps. In the absence of loss modulation, self-focusing 
develops as the index step on the waveguide boundary rises to 
above the resonance values, in agreement with calculation 
results [148].

In numerical simulation of an antiguided diode laser bar, 
Nabiev et al. [149] found soliton-like solutions in a lateral 
direction. In Ref. [146], the equation for a smooth envelope 
was reduced to a generalised Ginzburg – Landau equation, 
which has solutions in the form of spatially localised struc-
tures. The formation of a soliton is due to the fact that the 
field propagation constant spectrum has forbidden bands at 
D > 0. The dependence of the gain and refractive index on 
field intensity leads to a shift of the boundaries of the band 
gap, so that, at a certain combination of parameters, the 
propagation constant can fall in an allowed band at high 
intensities. Thus, there is a gap- or Bragg-soliton-like solution 
(see e.g. Ref. [150] and references therein), which was previ-
ously presented in explicit form for near-threshold lasing con-
ditions [146].

5.1.2. Transfer equations for single-frequency light

In modelling double-cladding fibre lasers, use is typically 
made of transfer equations for mode powers. In doing so, 
radial intensity profiles of optical modes are assumed to be 
fixed and the local GC is thought to be determined by the 
total intensity profile [151 – 153]. In calculations of field prop-
agation in multicore fibre lasers, wide use is made of coupled-
mode theory (CMT), in which the field of the optical mode of 
an entire system (supermode) is represented as a linear combi-
nation of optical modes of individual waveguides [154]. The 
supermode describes the propagation of a beam through a 
system of passive waveguides in which its shape remains 
unchanged and only the common phase varies, in proportion 
to the distance and propagation constant b.

A multicore fibre usually supports a relatively small num-
ber of modes, whose analogues in quantum mechanics are 
wave functions of coupled states. The supported modes are 
orthogonal to each other and to leaky modes. In experiments 
with 7- and 19-core fibres [59, 155], different supermodes of a 
passive fibre were selectively excited via signal injection from 
single-mode fibre. Even in the limit of weak interaction 
between passive cores, CMT poorly describes interaction 
between higher order supermodes and needs to be modified 
[156]. The transverse gain nonuniformity, due to either the 
structure of the gain or its saturation, leads to interaction 
between supermodes. This interaction is important at field 
intensities typical of fibre lasers, which are far lower than 
those characteristic of nonlinear optics. As distinct from 
CMT, a method based on expansion of the field in terms of 

exact eigenfunctions (supermodes) allows one to rigorously 
derive equations for describing the effect of GC distribution 
nonuniformity on mode competition. Note that, even though 
distorting mode profiles, thermal effects in fibre have little 
effect on the interaction between modes and intermodal dis-
crimination [157].

In experiments with a seven-core fibre laser [93], increas-
ing the pump power led to a far-field intensity distribution 
characteristic of phased fundamental supermode lasing. 
In-phase mode lasing at high pump power was also observed 
in the case of pulse amplification in a photonic crystal fibre 
having seven active cores [97]. In the framework of CMT, 
Bochove et al. [158] proposed an explanation for spontaneous 
in-phase mode selection in terms of the dependence of the 
positive resonant nonlinear part of the RI of glass on pump 
and lasing intensities. Later, it was found [159] that, in the 
CMT approximation, phase locking of the field occurred as 
well in the case of a negative additional nonlinear term in the 
RI. The nonlinear component of the RI of the fibre core is 
determined by the difference in polarisability between Yb 
ions in their ground and excited states and is an intricate func-
tion of pump and output intensities [160].

Numerical calculations using the program described by 
Elkin et al. [161] showed [162] that the phase locking of light 
in experimental work by Huo et al. [93] was associated with 
gain nonuniformity due to not only gain saturation but also 
the structure of the active cores. In those calculations, the 
simplest model for local GC saturation was used: g = g0 /(1 + 
I/Isat). The field phase tuning effect was found to become 
stronger with increasing diffractive coupling between the 
cores and to be essentially insensitive to index nonlinearity, 
with allowance for the expected value of the RI. In the case of 
the design considered by Huo et al. [93], the highest gain cor-
responded to the out-of-phase mode [163]. At the same time, 
the result of amplification was highly dependent on condi-
tions at the amplifier input. In particular, if seven beams cov-
ering the active cores, with a scatter in phase under 0.3 rad, 
were directed to the input, the in-phase mode prevailed at the 
output. This result contradicts the generally accepted view 
that the mode having the largest small-signal GC prevails at 
the amplifier output.

The paradox was explained in Refs [164, 165]. In the sim-
plest case, we can consider the competition between two 
supermodes identical in frequency and polarisation, but hav-
ing different propagation constants ( b1 and b2) and transverse 
field distributions [y1(x, y) and y2(x, y)]. The total field can 
then be represented as E = c1(z)y1(x, y) + c2(z)y2(x, y), where 
c1(z) and c2(z) are coefficients of expansion of the field in 
terms of the functions y1(x, y) and y2(x, y), normalised by the 
condition òS|yi|2dxdy = 1 (i = 1, 2), and the integration is per-
formed over the cross section S of the amplifier. Taking the 
coefficients in the form ( ) ( ) [ ( )]exp ic z P z z, , ,1 2 1 2 1 2f= , where 
P1, 2 are the powers of the first and second modes, we can 
obtain the following equations for mode powers and the 
phase difference of mode fields, f = f2 – f1:
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Here, the Gij matrix elements are the overlap integrals of the 
mode fields and the GC distribution g(x, y, z):
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	 i,  j = 1, 2.

The mechanism of competition between longitudinal or 
transverse modes in a medium with a uniform small-signal 
GC has been known since studies by Kuznetsova and 
Rautian [166] and Anan’ev [167], respectively. In such cases, 
interference between counterpropagating waves leads to 
gain spatial hole burning and is the key cause of multimode 
lasing.

Spatial nonuniformity of the GC is represented by addi-
tional terms in the system of equations (6), which explicitly 
relate supermode fields. GC nonuniformity can result from 
small-signal GC nonuniformity (due to nonuniformity of 
pumping or doping with active additives) or saturation field 
nonuniformity. If a small signal coinciding with an optical 
mode is fed to the input of an amplifier, its propagation will 
be accompanied by the excitation of another mode as well. 
The mode cross-coupling effect occurs even in the linear 
amplification regime, which qualitatively distinguishes it 
from mode coupling in passive waveguide structures with a 
nonlinear field dependence of their RI [168].

If the polarisations of two modes having the same fre-
quency are orthogonal to each other, the modes are incoher-
ent with each other, or there is no spatial dependence of the 
GC, the G12 terms in the system of equations (6) are zero. In 
all these cases, traditional views of mode competition associ-
ated with gain saturation remain unchanged. At the same 
time, even in the case of a standard multimode double-clad-
ding fibre amplifier, the cross-amplification term G12 is non-
zero, because the small-signal GC is an explicit function of 
coordinates.

Analysis of the role of cross-amplification in a symmetric 
waveguide structure [165] shows that the cosP P G1 2 12 f  
terms in the first two equations in (6) are negative when aver-
aged over z. Thus, a given negative contribution from cross-
amplification will tell primarily on the lower power mode. As 
a result, its power may stop growing at all, whereas the higher 
power mode will continue to build up. Such behaviour of 
mode powers is illustrated by Fig. 8b, which shows the evolu-
tion of the powers of symmetric and antisymmetric modes 
along the length of an amplifier in a system of two parallel 
identical thin planar waveguides [164]. In contrast to calcula-
tions in the framework of standard transfer equations (cf. to 
Fig. 8a), Eqns (6) predict a higher gain for the mode whose 
power is higher at the amplifier input.

In the seven-core fibre laser design described by Huo et al. 
[93], angular modes essentially do not eliminate the popula-
tion inversion in the central core. In the case of gain satura-
tion, this causes the in-phase mode, which has the smallest 
small-signal modal GC, to prevail. Calculations [163] show 
that, for the in-phase mode to prevail, it is sufficient that, in 
the field configuration formed in the early stage, the scatter in 
phase be less than 0.3 rad. The probability of such an event is 
not low. If it occurs, higher order angular modes with a lower 
initial power are less amplified, which leads to a better output 
beam quality [169]. The small-signal modal GC of the in-
phase mode exceeds that of the other supermodes [163, 170] if 

the index step in the central core is reduced, which also can 
help to select the fundamental mode.

In experiments with a 2-m-long fibre amplifier having a 
25-mm core diameter, Andermahr and Fallnich [171] studied 
the propagation of monochromatic light in the form of a 
coherent mixture of two spatial modes with different, but not 
orthogonal, polarisations. At a pump power of ~12.3 W, the 
fundamental mode prevailed in one plane of polarisation at 
the amplifier output and the first order mode prevailed in the 
orthogonal plane. The ideas developed previously [164, 165] 
allow these results to be understood. Since there is no cross-
amplification in the case of fields differing in polarisation, 
their evolution follows a usual path, with a proportional 
energy gain for each polarisation. For each polarisation, 
however, the contribution of the mode with the lower initial 
power decreases, so that the modes have orthogonal polarisa-
tions at the amplifier output [172].

Mode competition was analysed above for a monochro-
matic field. Four-wave mixing (FWM) can produce fields at 
frequencies differing from the carrier frequency of the field. 
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Figure 8.  Powers of symmetric (Ps) and antisymmetric (Pa) modes nor-
malised to the saturation power at equal small-signal modal GCs and 
different relationships between initial powers: (a) incoherent and (b) co-
herent mode fields [164].
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FWM efficiency is limited by the necessity that two condi-
tions be fulfilled for both the frequency difference and propa-
gation constant (frequency and phase matching). Because of 
this, interaction between waves typically has the form of 
energy transfer between them. As predicted by Fève [173], the 
presence of gain in single-mode fibre causes irreversible 
energy transfer from the stronger wave to the weaker one, 
even if the phase matching condition is not fulfilled. This 
effect limits the power of the starting wave, which is accompa-
nied by broadening of the output emission spectrum, as was 
observed in an experimental study [174]. The coupling 
between two distinct optical modes in a waveguide through 
FWM can be described in terms of spatial gain/refraction 
gratings [175]. Scattering by such gratings leads to power 
redistribution to higher order modes, degrading the output 
beam quality [176].

5.2. Methods of describing externally coupled systems

The field at the output aperture of an array in externally cou-
pled systems can be represented as

( ) ( ) ( ) ( )exp iu A m fr r rout m m
m

N

0

1

j= -
=

-

/ ,	 (8)

where A(m) and jm are the amplitude and phase of the field 
emitted by the mth laser and the function f (r) describes the 
spatial mode field distribution of a single-mode laser centred 
at a point with transverse coordinate rm. In the case of a 
steady-state operation of an array of nonidentical lasers, 
these have the same emission wavelength, but the field ampli-
tudes and phases can vary. The modes of the common cavity 
of the array can be determined from the condition of field 
reproduction after a round trip through the cavity (with 
allowance for amplification). The condition of the reproduc-
tion of the system of fields can be reduced to solving a system 
of equations characterised by a coupling matrix [9]. For a 
complex field envelope C(R) [i.e. C(rm) = A(m) exp(ijm) at 
R = rm] and a beam profile f (r – rm), which is zero beyond the 
mth single-mode waveguide, the equation representing the 
condition of field reproduction after a round trip through the 
entire system has the form

( ) ( , ) ( )C B M CR R R R
R

g = l l
l

/ .	 (9)

Here, the constant B takes into account the total cavity 
round trip phase change and the gain in the active wave-
guides; g is the eigenvalue; and ( , )M R Rl  is the coupling 
matrix. For an infinite array of identical elements, we have 
|g| = 1.

Theory of Talbot coupling between waveguide lasers in an 
external cavity of length L in the quasi-optical approximation 
was developed by Golubentsev et al. [113]. In this theory, the 
coupling matrix is given by

( , ) ( ) ( )i d dM
L

f fR R R R
l

r r r r= - -l l l ly

	 ( )exp i
L

2
#

p
l

r r- l< F.	 (10)

As shown in the limit of a large number of lasers [113], the 
diffraction loss of the self-reproducing mode in a 1D structure 

of N lasers with a period L is 1 – |g|2 » p[L/(Na)]2, where а is 
the radius of the emitting aperture of one laser. The loss in an 
array of lasers whose output end faces fill a circular aperture 
has the form 1 – |g|2 » p–1[ m0L/(Na)]2, where m0 »  2.404 is the 
first zero of the zeroth-order Bessel function. The zeroth-
order diffraction loss in the array is the same for all modes 
exactly reproducible in an infinite system (Fig. 4). Even 
though the in-phase mode in systems of finite size has the low-
est loss [177], the difference in loss between the in-phase and 
other self-reproducing modes is very small, so additional 
measures should be taken to suppress all modes except the 
in-phase one.

Golubentsev et al. [113] presented explicit estimates of the 
loss due to a small tilt (q) of a plane mirror, dg » (qaN 2/l)2, 
and a shift (dL) of the mirror from the position exactly cor-
responding to the Talbot distance, |dg| » {(L/a)2 [dL/(2pLT)]}2. 
The a/L ratio characterises the density of filling of a linear 
aperture with emitters. For a 2D laser array, this density is 
proportional to (a/L)2.

In the limit of global coupling in a laser array, where each 
laser is coupled to the others in the same way [38], all the cou-
pling matrix elements are identical, so that the rank of the 
matrix is unity. In the case of a positive real-valued coupling 
coefficient, the in-phase mode is selected. As shown in a 
review by Likhanskii and Napartovich [9], if the scatter in 
eigenfrequencies of individual cavities is small compared to 
the average mode spacing, it has a weak effect on the thresh-
old GC of the other supermodes. One way of ensuring global 
coupling (see Section 2.6) is through a system of 2 ´ 2 cou-
plers. In the limit of a wavelength common to the entire array, 
it ensures complete phase locking.

In a scheme with an external Talbot filter, the diffraction 
loss has a significant effect on the possibility of scaling the 
system. Wrage et al. [136] proposed a Talbot filter in the form 
of an RW for a multicore fibre laser with cores arranged 
along a ring. In the case of a proper adjustment of parame-
ters, the structure of the cores, periodic in the direction of tra-
versal of the RW, ensures zero diffraction loss, as distinct 
from 1D arrays, which have a finite number of cores. Global 
coupling between elements is assumed to be possible if the 
diffractive exchange radius for beam propagation is of the 
order of the length of the ring. For an RW of length LT/4, this 
gives the inequality

2a/L < 1/N.	 (11)

In the general case, the field at the output of an N-core laser 
can be represented in the form (8), and the field returned to 
the system of cores after two passes through the RW can be 
represented in the form

( ) ( )u C fr r rin m
m

N

m
0

1

= -
=

-

/ .

If condition (11) is fulfilled, the following formula for the Cm 
coefficients can be derived [178];

( ) ( 1) ( ) ( )exp
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> H/ .	 (12)

The distribution of the field returned to the multicore struc-
ture (MCS) after two passes through the RW turns out to be 
out of phase with the amplitudes, equal in magnitude, in all 
the cores. The field injected into the jth core contains a contri-
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bution from the output fields in all the cores with identical 
amplitudes, i.e. the coupling between the cores has a global 
character. If there is no gain, the eigenvalue of the out-of-
phase supermode in the case of nonidentical cores is

( )exp

i

i

N
j

j

N

0

1

g
j

=
=

-

/ ,	 (13)

where jj is the additional phase after two passes through the 
jth core.

Note that, in their experiments, Wrage et al. [136] observed 
partial broadening of the regular structure in the output beam 
distribution. As shown earlier [179], the 2a/L ratio is three 
times that required by condition (11), so that, if there is a 
large scatter in the optical length of the cores, two more 
modes of the MCS have losses comparable to those of the 
out-of-phase mode.

Another example of optical coupling approaching global 
coupling in properties is coupling through a cylindrical mir-
ror located the focal length from emitting apertures (the 
Fourier coupling considered in Section 2.4). In experiments 
described by Corcoran and Rediker [63] and Corcoran and 
Durville [64], phase locking with the use of Fourier coupling 
showed high efficiency and stability to scatter in parameters 
of individual lasers. The principle of this method [180] is that 
Fourier transformation converts the field envelope profile of 
a periodic emitter array into the profile of the field injected 
into one laser and the field profile of an individual emitter 
into the total field envelope profile. Global coupling takes 
place if the quasi-optical approximation is applicable, which 
limits the size of laser arrays [181].

If the field emitted by a 1D array of 2N + 1 lasers is repre-
sented in the form (8), after light with a resonance wavelength 
l0 = L2/F travels to a mirror with a focal length F and back 
the distribution can be represented in the form [182]

3
( ) ( )expi i du x

F
f x

F
kxx x
2in l= - -

3-

l l la k< Fy

	 ( ) 2exp i iA m xm
m

m N

N

#
pj
L+

=-

a k/ ,	 (14)

where k = 2p/l0 is the wavenumber.
If the field at the output of one element is thought to be 

a Gaussian beam with a profile f (x) = exp(–x2/a2) and the 
field envelope is taken in the form of a Gaussian distribu-
tion A(m) = exp(– m2L2/D2) of width D, then, provided the 
width of the envelope of the field being returned, deter-
mined by the Fourier transform of a mode of one element, 
is matched to the size of the frequency, L2 = pDa, we can 
obtain [182] an expression for the eigenvalue of the round 
trip operator:

exp
i

iD D
2 2

m
m N

N

2

2 2

pg jL L
= -

=-

md n/ .	 (15)

Thus, even though coupling through a Fourier filter at a 
large size (and small fill factor) of an array can be thought of 
as global, the extreme elements of the array make a small con-
tribution to its output power and have a weak effect on phase 
locking efficiency. Moreover, even if all elements are identi-
cal, the diffraction loss in the Fourier filter is nonzero.

6. Possible scenarios of total field  
coherentisation

6.1. Steady-state phase locking

The feasibility of steady-state phase locking in a laser array 
depends on many parameters. The key obstacle to the phase 
locking of a laser array is the distinction between the eigenfre-
quencies of individual cavities or, in a more general case, the 
distinction between the optical lengths of gain elements. In 
the limit of global coupling between all elements, the phase 
locking mechanism is based on laser wavelength tuning to a 
value at which the difference between the gain and loss, both 
being strong functions of wavelength, is maximal for a con-
siderable fraction of elements [51, 179, 182]. Figure 9 shows a 
typical dependence of the calculated total field power P = 
ò |uout(x)|2dx on wavelength detuning dl for a laser array. Note 
that there are peaks roughly equal in power at markedly dif-
ferent wavelengths.

As mentioned in Section 5.2, in the case of a multicore 
fibre laser with its cores arranged along a ring, global cou-
pling with no diffraction losses can be ensured with the use 
of a filter in the form of an RW. The eigenvalue for such a 
structure is described by (13), where the phase shifts jj are 
random quantities dependent on the length of the elements 
and the emission wavelength detuning dl from a reference 
value. At a constant detuning dl and parameters typical of 
fibre lasers, the scatter in jj far exceeds 2p. The main cause 
of the scatter in optical lengths in experiments with multi-
core fibre lasers [136, 137, 141] was the scatter in core radius, 
which can be quantified by the standard deviation Dr. At a 
given MCS, a supermode is generated at the wavelength cor-
responding to the largest difference between the gain and 
loss.

Averaging over random MCS’s, we can obtain an asymp-
totic dependence for á| g|2ñ – the maximum absolute square of 
the eigenvalue in the gain band (l0 – dlmax, l0 + dlmax):

á| g|2ñ » 4lnN C NL
a
r1 max

fd
d

b
l

l D
+ d n< F,	 (16)
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Figure 9.  Total field power P in an array of 20 ytterbium-doped fibre 
lasers at a standard deviation of fibre lengths s(lm) = 1 mm (where lm is 
the length of the mth fibre); gain bandwidth dlmax = 2 nm; injection 
power Pinj = 0.18Psat (where Psat is the saturation power) [29].
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where db is the average modal correction to the propagation 
constant and C » 0.577 is Euler’s constant [see derivation of 
(16) based on extreme value statistics in Ref. [51]].

Direct numerical calculations [178, 179] confirm (Fig. 10) 
that á| g|2ñ can be described by the logarithmic relation (16). In 
the case of identical cores, á| g|2ñ would be independent of the 
number of elements. Thus, as the number of cores increases, 
the phase locking efficiency in a laser array with coupling 
through a circular Talbot filter decreases as ( lnN)/N.

Numerical calculations [182] for a multicore fibre laser with 
an external Fourier cavity demonstrate that the dependence of 
the maximum á| g|2ñ value in the gain band on the scatter in 
phase shifts in channels is in qualitative agreement with rela-
tion (16). For a seven-element array of ytterbium-doped fibre 
lasers with parameters corresponding to experimental data 
[64], numerical simulation predicts an almost perfect phase 
locking, whereas in the case of 15 lasers efficiency is a factor 
of 2 lower. Thus, even though a Fourier filter offers high 
selectivity (as pointed out in theoretical analysis by Apollonov 
et al. [183]), it ensures efficient coupling only in the case of a 
small laser array with a low fill factor.

6.1.1. Phase locking of a system of amplifiers  
in a common cavity

Fridman et al. [30] analysed 370 000 measurements of the 
output intensity distribution for an array of 25 (5 ´ 5) fibre 
lasers coupled through a system of mirrors in the focal plane 
[57]. Analysis of an array of output distributions at effi-
ciency maxima in this system indicates that the probability 
that phase locking efficiency is greater than or equal to X is 
adequately described by the Bramwell – Holdsworth – Pinton 
distribution [184]:

( ) exp expp X X X
B
A

B
Ak= - - -a k< F( 2,	 (17)

where A  and B  are the mean and width of the distribution 
and the parameter k determines the degree of correlation 

between the measurements. The best fit was obtained at k » 
1.03. Under the assumption that the distributions at neigh-
bouring spikes are uncorrelated (k = 1), distribution (17) 
reduces to a generalised Fisher – Tippett distribution, which, 
according to Gnedenko’s theorem [185], is an asymptotic 
probability distribution density for a maximum in a sample of 
random variables. The probability density for the output 
power of phase-locked light is well fitted by the Vivo –  
Majumdar – Bohigas distribution [186] at low efficiencies and 
by the Majumdar – Vergassola distribution [187] at high effi-
ciencies. These distributions correspond to the distributions 
of the largest and smallest eigenvalues of random positive 
matrices.

If a small number of longitudinal modes fall in a gain 
band, the probability that there is a wavelength common to 
the array at which a high degree of phase locking can be 
reached is extremely low. Fibre lasers having a dense spec-
trum of longitudinal modes are viable candidates for the fab-
rication of large arrays of phase-locked lasers. It is worth not-
ing that there is practical interest in the ability to simultane-
ously phase-lock lasers in a few common longitudinal modes, 
as was observed in experiments [188] concerned with the 
phase locking of the outputs of four fibre amplifiers in a com-
mon cavity with a total round-trip path length of ~820 m. 
The lasers were coupled using a system of 2 ´ 2 couplers. Two 
combinations of the differences between the amplifier lengths 
(measured from the length of the shortest amplifier) were con-
sidered: (1) 1.4 cm, 1 m, 5.1 m; (2) 5.1 cm, 1 m, 5.1 m. 
Measurements of optical and total power oscillation spectra 
showed that the total spectrum contained structures differing 
in frequency scale. The largest frequency scale was attribut-
able to the small difference between the amplifier lengths in 
the two combinations: (1) 17 and (2) 4.8  GHz. In the case of 
combination 2, the structure was observed to have character-
istic spacings between peaks, 200 and 40 MHz, corresponding 
to length differences of 1 and 5.1 m. Higher resolution mea-
surements showed that each peak was split into a sequence of 
spikes spaced 240 kHz apart, which corresponded to longitu-
dinal modes of the common cavity. The spikes in turn had a 
fine structure, which was attributed by Simpson et al. [188] to 
field polarisation dispersion. Since the generation of a large 
number of supermodes is accompanied by a considerable 
broadening of the emission spectrum, the threshold for SBS 
in the cores decreases markedly, which allows one to envisage 
a further rise in the power of combined lasers.

To estimate the limiting size of an array in which a high 
degree of phase locking is highly probable, Kouznetsov et al. 
[189] proposed a simplified probabilistic approach. Efficiency 
on the addition of a laser to an existing array was quantified 
by cos j, where j is the round-trip phase change in the added 
laser for a field with the supermode wavelength. In the case of 
an equiprobable distribution, the probability that cosj 
exceeds a particular value, Y, is p1  » ( ) /Y2 1 p- . For N 
lasers with an average length Lr , the probability that a given 
wavelength lies in the gain band 2p/Dk for at least one super-
mode can be estimated as kLpN

1
1D -r , which is valid if this 

quantity is less than unity. In such a case, the number of lasers 
that can be phase-locked with a given efficiency is described 
by the relation

1 2 ( )
( )

ln lnN kL
Y2 1

2 1pD- =
-

-

r < F( 2 .	 (18)
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Figure 10.  Maximum absolute square of the eigenvalue of the out-of-
phase mode in the gain band, averaged over 25 MCS’s, as a function of 
MCS length Lf. The solid line shows the best fit to the formula Ná|g|2ñ =  
x + lnLf (x = 0.67 ± 0.03) and the dashed line represents calculation 
results obtained using (16) [178].
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It can be obtained from (18) that, at a gain bandwidth of 
~104 cm–1, up to eight or nine 10-m-long lasers can be phase-
locked with a 90 % efficiency.

6.1.2. Effect of feedback in a gain element  
on phase locking stability

If there is feedback in each gain element, the laser system is a 
coupled cavity array. We are interested primarily in stable 
control over laser operation by an external signal at a small-
signal GC above threshold. The laser remains in an external 
signal-controlled operation mode at any external signal fre-
quency detuning from the frequency of its longitudinal mode 
if the injection power exceeds the critical one [190]:

( )P
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2

0=
-

-
_ i

,	 (19)

where Gth and G0 are the integrated threshold GC and inte-
grated small-signal GC, respectively, and rm is the reflection 
coefficient of the output mirror. If the optical power returned 
to each laser is below the critical one, only some of the lasers 
in the system will be injection-locked, even at the maximum 
phase locking efficiency. Under the assumption that all the 
lasers in an array have identical GCs and injected powers, 
the injection locking condition can be represented in the 
form [191]
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where G ( )
th
1  is the integrated threshold GC for an array of 

identical lasers; c is the fraction of the optical power being 
returned; and hext is the ‘true’ phase locking efficiency, i.e. the 
ratio of the output power of the laser array to the input power 
in the case of identical lasers.

Figure 11 (solid lines) presents numerical simulation results 
for a fibre laser array with an injection power Pinj half the criti-
cal one [192]. The number of injection-locked lasers at each 
random fibre length in the array was determined at the wave-
length corresponding to the maximum in hext in the gain band. 
Next, it was averaged over 200 arrays with a given standard 
deviation s(lm). It is seen that, if there is no index nonlinearity, 
only a small fraction of lasers in a large array are locked by an 
external signal, even at a phase detuning half the critical one.

The nature of this effect can be understood in terms of a 
model valid in the limit of a large array [193], in which phase 
changes in cavities are assumed to be uniformly distributed 
over the range (jc – dj, jc + dj). It is seen in Fig. 12 that, at 
a locking efficiency h » 80 %, all the lasers are locked by an 
external signal. With decreasing phase locking efficiency, the 
number of states of the array with a given locking efficiency 
beyond the locking zone increases. This leads to a decrease in 
the probability that, at a given efficiency, a contribution to 
the total field will be made by the lasers with a phase change 
detuning from resonance below the critical one. In other 
words [194], the density of states of the system in a locked 
state decreases.

A simplified model for emission phase distributions of 
individual elements allows one to estimate achievable effi-
ciency for an amplifier array in a common cavity as well [191]. 
In particular, for the conditions used by Chang et al. [195] in 
an experiment with 16 fibre amplifiers in a ring configuration, 
we obtain h = 53 %, in agreement with the observed value.

6.1.3. Effect of nonlinearity on phase locking stability

The effect of nonlinear variations of the gain and refractive 
index of media with light intensity on phase locking of gain 
elements has been the subject of extensive studies. For a 
model of a laser array with coupling between nearest neigh-
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Figure 11.  Effect of the number of lasers in an array, N, on the (a) phase 
locking efficiency h and (b) number of phase-locked lasers NL averaged 
over 200 realisations. The solid lines correspond to a line broadening 
factor a = 0 (no index nonlinearity); the long-dashed lines, to a = 1; and 
the short-dashed lines, to a = –1. The standard deviation of fibre lengths 
s(lm) = 1 mm, G0 = 3.7, Pinj = Pcr/2 and dlmax = 4 nm.
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Figure 12.  Phase locking efficiency (h) contour lines for a laser array 
with global coupling at G0 = 3.7 and Pinj = Pcr/2 in the (jc, dj) plane. 
The phase locking condition for each laser is fulfilled under the straight 
line [193].
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bours, Golubentsev et al. [196] showed that, for stable phase 
locking in the case of Kerr nonlinear with a coefficient nK, the 
strength of optical coupling between the lasers, m, should 
meet the conditions Re m > 0 and nKIm m < 0, i.e. an imagi-
nary term in the coupling strength is needed. Longhi and 
Feng [197] predicted stable in-phase mode lasing in circular 
arrays with coupling between nearest neighbours at Im m = 0. 
To this end, the coupling coefficients for clockwise and coun-
terclockwise light propagation in the array should differ and 
meet a certain relation. We have found no data on experimen-
tal implementation of such a type of coupling.

A multichannel ring cavity similar to that schematised in 
Fig. 2 was considered by Bochove and Shakir [198], who 
showed that, in this configuration, supermode selection was 
possible and obtained a logarithmic fit analogous to (16) for 
the eigenvalue of the supermode. The system was numerically 
simulated by Bochove et al. [199] at N = 3 with allowance for 
saturable gain in each fibre and the Kerr and resonant nonlin-
ear contributions to the RI. At high pump powers (~1 kW 
per channel), they found self-oscillation instability of in-phase 
mode lasing, which was interpreted in terms of a nonlinear 
contribution to the phase change in an individual cavity [199].

Between 2008 and 2018, Leger presented a series of reports 
concerned with a double-core fibre having a large separation 
between its active cores, coupled through an external interfer-
ometer. Such a configuration makes it possible to eliminate 
the effect of the ambient medium on phase locking accuracy. 
Chiang et al. [200] demonstrated that the RI of a fibre core 
had a contribution proportional to its GC with a Henry fac-
tor a = 7.4. This effect can compensate for the phase differ-
ence between the fields at the channel outputs, but only if the 
fields differ significantly in intensity [201]. It was also shown 
that, in an interference scheme, even slight reflection in the 
loss channel mitigated the requirements for phase locking 
accuracy on account of a reduction in intermodal discrimina-
tion value [202].

Peleš et al. [203] and Wiesenfeld et al. [204] numerically 
investigated in-phase mode lasing stability in a system of fibre 
amplifiers located in a common cavity with global coupling. 
Population inversion was found using rate equations for 
three- and four-level media [205], and the mean field in each 
amplifier was determined using the Rigrod formula. The 
coupling matrix (9) had a nondegenerate eigenvalue (Me) 
and an (N – 1)-fold degenerate eigenvalue (me). In this model, 
Peleš et al. [203] derived a system of algebraic equations 
relating field amplitudes and GCs in fibres after a round trip 
through a common cavity. As a result, the in-phase super-
mode turned out to be stable in a few narrow regions in the 
(Wp t, z) plane, where Wp is the pump rate; t is the upper level 
lifetime; and cosz  = Re Me me* is the coupling parameter. The 
addition [204] of a shift proportional to the integrated GC to 
the phase change over fibre improved single-mode lasing sta-
bility, but the stability and instability regions persisted.

The effect of index nonlinearity on the phase locking of a 
laser array locked by an external signal was analysed by 
Corcoran et al. [206] in the mean field approximation. 
Generally speaking, there are several solutions for the field in 
a cavity with a nonlinear medium at a given external signal 
intensity [207]. Corcoran et al. [206] chose the solution nearest 
to the eigenmode field. It was shown that the addition to the 
RI proportional to the gain considerably improved locking 
efficiency.

Napartovich et al. [192] numerically investigated a laser 
array with global coupling without resorting to the mean field 

approximation. The addition of an index component propor-
tional to the gain was shown to slightly improve array phase 
locking efficiency at any nonlinearity value (Fig. 11a), with a 
drastic increase in the number of phase-locked lasers. It is 
seen in Fig. 11b that, even at a large number of lasers in an 
array, the number of phase-locked lasers continues to rise. As 
follows from Fig. 13, the likely cause of this effect is the strong 
dependence of the fraction of phase-locked lasers on effi-
ciency. Figure 13 presents calculation results obtained in a 
simplified model with a uniform phase scatter distribution in 
a preset range [29].

Modelling in a self-consistent model [191] shows that, at 
an optimal fraction of the optical power being returned and 
a nonlinear contribution to the RI, stable phase locking of 
20 – 25 lasers can be expected, with phase locking efficiency 
hext of ~70 %. In Fourier-coupled arrays where the super-
mode frequency is determined by several lasers located in the 
centre of the array, Corcoran and Durville [208] were able to 
achieve in-phase supermode lasing in an array of 35 semicon-
ductor lasers, with an interference pattern contrast of 0.57.

6.2. Dynamic operation modes of a laser array

Since the scatter in the optical length of amplifiers has a ran-
dom character, the degree of phase locking should undergo 
large fluctuations in response to changes in parameters of 
the structure that determine optical lengths. Because of this, 
an undesirable feature of the operation of an optically cou-
pled laser array is a tendency toward spike lasing due to 
fluctuation-induced random transitions to a different wave-
length characterised by a similar difference between the gain 
and loss [75].

One possible alternative operation mode of practical 
interest is a transition to regular pulsations of the total output 
power. The development of periodic pulsations at a varied 
coupling strength was observed in an experiment with two 
coupled CO2 lasers [39]. As the frequency of field exchange 
between their cavities approached the relaxation oscillation 
frequency, regular oscillations gave way to chaotic ones 
through an oscillation period doubling sequence. In the cha-
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Figure 13.  Effect of phase locking efficiency on the fraction of super-
mode-locked lasers averaged over 200 realisations of laser lengths at 
s(lm) = 1 mm, G0 = 3.7, Pinj = Pcr/2 and dlmax = 4 nm. The solid line 
corresponds to a = 0, and the dashed line, to a = 1; the filled squares 
represent an estimate in a probabilistic approach for a = 0 [193].
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otic pulsation regime, the laser fields retained a high degree of 
coherence. In the case of two coupled fibre lasers, repetitive 
pulse generation was observed in a numerical experiment 
[209] in a wide range of laser coupling coefficients at a con-
stant detuning of the cavity frequencies (200 kHz) and a pop-
ulation inversion relaxation time tf = 160 ms. In addition, 
there was a high far-field interference pattern contrast owing 
to the coincidence of the field phases of pulses generated at a 
frequency of ~1/tf.

The dynamics of the operation of two coupled fibre lasers 
was addressed in a study reported by Zhou et al. [210], where 
repetitive pulse generation was due to the phase modulation 
of one of the lasers at a resonance frequency (23 kHz in the 
system in question). The resonance frequency is given by

( / 1)P P
r

f c

p p
th

w t t
d

=
-

,	 (21)

where d is the cavity round trip loss; tc is the cavity round trip 
time; Pp is the pump power; and Pp

th is the threshold pump 
power. At other modulation frequencies, pulse generation 
was chaotic.

Dynamic operation modes in laser arrays are typically 
more complex (see e.g. Ref. [82]). Numerical simulation of the 
dynamics of the operation of 100- [211] and 1000-element 
[212] laser arrays with global coupling showed that an increase 
in the scatter in optical lengths led to spike lasing. At power 
maxima, the axial brightness was ~30 % of the ideal value. 
This effect emerges if the finite relaxation time of laser level 
populations is taken into account. For phase locking, it was 
sufficient that the eigenfrequencies of individual lasers fall in 
a finite spectral range related to emission frequency uncer-
tainty.

Simultaneous generation of a few longitudinal modes in a 
ring cavity with two or four fibre amplifiers coupled by 2 ´ 2 
couplers was numerically simulated by Wu et al. [213]. The 
population inversion and mean field in each amplifier were 
described by rate equations that took into account the Kerr 
nonlinearity of the RI and group velocity dispersion. The out-
put power rapidly oscillated, and the spectrum contained sev-
eral narrow lines within a band ~10 GHz in width. The simu-
lation results agree well with experimental data [195]. Note 
that, for a large number of lasers (10 to 16), the obtained effi-
ciencies exceeded those calculated in a model proposed by 
Kouznetsov et al. [189].

Sivaramakrishnan et al. [214] numerically investigated the 
stability of one supermode in a fibre amplifier array located in 
a common cavity. According to their results, if there is no 
common longitudinal mode in the gain band of a medium, the 
power spectrum contains several narrow lines and the order 
parameter oscillates at a frequency of ~1.8 GHz. If there is 
only one common mode, as a result of phase perturbation in 
one of its channels the laser returns to single-mode operation 
in a few round trips, which is consistent with experimental 
data reported by Guillot et al. [215]. Kerr nonlinearity leads 
to line broadening and FWM between modes, increasing the 
possible number of modes being generated. On the other 
hand, nonlinearity causes energy leakage to higher loss 
modes, reducing the power of the fundamental mode.

Nair et al. [216] numerically investigated an array of semi-
conductor lasers with optical coupling intermediate between 
global and nearest neighbour coupling. Their results demon-
strate that, in the case of identical lasers, taking into account 

the relaxation of the medium and the time delay in the cou-
pling system leads to synchronous chaotic operation of the 
entire array, similar to the operation of a single laser in the 
Lang – Kobayashi model. If the scatter in laser parameters is 
taken into account [217], the laser array remains phase-
locked.

Passive phase locking of pulsed lasers has been studied 
experimentally by many groups, but for a relatively small 
number of elements. In an experimental study of three fibre 
amplifiers in a circular configuration, with light outcoupling 
through a diffraction grating, Yang et al. [218] observed an 
interference pattern with a coherence of 0.82 at a pulse repeti-
tion rate of 2.2 MHz, peak power of 1.02 kW and pulse dura-
tion of 9.6 ns. In a study reported by Rosenstein et al. [219], 
two photonic crystal fibre amplifiers with a fundamental-
mode diameter of 55 mm were interference-coupled with an 
efficiency h = 92 % in a pulse generation mode with a peak 
power of 0.7 MW. The 10-ns pulse duration and 1-kHz repeti-
tion rate were ensured by an acoustic Q-switch. In an experi-
mental study of three Nd : YAG lasers coupled by nonlinear 
gratings in gain elements [71], one laser could operate in the 
Q-switching regime. This also led to an increase in interfer-
ence pattern contrast.

7. Conclusions

Thus, passive phase locking remains a topical approach to 
obtaining light with high axial brightness. Whereas in the case 
of systems for specialty applications atmospheric turbulence 
causes one to choose primarily between active phase locking 
and incoherent beam combining on a remote target (see e.g. 
Refs [220, 221] and references therein), in desktop systems 
active and passive methods compete on equal terms and can 
be combined [46, 47]. In single-frequency fibre lasers with 
fixed emission polarisation, the power per amplifier is limited 
to ~500 W, so that phase locking of even a small number of 
channels is commercially attractive: both in the case of active 
phase locking and in a coupling system based on diffractive 
optical elements, an array output power of ~5 kW has been 
reached [222]. Issues that remained beyond the framework of 
this review include methods of laser phase locking in the 
ultrashort pulse generation regime, in which high peak pow-
ers lead to nontrivial physical effects.

Distributed feedback fibre laser systems have evolved into 
a class of photonic crystal fibres. In semiconductor lasers, dis-
tributed feedback has made it possible to couple arrays of 
hundreds of vertical cavity lasers. At present, there is consid-
erable research effort concentrated on resonant antiguided 
quantum cascade laser bars emitting in the mid-IR spectral 
region with several watts of output power [90, 223], but, like 
in the case of ultrashort pulses, the large emission bandwidth 
[224] requires novel theoretical approaches.
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