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Abstract. Based on the numerical modelling of the electron dynam-
ics in the focal region of a dipole wave, we have found the confine-
ment time of electrons in the region of the strongest electric field in 
a wide (up to 200 PW) power range. By comparing confinement 
times of particles and the spatial structures of their escape, we have 
determined the regimes of ponderomotive escape and radiation-
dominated escape corresponding to normal and anomalous radia-
tive trapping, as well as the threshold powers of these regimes. It is 
shown that in the regimes of ponderomotive escape, the confine-
ment time decreases with increasing power and stabilises at the 
level of one third of the wave period with the particles leaving the 
focal region predominantly across the electric field. In the radia-
tion-dominated regime, the confinement time, on the contrary, 
increases with increasing power, the rate of transverse particles’ 
escape decreases, and the particles leave the focal region in the 
form of compact beams.

Keywords: dipole wave, electron confinement, normal and anoma-
lous radiative trapping.

1. Introduction 

Currently, the experiments on laser facilities with a peak 
power of about 10 PW [1 – 3] are being actively discussed and 
hundred-petawatt laser systems [4 – 6] are being designed. 
Along with the possibility of producing efficient sources of 
gamma radiation [7, 8] and initiating new photonuclear reac-
tions [9], these facilities are expected to make significant prog-
ress in fundamental physics, in particular, in studies of the 
production of particle – antiparticle pairs [10]. 

One of the processes of the creation of matter from light 
relies on the concept of a quantum electrodynamic (QED) 
cascade [11]. When it develops in a strong laser field, electrons 
and positrons emit gamma photons, which, in turn, can decay 
into electron – positron pairs, thereby generating the next gen-
eration of photons and pairs of particles. The key parameters 
of the QED cascade are the field transverse with respect to the 
particle momentum, as well as the magnitude of the momen-
tum itself. Optimal focusing allows one to increase these 
parameters at a fixed power [12, 13]. For monochromatic 

radiation, the strongest field in the focus can be achieved in 
the case of a dipole wave [14]. At the same time, the tight 
focusing of radiation causes a rapid escape of particles from 
the region of a strong field, which prevents the development 
of the cascade and may increase the power requirements for 
its initiation. Studies show that the balance of the escape and 
production of particles in the field of a dipole wave is reached 
at a power of 7.2 PW [12]. At a higher power, there occurs a 
vacuum breakdown, similar to the avalanche-like breakdown 
of gases, and the plasma density begins to grow exponentially. 
The vacuum breakdown is not only of fundamental interest, 
which opens up the possibility of studying extreme plasma 
states, but also can be the basis of unique sources of gamma 
radiation [15 – 17] and positron beams [18].

In addition to power optimisation, there is another impor-
tant aspect, i.e. the formation of a seed for the QED cascade. 
In the case of tightly focused laser radiation, the target may 
be destroyed, and all particles can leave the region of the 
strong field (production region) before the radiation power 
reaches the level of the vacuum breakdown. To prevent this 
effect, targets should be optimised, for example, by selecting 
the appropriate concentration [19] and using substances with 
a high ionisation potential [20, 21]. In this case, it is necessary 
to know the rate at which electrons (positrons) leave the focal 
region in a wide range of laser powers. Particles can fall into 
the focus of a wave under the action of not only the leading 
edge of a pulse, but also a prepulse, which necessitates studies 
in a wide range of laser radiation powers.

If in experiments with a cascade it is necessary to ensure 
the presence of a substance in the focus of laser radiation, 
then to observe the production of electron – positron pairs 
from a vacuum in a field [22, 23], it is necessary to prevent 
the development of a cascade before the first pair is pro-
duced from a vacuum. In order to increase the amplitude of 
the field in the focus, it is planned to use multi-beam field 
configurations in such experiments [24]. In the limiting case 
of focusing in the form of a dipole wave, requirements to the 
power are significantly reduced, the latter should be hun-
dreds of petawatts (depending on the laser wavelength), and 
the concentration of residual gases in the experimental 
chamber should be ultralow [25]. In the framework of the 
proposed experiment, it is necessary to exclude particles 
from entering the focal region. However, it is possible to 
soften the requirements for permissible gas concentrations 
by allowing particles to be in the focal region as long as the 
instantaneous power value is less than that required for the 
cascade production of pairs. To do this, one should have an 
idea not only about how the particles are attracted to the 
focus of the wave, but also about how quickly they leave this 
region.
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In addition, despite a number of studies in which pecu-
liarities of motion in focused fields were revealed, such as the 
formation of electron (positron) beams [26, 27] and radiative 
trapping regimes [28, 29], a full-scale investigation of particle 
dynamics as a function of the laser beam intensity, focusing 
tightness and laser beam width remains relevant. Such studies 
will make it possible to determine in a wide range of parame-
ters the possible regimes of particle motion and, accordingly, 
the threshold values of the intensities (powers) of these 
regimes.

This paper is devoted to the study of the dynamics of elec-
trons and the time of their confinement at the focus of a dipole 
wave in a wide power range up to 200 PW, planned in the 
frame of the XCELS project [4]. In studies, the wavelength is 
l = 0.9  mm, which also corresponds to the XCELS project. 
Due to the complexity of the particle motion in a standing 
dipole wave formed as a result of the interference of converg-
ing and diverging waves, the main research tool is numerical 
simulation. The simulation technique, as well as the approxi-
mations used, is described in Section 2. The results of numeri-
cal simulation and their discussion are presented in Section 3. 
Based on these simulations, we determine the dependence of 
the confinement time of particles in the focus on the power of 
the dipole wave. By comparing the obtained results with the 
analytical results in the non-relativistic limit, we show that the 
proposed modelling technique makes it possible to obtain a 
fairly accurate estimate of the confinement time of particles in 
the focus of the dipole wave. 

In addition, we study the regimes of particle motion in the 
focus of a dipole wave as functions of its power and determine 
the threshold values of the powers for these regimes. Unlike 
the case of a plane wave, when it is possible to judge about the 
electron motion regimes by their steady-state spatial distribu-
tion, in tightly focused fields the particles quickly leave the 
interaction region, and the method for determining the 
motion regimes by steady-state spatial particle structures can 
lead to incorrect threshold values. In the present work, we 
identify the regimes of motion according to the character of 
the escape of particles, on the basis of which we determine 
their power thresholds.

2. Methods of numerical simulation 

Under the action of a converging dipole wave, particles are 
pushed towards its focus, but their velocity is less than the 
speed of light. Moreover, due to the large curvature of the 
phase front near the focus, particles in certain parts of the 
trajectories can even move towards the wave, which causes 
them to be even more delayed relative to the wave [30]. As a 
result, the particles reaching the focus of the wave will interact 
with the standing dipole wave formed by the converging and 
diverging waves rather than with the converging one.

To analyse the motion of particles in a standing dipole 
wave, we will solve numerically the relativistic equations of 
motion of particles,
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where –e and m are the electron charge and mass; R and p is 
its radius vector and momentum; g is the Lorentz factor of the 
electron; c is the speed of light; t is the time; and E and B are 
the electric and magnetic fields of a standing dipole wave, 
defined by relations (36) in [31].

To account for radiation losses, we use the semi-classical 
approximation [32]. This approximation assumes that the tra-
jectories of particles between radiation events are classical 
and determined by equations (1), and the simulation of radia-
tion losses is presented in the form of random events of pho-
ton emission according to the spectral probability density 
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obtained in the framework of quantum electrodynamics in 
the constant crossed field approximation [32]. Here, h is the 
fraction of the electron energy carried away by the photon; '  
is the reduced Planck constant; w is the cyclic frequency of 
laser radiation; Kn is the modified Bessel function of the sec-
ond kind of order n; and
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is the quantum parameter. When a photon is emitted, the par-
ticle’s momentum decreases abruptly by the magnitude of the 
momentum of the emitted photon. As shown by recent exper-
iments, this approach gives the most accurate agreement 
between the calculation results and experimental data [33].

It should be noted that the semi-classical approximation is 
the most accurate in the strongly relativistic case. Nevertheless, 
the use of the semi-classical approximation in the weakly or 
even nonrelativistic case is permissible, because the radiation 
loss in these cases is negligible and does not have a significant 
effect on the particle confinement.

The numerical solution of equations (1) is based on the 
fourth-order Runge – Kutta method, and the Monte-Carlo 
method (rejection sampling) [34], which is thoroughly 
described in [35], is used to simulate photon emission. The 
production of electron – positron pairs was not taken into 
account, since it was not the balance of the production and 
escape of particles that we studied, but the time when the par-
ticles that had already been produced (or had been attracted 
to the focus) were in the focus.

For convenience, the origin of the coordinates was placed 
at the point of the greatest amplitude of the field of a standing 
dipole wave (centre point). Without loss of generality, it was 
assumed that the electric field at the centre point was directed 
along the z axis. The distribution of the electric field along the 
z axis and in the radial direction in the z = 0 plane is shown in 
Fig. 1, where the coordinate r means the distance to the z axis. 
Initially, the electrons were uniformly distributed inside a cyl-
inder with a radius of 0.35l and a height of l. The centre of 
the cylinder coincided with the centre point, and the z axis 
was the axis of the cylinder. Below, this cylinder is used in 
reference to the region of the central antinode of the electric 
field of the dipole wave.

The shape and size of this region may be different, but it is 
important that it covers a significant domain of the strong 
field, where pairs can be produced, and also that all trapped 
particles near the antinode of the field are contained in the 
selected region, and particles trapped near the field node did 
not fall into it. Within the region chosen by us, the amplitude 
of the electric field is at least one quarter of the electric field 
maximum (Fig. 1), and the localised distributions of elec-
trons, characteristic of the anomalous radiative trapping 
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regime [29], are inside the selected cylinder. Particles moving 
in the regime of normal radiative trapping [29] do not fall into 
the cylinder. The fact that the dipole wave has axial symmetry 
also speaks in favour of choosing a cylinder.

We also note that the confinement time of particles in the 
central antinode region depends on the field phase at which the 
particles begin to interact with it. In order to avoid the appear-
ance of the constant component of the momentum, which 
causes a faster escape of particles, we chose the initial field 
phase corresponding to the largest electric and zero magnetic 
fields, that is, the zero vector potential. Thus, we obtain an esti-
mate of the longest confinement time of particles in the focus.

Numerical simulation was carried out in a wide range of 
power (10 MW – 200 PW). The number of particles in simula-
tions was N0 = 106. The interaction of particles with a field 
was simulated for 20T, where T = 3 fs is the laser field period. 
The time step was 0.001T, and its further reduction did not 
lead to a change in the results. As shown by numerical simula-
tion, during this time almost all particles left the region of the 
central antinode.

3. Discussion of the results 

To determine the regimes of motion and the time of electron 
trapping in the focal region, we studied the change in the 
number of particles in the central antinode with time. 
Examples of the temporal dynamics of the number of parti-
cles normalised to N0 inside the central antinode h(t) are pre-
sented in Fig. 2 for different wave powers. P0 = 1 PW is used 
as the unit of measurement of power, and the dimensionless 
power is determined by the expression r = P/P0. The maxi-
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Figure 1. Distribution of the electric field amplitude Ea of the dipole 
wave (dashed curve) along the z axis and (solid curve) in the radial di-
rection in the z = 0 plane (r axis). Ea is normalised to its maximum Emax. 
The dotted line corresponds to the level of 0.25Emax.
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Figure 2. Temporal evolution of the number of electrons in the region of the central antinode for various dipole wave powers. The solid curve is 
numerical simulation data, the dashed curve is the result of smoothing the obtained data.
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mum amplitude of the electric field in relativistic units a and 
power are related as follows [31]:

a m c
eE 780max

w r= = , (3)

where Emax is the maximum electric field amplitude.
One can see from Fig. 2 that the stronger the relativistic 

effects of the particle motion, the more pronounced the oscil-
lations at the doubled frequency of the laser field. Therefore, 
a smoothing procedure was used to average the oscillations 
and obtain the dynamics of the number of particles averaged 
over the half-period of the laser field. At the first step, a mov-
ing average approach was used with the width of the averag-
ing window equal to the half-period of the field, as a result of 
which the dependence ( )thr  was obtained. At the second step, 
the Fourier spectrum of the difference ( ( ) ( ))F t th h- r  was cal-
culated; all frequencies greater than 1.5f0 were rejected in the 
obtained spectrum, where f0 is the frequency of the dipole 
wave. At the third step, the inverse Fourier transform was 
applied to the modified spectrum and the result was sub-
tracted from ( )thr . As a result, we obtained the dependence of 
the number of particles in the central antinode on the time 
hav(t), averaged over the half-period of the field (dashed line 
in Fig. 2). It should be noted that this multi-step procedure 
makes it possible to suppress oscillations of h(t) more strongly 
in comparison with the use of only the moving average 
method.

Using the results of the analysis of hav(t), for each value of 
the power we determined the particle confinement time t1/2 in 
the region of the central antinode, at which hav (t1/2) = 0.5. The 
resulting dependence t1/2 ( r) is shown in Fig. 3a.

The approximation of the numerical simulation data is 
given below:

8.9 10 .T
t 1 1 05 10/ .1 2 4 0 5 5

#r r#= +- -

 . .a a0 7 1 0 171 2= +-  at r < 1 or a < 780.

0.28 (0.075 ) . (1.22 10 )exp expT
t a0 28/1 2 7 2r #= = -  (4)

 at 1 < r < 10 or 780 < a < 2470,

. .T
t a0 57 0 057/ . .1 2 0 173 0 346r= =  at r > 10 or a > 2470.

The reasoning of the form in which the approximating func-
tion was sought for at r < 1 is given in Subsections 3.1 and 
3.2.

Additionally, we monitored in the calculations the direc-
tion in which the electrons escape from the focus of the wave. 
It was assumed that electrons that passed through the ends of 
the cylinder (the region of the central antinode) leave along 
the electric field, and those that pass through the lateral sur-
face of the cylinder escape across it. The fractions of the total 
number of electrons that escaped along (hL) and across (hT) 
were counted by the time t = 20T when all particles left the 
region of the central antinode. The dependences of the values 
of hL and hT on power are shown in Fig. 3b. By changing the 
character of the dependences t1/2( r), hL( r) and hT( r), we 
revealed various regimes of electron motion, which will be 
discussed below. The characteristic instantaneous electron 
concentration distributions in these regimes are shown in 
Fig. 4 in cylindrical coordinates.

3.1. Nonrelativistic case

To verify the proposed approach to determining the particle 
confinement time, we first consider the nonrelativistic case, 
when the estimate of the electron confinement time can be 
obtained analytically. The particle dynamics is described ana-
lytically by using the ponderomotive force [36]. As can be seen 
from Fig. 3b, as well as from the comparison of Figs 4a and 
4e, the particles mainly escape across the electric field in the 
radial direction; therefore, we will neglect the displacement of 
electrons along the z axis. Qualitatively, such a spatial struc-
ture of the escape of electrons can be explained by the fact 
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Figure 3. (a) Dependence of the electron confinement time in the region of the central antinode of a dipole wave on the power (points) and ap-
proximations of t1/2( r) in different regimes, corresponding to formula (4) (solid curves), as well as (b) dependences of the total number of electrons 
escaped longitudinally hL (solid curve) and transversely hT (dashed curve) with respect to the electric field. The vertical dashed lines separate the 
regions of different regimes of motion, indicated by Roman numerals.
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that the radial projection of the electric field gradient exceeds 
the projection of the gradient on the z axis. In contrast to the 
case of a plane wave, when electrons oscillate in a pondero-
motive potential between the antinodes of the field, in a 
strongle inhomogeneous field of a dipole wave particles 
escape from the region of the central antinode, since the 
neighbouring maxima of the ponderomotive potential are 
much less than the maximum at the centre point.

To estimate the confinement time, we consider the radial 
motion of an electron, initially located in the z = 0 plane in the 
vicinity of r = 0 (maximum of the ponderomotive potential). 
The averaged particle motion can be described by the follow-
ing equations in cylindrical coordinates, using the pondero-
motive force:
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Here, pr is the radial component of the pulse and ∂r is the 
derivative with respect to r.

Let us consider the motion near the potential maximum. 
The electric field amplitude in this region has the following 
dependence on r [31]: Ea = Emax(1 – 0.2k2 r2 + O[k4 r4]), where 
k = w/c, and the linearised system of equations has the form
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The solution to the linearised system of equations will be 
sought for in the form pr ~ r ~ exp(Lt). The value of L can 
be both positive and negative:

T
a
5
2

0
pL L L= - = =+ - . (7)

If we assume that the initial position of the electron is r = r0 
and it is at rest, then

r = r0 cosh(L0t).  (8)

Since initially the particles are uniformly distributed inside 
the cylinder with a radius rb, the decrease in the relative num-
ber of particles will be described by the expression
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On the basis of (9), the confinement time of particles in the 
region of the central antinode can be estimated as follows:

h( )arccost 2/1 2 0
1L= -  » .0 88 0

1L- . (10)

It is easy to show that in the case of a plane wave, t1/2 = 
h(2)arccos0

1L-  » .1 32 0
1L-  with L0 = /a T2 p . The smaller 

factor in front of 0
1L-  in the case of a dipole wave is due to 

the fact that the farther the particles are from the z axis for 
the case of the initial distribution in the form of a cylinder, 
the greater the number of such particles. This contributes to 
a more rapid decrease in their number in the region of the 
central antinode in comparison with the case of a plane 
wave. In the latter case, it is natural to choose the initial 
distribution of particles in the form of a parallelepiped, and 
the number of particles in the initial distribution does not 

depend on their distance from the plane of the largest field 
amplitude.

From (7) and (10) it follows that t1/2 /T » 0.3/a. Thus, it 
can be assumed that the approximating function in the non-
relativistic limit can have the form t1/2 /T = A/a, where A is a 
fitting parameter. To determine the boundary value of the 
power (field amplitude) for the nonrelativistic case, we will 
make use of the numerical simulation data in Fig. 3b. Note 
that for a < 0.8 or r < 10–6 (region I), the number of particles 
that escaped along or across the field is almost independent of 
power, and with increasing power it begins to change; there-
fore, we can use a = 0.8 and r = 10–6 as boundary values. 
Then, in region I, the best fit of the approximating function to 
numerical simulation data is obtained at A »0.7, which cor-
responds to expression (4) with r << 10–6.

The reason for the difference between the obtained esti-
mate and the results of the approximation can be explained as 
follows. First, to derive (10), we considered the motion of par-
ticles only in the z = 0 plane, although initially the particles 
are set in a fairly wide region, where the field amplitude can be 
4 times less than the maximum one. Second, the description of 
the trajectory in the form of (8) is obtained for a small neigh-
bourhood of the central point and is not quite true for the 
entire region of the central antinode. Nevertheless, it should 
be noted that theoretical analysis allows us to understand the 
type of the approximating function. In addition, if, taking 
into account the above reasons, we replace a by ~a/2, then 
the analytical results and the simulation results will be quan-
titatively consistent. Thus, we can conclude that the proposed 
method for determining the particle confinement time in the 
central antinode region is viable.

3.2. Relativistic case

As was shown above, the threshold of the relativistic regime 
of motion in the problem in question is the power r = 10–6 or 
the amplitude a = 0.8. According to the simulation results, in 
the relativistic case the confinement time is reduced (Fig. 3a) 
and reaches t1/2  » 0.3T » L/c, where L » 0.3l is the charac-
teristic scale of the field inhomogeneity in the radial direction. 
As in the nonrelativistic case, due to the difference between 
the radial projection of the electric field gradient and the pro-
jection of the gradient on the z axis, most of the electrons 
leave the central antinode in the transverse direction (Figs 3b 
and 4b). At a later stage of escape (t > t1/2), particles that have 
passed across the field form a quasi-cylindrical front propa-
gating with a subluminal velocity. For the power r = 0.1, the 
front velocity, which is approximately determined in Fig. 4f 
by the surface r = 1.4l at the time instant t = 1.375T, is 0.85c.

To select a function that approximates the simulation 
data, we use the results obtained by considering a similar 
problem in the field of a plane standing circularly polarised 
wave [37]. In the circularly polarised field, the exponent L in 
the relativistic case can be found by dividing the nonrelativis-
tic expression for L by the Lorentz factor g. We extend this 
result to the case of a standing dipole wave and look for an 
approximation of the data in the form /a/ ,t T A Ba1/1 2

2= +  
where A and B are fitting parameters, assuming the electron 
momentum ~amc. Moreover, this form of the function can 
explain the independence of the electron confinement time at 
1 << a < 780 from the field amplitude (power).

To determine the boundary power of relativistic escape, 
we again turn to Fig. 3. The regime of particle escape begins 
to change qualitatively at r > 1 or a > 780. First, the confine-
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ment time of electrons begins to increase, and second, the 
escape of particles across the field decreases and their escape 
in the longitudinal direction increases. In this regard, we will 
look for fitting parameters in the power range 10–6 < r < 1 
(region II in Fig. 3). The best fit between the numerical data 
and the approximating function is obtained at A = 0.7 and B 
= 0.17. Thus, the analogy with the case of a circularly polar-
ised wave is confirmed, since the fitting parameter A is the 
same in nonrelativistic and relativistic cases.

The value of B can be qualitatively explained as follows. 
To estimate the Lorentz factor, we may assume the square of 
the electron momentum to be in average ~0.5(amc)2. We also 
bear in mind the fact that, as was shown in the nonrelativistic 
case, taking into account the size of the central antinode, it is 
better to use a/2 instead of a. As a result, we obtain B » 0.125. 
A qualitative explanation of the value of the parameter A was 
actually given on the basis of the nonrelativistic regime.

As a result, we can conclude that both considered cases in 
the field of a dipole wave (regimes I and II in Fig. 3) are the 
regimes of ponderomotive particle escape from the region of 
the central antinode. The similarity of these regimes also lies 
in the fact that in both cases the particles mainly move in the 

transverse direction, the fractions of particles escaping along 
and across the field are practically independent of power 
(except for the transition region at 10–6 < r < 10–4 or 0.8 < a 
< 8); in addition, we can apply for them the following for-
mula 

/ 8.9 10 .t T 1 1 05 10/
.

1 2
4 0 5 5

#r r#= +- -

 0.7 .a a1 0 171 2= +- .

The solid curve in Fig. 3a corresponding to this formula 
describes with high accuracy the numerical simulation data at 
r < 1.

3.3. Radiative trapping

Along with relativistic effects, radiation losses can signifi-
cantly influence the motion of particles at high powers. It was 
found previously that in the field of the dipole wave, radiation 
losses lead to the case of normal and anomalous radiative 
trapping regimes, which consist in the attraction of particles 
mainly to a node or to an antinode of an electric field [29]. 
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Figure 4. Electron concentration distributions ne normalised to the maximum concentration nmax as functions of the coordinate z and radius r at 
different powers of the standing dipole wave at different points in time. The distributions in Figs 4a – 4d were obtained at the instants of time t = t1/2 
corresponding to the powers indicated in the figures: (a) 1.703T, (b) 0.289T, (c) 0.479T and (d) 1.175T. The distributions in Figs 4e – 4h are pre-
sented at times t = (e) 1.875T and (f – h) 1.375T. Level lines indicate the distribution of the electric field amplitude, and dashed lines show the bound-
aries of the region within which the electrons were originally located.
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However, the amplitude thresholds (power thresholds) of 
these regimes have not been established. In this section, ana-
lysing the escape of particles from the central antinode region, 
we not only determine the time of particle confinement, but 
also offer an estimate of the threshold power of the radiative 
trapping regimes. Unlike the case of a plane wave, in which 
these regimes can be analysed on the basis of the steady-state 
spatial distribution of particles, in the field of a dipole wave 
particles quite quickly leave the focal region, and this method 
is difficult to apply. At the same time, the power dependences 
of the particle confinement time and the spatial structure of 
their escape are different, and they can be used to determine 
the amplitude thresholds of the regimes.

As can be seen from Fig. 3, the relativistic regimes changes 
at  r > 1 or a > 780. With increasing power, the number of 
particles escaping in the transverse direction decreases. 
Particles that have not yet left the central antinode region are 
grouped into a compact bunch (Figs 4c and 4d); as a result, 
the electrons leave this region in the form of beams (Figs 4h 
and 4g). Part of the particles is also trapped in the vicinity of 
the electric field node located at point r = 0.44l, z = 0. The 
reason for such changes is the strong recoil resulting from the 
emission of photons; the strength of this recoil increases with 
increasing power. In the ultrarelativistic case, particles emit 
photons almost along the direction of their motion. The 
motion becomes strongly dissipative and the phase space con-
traction takes place, which explains the grouping of particles 
both inside the central antinode and in the vicinity of the field 
node. This regime of particles’ escape can be called radiation-
dominated.

Based on the properties of the dependences t1/2( r), hL( r) 
and hT( r), we can distinguish two regimes of radiation-domi-
nated particle escape. The range 1 < r < 10 (780 < a < 2470) 
is characterised by normal radiative trapping: most particles 
escape in the transverse direction (region III in Fig. 3b) and a 
considerable part of them is trapped in the vicinity of the field 
node (Fig. 4g). The word ‘normal’ is used in connection with 
the fact that the trapping is expected to occur at a minimum 
of the ponderomotive potential. Note that in a plane wave 
this regime is realised starting from a slightly weaker field (a 
» 600) [29]. An increase in the amplitude threshold of the 
regime in the case of a dipole wave can be explained by a sig-
nificant difference between the amplitudes of the central and 
neighbouring maxima of the ponderomotive potential. As a 
result, the particles are most likely to overcome the neigh-
bouring potential maximum, rather than stop and be trapped 
in the vicinity of the field node. This requires larger radiation 
losses and, consequently, larger wave amplitudes. 
Approximately, in this power range, the particle confinement 
time can be described by the exponential function (4).

At approximately r » 10 (a » 2470), the exponential 
dependence t1/2( r) changes to a power law [formula (4)], the 
second derivative changes its sign, and the particles begin to 
escape mainly along the electric field (region IV in Fig. 3b). 
Despite the large radial projection of the electric field gradi-
ent in comparison with the projection on the z axis, due to 
radiation effects the particles practically stop moving across 
the field at r >> 10. Unlike the case of a plane wave, attrac-
tors in the field of a dipole wave do not form due to strong 
field inhomogeneity, but the regime of motion for  r > 10 
can be called anomalous radiative trapping by analogy. 
First, the probability of particle trapping in the vicinity of 
field node, i.e. the potential minimum, decreases signifi-
cantly as the wave power increases. Second, an increase in 

power results in grouping of particles closer to the field anti-
node, i.e. the potential maximum (cf. Figs 4c and 4d), and in 
an increase in duration of particle motion in its vicinity. 
Note that, due to a significant decrease in the number of 
particles escaping in the transverse direction, particle beams 
in the anomalous trapping regime fly out of the focal area at 
a smaller angle to the z axis than in the case of the normal 
trapping regime (cf. Fig. 4g and 4h).

4. Conclusions

We have considered in a wide range of laser radiation powers 
the dynamics of particles in the central antinode region in the 
field of a dipole wave. Using numerical modelling and quali-
tative estimates, we have identified several regimes of motion, 
which differ in the characteristic confinement times of parti-
cles and the behaviour of the escape of electrons. 

The first regime corresponds to the ponderomotive parti-
cle escape. In this regime, their escape occurs predominantly 
in the direction transverse to the electric field, since the radial 
projection of the electric field gradient is greatest. If, in the 
nonrelativistic case, the particle confinement time in the cen-
tral antinode region is inversely proportional to the root of 
the power and its minimum value roughly corresponds to the 
laser field period at 1 GW, then in the relativistic case, the 
confinement time is determined by the ratio of the smallest 
scale of the spatial inhomogeneity of the field to the speed of 
light and is approximately equal to 1/3 of the laser period in 
the power range from 10 GW to 1 PW.

The second regime can be characterised as radiation-dom-
inated particle escape. This regime arises in ultraintense fields 
due to strong radiation losses, as a result of which the confine-
ment time increases and, despite the large radial projection of 
the field gradient, the escape of particles in the transverse 
direction slows down significantly. Though attractors are not 
formed and the particles leave sooner or later the region of the 
central antinode, the particles that have not yet escaped are 
grouped into compact bunches within this region. In particu-
lar, this leads to the formation of electron beams; the greater 
the power, the smaller the angle to the direction of the electric 
field at which they escape the focal region. The radiation-
dominated escape can be divided into two regimes: normal 
and anomalous radiative trapping. Based on the dependences 
of the particle confinement time in the central antinode 
region, as well as on the spatial structure of the particle 
escape, we have determined their threshold powers to be 1 
and 10 PW, respectively.

With powers of 1 – 10 PW, the particle confinement time 
begins to increase exponentially and reaches approximately 
0.7 of the laser period. In this power range, most particles 
escape in the transverse direction of the field and most of 
them are grouped at the nodes of the electric field,. This cor-
responds to normal radiative trapping regime.

At powers above 10 PW, the regime of anomalous radia-
tive trapping is realised. The main fraction of particles escapes 
in the longitudinal direction. In this case, the probability of 
the trapping of a particle in the vicinity of the field node sig-
nificantly decreases. Particles are grouped mainly near the 
antinode of the field, that is, the maximum of the ponderomo-
tive potential, and with increasing power they spend more 
and more time in its vicinity. In this regime, the confinement 
time of particles in the region of the central antinode increases 
according to a power law and reaches approximately 1.5 of 
the laser period at a power of 200 PW.
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The obtained data on the confinement time of electrons in 
the region of the central antinode in a wide range of dipole 
wave powers can be used to optimise the parameters of the 
medium both to initiate QED cascades and to prevent their 
development. This may be especially important for gaseous 
media, when it is necessary to consider large regions of space, 
from where particles can fall into the focus of a dipole wave, 
and when three-dimensional modelling by the particle-in-cell 
method can become difficult.

Acknowledgements. This work was supported by the Russian 
Foundation for Basic Research (Grant No. 17-52-45092) and 
the Presidium of the Russian Academy of Sciences 
(Programme ‘Extreme Light Fields and Their Interaction 
with Matter’, Project No. 007-03-2018-440). Numerical simu-
lation was carried out on the high-performance computing 
systems MVS-100k and MVS-10P at the Joint Supercomputer 
Center of the Russian Academy of Sciences. 

References 
 1. ELI: www.eli-laser.eu.
 2. VULCAN: www.clf.stfc.ac.uk/CLF/Facilities/Vulcan/.
 3. Apollon: www.lcf.institutoptique.fr/lcf-en/Researchgroups/Lasers/

Research-Topics/Apollon-10-PW-facility.
 4. XCELS: www.xcels.iapras.ru.
 5. Kawanaka J., Tsubakimoto K., Yoshida H., Fujioka K., 

Fujimoto Y., Tokita S., Jitsuno T., Miyanaga N., Team G.-E. D. 
J. Phys. Conf. Ser., 688, 012044 (2016). 

 6. SEL: www.sciencemag.org/news/2018/01/physicists-are-planning-
build-lasers-so-powerful-they-could-rip-apart-empty-space.

 7. Ridgers C., Brady C.S., Duclous R., Kirk J.G., Bennett K.,  
Arber T.D., Robinson A.P.L., Bell A.R. Phys. Rev. Lett., 108, 
165006 (2012). 

 8. Nerush E.N., Kostyukov I.Yu., Ji L., Pukhov A. Phys. Plasmas, 
21, 013109 (2014). 

 9. Thirolf P., Habs D. Eur. Phys. J. Special Topics, 223, 1213 (2014). 
10. Di Piazza A., Muller C., Hatsagortsyan K.Z., Keitel C.H. Rev. 

Mod. Phys., 84, 1177 (2012). 
11. Bell A.R., Kirk J.G. Phys. Rev. Lett., 101, 200403 (2008). 
12. Gonoskov A., Bashinov A., Bastrakov S., Efimenko E., Ilderton A., 

Kim A., Marklund M., Meyerov I., Muraviev A., Sergeev A. 
Phys. Rev. X, 7, 041003 (2017). 

13. Gelfer E.G., Mironov A.A., Fedotov A.M., Bashmakov V.F., 
Nerush E.N., Kostyukov I.Yu., Narozhny N.B. Phys. Rev. A, 92, 
022113 (2015). 

14. Bassett I.M. Opt. Acta, 33, 279 (1986). 
15. Bashinov A.V., Efimenko E.S., Gonoskov A.A., Korzhimanov A.V., 

Muraviev A.A., Kim A.V., Sergeev A.M. J. Opt., 19, 114012 
(2017). 

16. Jirka M., Klimo O., Bulanov S.V., Esirkepov T.Zh., Gelfer E., 
Bulanov S.S., Weber S., Korn G. Phys. Rev. E, 93, 023207 (2016). 

17. Grismayer T., Vranic M., Martins J.L., Fonseca R.A., Silva L.O. 
Phys. Plasmas, 23, 056706 (2016). 

18. Zhu X.-L., Yu T.-P., Sheng Z.-M., Yin Y., Turcu I.C.E., Pukhov A. 
Nat. Commun., 7, 13686 (2016). 

19. Jirka M., Klimo O., Vranic M., Weber S., Korn G. Sci. Rep., 7, 
15302 (2017). 

20. Artemenko I.I., Kostyukov I.Yu. Phys. Rev. A, 96, 032106 (2017). 
21. Tamburini M., Di Piazza A., Keitel C.H. Sci. Rep., 7, 5694 (2017). 
22. Fedotov A.M., Narozhny N.B., Mourou G., Korn G. Phys. Rev. 

Lett., 105, 080402 (2010). 
23. Bulanov S.S., Esirkepov T.Zh., Thomas A.G.R., Koga J.K., 

Bulanov S.V. Phys. Rev. Lett., 105, 220407 (2010). 
24. Bulanov S.S., Mur V.D., Narozhny N.B., Nees J., Popov V.S. 

Phys. Rev. Lett., 104, 220404 (2010). 
25. Gonoskov A., Gonoskov I., Harvey C., Ilderton A., Kim A., 

Marklund M., Mourou G., Sergeev A. Phys. Rev. Lett., 111, 
060404 (2013). 

26. Efimenko E.S., Bashinov A.V., Bastrakov S.I., Gonoskov A.A., 
Muarviev A.A., Meyerov I.B., Kim A.V., Sergeev A.M. Sci. Rep., 
8, 2329 (2018). 

27. Luo W., Liu W.-Y., Yuan T., Chen M., Yu J.-Y., Li F.-Y.,  
Del Sorbo D., Ridgers C.P., Sheng Z.-M. Sci. Rep., 8, 8400 (2018). 

28. Lehmann G., Spatschek K.H. Phys. Rev. E, 85, 056412 (2012). 
29. Gonoskov A., Bashinov A., Gonoskov I., Harvey C., Ilderton A., 

Kim A., Marklund M., Mourou G., Sergeev A. Phys. Rev. Lett., 
113, 014801 (2014). 

30. Bashinov A.V., Gonoskov A.A., Kim A.V., Marklund M., 
Mourou G., Sergeev A.M. Quantum Electron., 43, 291 (2013) 
[ Kvantovaya Elektron., 43, 291 (2013)].

31. Gonoskov I., Aiello A., Heugel S., Leuchs G. Phys. Rev. A, 86, 
053836 (2012).

32. Bayer V.N., Katkov V.M., Fadin V.S. Izluchenie relyativistskikh 
elektronov (Radiation of Relativistic Electrons) (Moscow: 
Atomizdat, 1973) p. 137.

33. Wistisen T.N., Di Piazza A., Knudsen H.V., Uggerhoj U.I. Nat. 
Commun., 9, 795 (2018). 

34. Neal R. Ann. Statist., 31, 705 (2003). 
35. Bashinov A.V., Kim A.V., Sergeev A.M. Phys. Rev. E, 92, 043105 

(2015).
36. Gaponov A.V., Miller M.A. Sov. Phys. JETP, 7, 168 (1958) [ Zh. 

Eksp. Teor. Fiz., 34, 242 (1958)].
37. Bashinov A.V., Kumar P., Kim A.V. Phys. Rev. A, 95, 042127 

(2017).


