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Abstract.  We consider the kinetics of atoms in nonuniform spatially 
polarised light fields resonant to the quadrupole optical transition 
with Fg ® Fe = Fg + 2 (Fg,e is the total angular momentum in the 
ground and excited states). The lowest possible temperatures of 
laser cooling of atoms are analysed numerically and the results are 
compared with the data obtained for sub-Doppler cooling using 
light waves resonant to electric dipole optical transitions.
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1. Introduction

Since the mid-1980s, laser cooling of atoms has been a rapidly 
developing area at the intersection of laser and atomic physics. 
Currently, laser-cooled atoms are ideal candidates for preci-
sion spectroscopy; they are also used to develop quantum 
frequency standards [1 – 3], to achieve Bose – Einstein conden-
sation [4, 5], to simulate quantum effects in condensed media, 
to study interatomic collisions, etc. [6, 7].

To date, there have been developed various methods and 
approaches for describing laser cooling. At the initial stage of 
research, semi-classical approaches have become widespread, 
which make it possible to describe kinetics of atoms in terms 
of the forces acting on atoms from the resonant electromag-
netic field and in terms of diffusion resulting from abrupt 
absorption/emission of photons of the field [8 – 15]. The main 
reasons for limiting the application of the semi-classical theory 
are the smallness of the momentum Dp transmitted to the 
atoms interacting with the photons of the field as compared 
to the photon momentum 'k/Dp << 1, and also the smallness 
of the semi-classicality parameter er = wr /g << 1, i.e. the ratio 
of recoil energy 'wr = '2k2/(2M), obtained by a fixed atom 
with a mass M as a result of absorption/emission of photons 

of the field, to the natural width of the level g. The presence of 
these parameters allows us to separate the evolution of internal 
and translational degrees of freedom of atoms and to reduce 
the solution of the complex quantum mechanical problem to 
the semi-classical Fokker – Planck equation for the distribution 
function of atoms in the phase space with a release of forces 
and diffusion coefficients for atoms in light fields [11 – 14]. 
It is worth noting the importance of developing semi-classical 
approaches, since they allowed the basic mechanisms of laser 
cooling of atoms to be described, including Doppler [8 – 10, 16] 
and sub-Doppler laser cooling mechanisms [10, 17 – 19] in 
optical molasses, i.e. in the field of counterpropagating light 
waves.

An alternative approach to the description of laser cooling 
problems in optical molasses was the development of quantum 
approaches (see, for example, [20 – 25]), which, for atoms with 
optical transitions characterised by extremely small semi-clas-
sicality parameters (er << 1), leads to the results comparable 
with the data of the semi-classical theory [21, 25]. For atoms 
with narrow optical transitions, when the parameter er is 
insufficiently small, recoil effects play an important role, lead-
ing to a significant difference in the results of the semi-classi-
cal and quantum approaches [26 – 30]. For example, for atoms 
with the ground state nondegenerate in the angular momen-
tum projection, quantum approaches predict laser cooling of 
atoms to energies comparable to the recoil energy of the atom, 
E ~ 'wr [26, 28], in contrast to the semi-classical approaches, 
where the minimum temperature of laser cooling is deter-
mined by the natural width kBT ~ 'g/2 [8 – 10, 16], i.e., the 
Doppler limit.

Note that for atoms with levels degenerate in the angular 
momentum projection, an insufficiently small parameter er 
results in a decrease in the efficiency of the sub-Doppler fric-
tion mechanisms and in an increase in the hotter fraction of 
atoms with temperatures of the order of the Doppler limit 
[29,  30], which may result in the impossibility of achieving 
sub-Doppler temperatures, i.e., in Doppler laser cooling [29].

The prospects for reaching ultra-deep temperatures (several 
recoil energies) make it important to study the possibility of 
laser cooling of atoms using narrow optical transitions. In 
this paper, we investigated the possibility of ultra-deep laser 
cooling of alkali atoms using a narrow quadrupole optical 
transition 2S1/2 – 2D5/2 between the hyperfine structure levels 
Fg = F ® Fe = F + 2 with the total angular momenta Fg and Fe 
in the ground and excited states. A comparison was also made 
of the minimum temperatures for laser cooling with those 
obtained by standard methods of sub-Doppler laser cooling 
(for example, Cs atoms using the 2S1/2 – 2P3/2 dipole optical 
transition in nonuniform spatially polarised fields).
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2. Statement of the problem

Let us consider the one-dimensional motion of atoms (along 
the z axis) having a closed optical transition with Fg ® Fe in 
a  resonant monochromatic field formed by opposing light 
waves of equal intensity:

E(z, t) = E0 [e1exp(ikz) + e2 exp(–ikz)] exp(–iwt) + c.c.,	 (1)

where E0 is the complex amplitude of the light waves; w is the 
field frequency; and k = w/c is the wave vector. The polarisa-
tions of the opposite waves, e1 and e2, in the Cartesian basis 
ex, ey and ez can be expressed through the components of the 
vectors ex,y,z in the cyclic basis
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Here, e±1 = "(ex ± e–) / 2 and e0 = ez are the unit vectors in 
a cyclic basis. Note that the components en

0  are equal to zero 
due to the orthogonality of the vectors en and k. In particular, 
the counterpropagating orthogonally polarised waves form 
well-known configurations of the light fields: lin ̂  lin configu-
ration of the light field with e1 = ex and e2 = ey; and s+ – s– con-
figuration of the light field with e1 = e+ and e2 = e– .

The evolution of an ensemble of low-density atoms, when 
the interatomic interaction can be neglected, is determined by 
the quantum kinetic equation for the atomic density matrix

¶
¶ [ , ] { }i
t

H
'

r r rG=- -t t t t t ,	 (3)

where Ht  is the Hamiltonian, and { }rGt t  describes the relaxation 
of atomic levels during spontaneous decay. The Hamiltonian 
Ht  of the atom is divided into the sum of the contributions:
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where the first term is the kinetic energy operator; H Pe0 '=- dt t   
is the Hamiltonian of the free atom in the rotating wave 
approximation (RWA); d = w – w0 is the detuning of the optical 
frequency w from the atomic transition frequency w0 ; and

| , , |P F Fe e em m=
m

t / 	 (5)

is the projection operator to the excited state levels | ,Fe m , 
characterised by the total angular momentum Fe and the 
angular momentum projection m on the quantisation axis. 
The last term Vt  describes the atom – field interaction (1). 
Note that in the interaction of an atom with a field resonant 
to the electric dipole transition E1, the interaction operator 
takes the form

( ) ( )exp expi iV V kz V kz1 2= + -t t t ,

( ) , 1,2V D D e nen n n' 'W W= = =s
st t t/ 	

(6)

(W is the Rabi frequency of the electric dipole transition) 
and is determined by the polarisation vectors of the counter-
propagating waves and the vector operator Dt . Its matrix 
components Ds

t  in the circular basis are expressed via the 
Clebsch – Gordan coefficients:
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The operator Vt  specifies induced transitions with a change in 
the angular momentum projection s = ±1 for the field con-
figuration in question (Fig. 1a). The last member of the kinetic 
equation (3), which describes the relaxation of the atomic 
density matrix, has a known form (see, for example, [25]):
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where 〈...ñWk
 means averaging over the directions of emission 

of a spontaneous photon having a momentum 'k with two 
orthogonal polarisations ex(k).

Spontaneous decays in electric dipole transitions result in 
relaxation of the atomic density matrix with a change in the 
angular momentum projection Dm = 0, ±1 (Fig. 1a). For the 
one-dimensional problem, the relaxation operator (8) is reduced 
to the form
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where the functions
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are determined by the probability of spontaneous emission of 
a photon in the direction making an angle q with the z axis; 
and s = cos q. To solve the kinetic problem of laser cooling, 
it  is convenient to use the coordinate representation for the 
atomic density matrix [25], in which the spontaneous relaxa
tion operator in the electric dipole approximation (9) takes 
the simplest form:
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where q = z1 – z2; and
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Figure 1.  Scheme of spontaneous (wavy arrows) and light-induced 
(straight arrows) transitions for (a) the electric dipole transition with 
Fg = 1 ® Fe = 2 and (b) the quadrupole transition with Fg = 1 ® Fe = 3.



445Investigation of the possibility of ultra-deep laser cooling 

3
( )
( )

( )
( )sin cos

kq
kq

kq
kq

0 3 2k = -e o;

3
( )
( ) ( )

( )
( )cos sin sin

kq
kq kq

kq
kq

21 2 3k = + -!
kq

e o.	
(12)

For the quadrupole optical transition E2, the operator of 
interaction with field (1) is similar to (6),

( ) ( )exp expi iV V kz V kz1 2= + -t t t ,

( ), , ,V Q n 1 2E( )
n n

2'W= =t t 	
(13)

but is given by the tensor operator Qt  and the second rank 
tensor

{ }k eEn n n 27= .	 (14)

The matrix components of the operator Qs
t  in the circular 

basis are expressed via the Clebsch – Gordan coefficients:
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Despite the fact that in the general form, the quadrupole 
transition operator allows transitions from the ground to the 
excited state with a change in the angular momentum projec-
tion on D m = 0, ±1, ±2 in the considered configuration of the 
light field formed by counterpropagating light waves (1), only 
induced transitions with D m = ±1 (Fig. 1b) are possible, which 
allows the mechanisms of laser cooling of atoms to be realised, 
similar to those known in fields resonant to electric dipole 
transitions. For the spontaneous relaxation operator, an expres-
sion similar to (11) can be obtained:
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describe the rate of spontaneous decays taking into account 
the recoil effects when changing the angular momentum pro-
jection D m = 0, ±1, ±2 (Fig. 1b).

3. Results

The problem of laser cooling of atoms in a light field (1) 
resonant to electric dipole (6) or quadrupole (13) transitions 
can be analysed on the basis of a numerical solution of the 
quantum-kinetic equation for the atomic density matrix (3) 

using the methods proposed in [23 – 25]. As a concrete example, 
we consider laser cooling of Cs atoms in a field resonant to 
the 62S1/2 quadrupole transition (F = 4) ® 52D5/2 (F = 6) 
( l = 685 nm) with a natural width g/2p –~ 124 kHz [31]. The 
spontaneous decay of the 52D5/2 level (F = 6) occurs predomi-
nantly in the cascade scheme 52D5/2 (F = 6) ® 62P3/2 (F = 5) ® 
62S1/2 (F = 4) (Fig. 2), which somewhat modifies the relaxa
tion operator in equation (3), but, nevertheless, as well as (16) 
leads to transitions with a change in the angular momentum 
projection D m = 0, ±1, ±2.

For the scheme using the E2 transition, the semi-clas
sicality parameter is er –~ 0.026, which is several orders of 
magnitude higher than the semi-classicality parameter for the 
standard laser cooling scheme using the E1 transition 62S1/2 
(F = 4) ® 62P3/2 (F = 5) (er –~ 0.0004, and the natural width is 
g0 /2p –~ 5.2 MHz). It should be noted that in the case of atoms 
with levels degenerate in the angular momentum projection, 
the solution of the quantum mechanical equation for the 
atomic density matrix with full account for the recoil effects is 
a very resource-consuming task. Therefore, in the present work, 
we restricted ourselves to the model of an atom with an angular 
momentum F = 1 in the ground state and, accordingly, transi-
tions with Fg = 1 ® Fe = 3 and Fg = 1 ® Fe1 = 2 for quadrupole 
and electric dipole optical transitions, respectively.

Before considering the results of the analysis of laser 
cooling of atoms, we note that the problem of laser cooling in 
nonuniform polarised fields resonant to optical transitions E1 
was examined by many authors, which made it possible to 
describe the main mechanisms of sub-Doppler laser cooling 
[12 – 14, 17, 19, 20, 22 – 25].

To study the limits of laser cooling, we should analyse 
this problem within the framework of quantum approaches. 
Note also that the stationary solution for the atomic density 
matrix (3) is determined by the chosen spatial configuration 
of the light field and depends on its parameters, i.e. detuning 
d and field intensity (Rabi frequency W  ). In the limit of the 
low intensity of the cooling field and the secular approxima-
tion considered in [20], the stationary solution of equation (3) 
is characterised by only one parameter, namely, the depth of 
the optical shift of the levels U,

U
r'w  ~ 

/
| | | |

u
4r

2 2
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d g

W
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52D5/2 (F = 6)

62S1/2 (F = 4)

62P3/2 (F = 5)
d, W (2)

l = 3.5 mm
g = 2p·124 kHz

l = 852 nm
g0 = 2p·5.2 MHz

l = 685 nm
gQ = 2p·3.5 Hz

Figure 2.  Diagram of the levels involved in the laser cooling of Cs atoms 
in a field resonant to the quadrupole optical transition 62S1/2 (F = 4) ® 
52D5/2 (F = 6). The straight line indicates induced transitions, the wavy 
arrows show spontaneous transitions.
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proportional to the dimensionless parameter u. Castin and 
Dalibard [20] analysed sub-Doppler cooling within the frame-
work of the atom model with the Fg = 1/2 ® Fe = 3/2 levels in 
the lin ̂  lin configuration of the field degenerate in the angular 
momentum projection, the minimum kinetic energy of the 
laser cooling of atoms being Ekin –~ 30'wr. Outside the frame-
work of the secular approximation u  << |d|/ g (see work [20]), 
laser cooling also depends on the detuning of the light field and 
on the semi-classicality parameter er [25]. However, at extremely 
small values er << 1 and sufficiently large ‘red’ detunings, 
when the kinetic energy of cold atoms reaches its minimum, 
the results agree quite well with those obtained in [20].

Following the definitions of papers [20, 25], we presented 
an analysis of laser cooling of atoms, considering the light 
shift parameter u (18) for various detunings d. The results are 
given for two polarisation configurations of the light field, 
s+ – s– and lin ̂  lin.

3.1. Laser cooling using a E2 transition in the s+ – s– 
configuration of the field

Figure 3 shows the results of calculating the kinetic energy 
of cold atoms in the spatial configuration s+ – s– of the field 

for various detunings d of the light field as functions of the 
dimensionless parameter u (18). The attainable kinetic energy 
of atoms is represented in units of recoil energy. Note that 
the interaction of atoms with photons of the field resonant to 
the E1 or E2 transition is characterised by different recoil 
energies: 'w0r = 0.1 mK for the E1 transition and 0.15 mK for 
the E2 transition (see Fig. 2). For the Е1 transition in the 
s+ – s– configuration of the field (Fig. 3b) the minimum value 
of the kinetic energy of cold atoms is reached at large red 
detunings |d| ³ 10 g0, when the solution tends to a universal 
dependence on one parameter u, which was also observed 
with  laser cooling in the lin ̂  lin configuration of the field 
[20, 25]. In this case, the minimum kinetic energy of cold 
atoms is Ekin –~ 100'w0r (which corresponds to 10 mK in 
temperature units).

For laser cooling using a light field resonant to the E2 
transition, the dependence of the attainable kinetic energy of 
cold atoms on the light field parameters significantly changes. 
The minimum energy is reached at small detunings (d –~ – g) 
and is Ekin –~ 10'wr (~1.5 mK in temperature units). Note that 
at detunings |d| < g, it is possible to attain slightly lower 
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Figure 3.  Kinetic energy of cold atoms in units of recoil energy in the 
s+ – s– configuration of the field resonant to (a) quadrupole and (b) electric 
dipole transitions as a function of the dimensionless parameter u (18).
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Figure 4.  Momentum distribution of cold atoms in the s+ – s– configu-
ration of the field in units of the recoil momentum 'k in fields resonant 
to (a) quadrupole and (b) electric dipole transitions for the light field 
parameters corresponding to the minimum kinetic energy of the atoms 
(Fig. 3): (solid curves) d = –g, W (2) –~ 0.7g for cooling using the E2 tran-
sition and d = –10 –~ g0, W  –~ g0 for cooling using the E1 transition, as well 
as (dashed curves) an approximation by the Gaussian function.
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energies in the limit of low intensities (small u), but at given 
small detunings, the energy of cold atoms increases rapidly 
with increasing intensity of the light field (Fig. 3a).

Figure 4 shows the momentum distribution of cold atoms 
with light field parameters corresponding to the minimum 
values of kinetic energy: Ekin –~ 10'wr for laser cooling by a 
field resonant to the E2 transition, and Ekin –~ 100'w0r for 
laser cooling by a field resonant to the E1 transition. The 
momentum distribution of cold atoms is nonequilibrium; 
therefore, it cannot be characterised in terms of temperature. 
The dashed lines show the optimal approximation of the 
momentum distribution by the Gaussian function with T  –~ 
2.7 mK for the E2 transition and T  –~ 13 mK for the E1 transi-
tion. In general, the use of the E2 transition for laser cooling 
in the s+ – s– spatial configuration of the field can lead to a 
deeper cooling of the atoms.

3.2. Laser cooling using a E2 transition in the lin ̂  lin 
configuration of the field

Figure 5 shows the results of calculating the kinetic energy of 
cold atoms in the lin ̂  lin spatial configuration of the field 
for various detunings of the light field as functions the dimen-
sionless parameter u (18). In accordance with the results of 

work [20, 25], it can be seen that for the considered E1 transi-
tion with Fg = 1 ® Fe = 2, laser cooling at large detunings is 
characterised only by the parameter u (18) and depends little on 
detuning when the secular approximation condition u  << 
|d|/ g0 is met [20]. The minimum kinetic energy of cold atoms 
is Ekin –~ 20'w0r, and the momentum distribution (Fig. 6b) is 
well approximated by a Gaussian function with T  –~ 3.5 mK.

The dependence of the kinetic energy of cold atoms using 
the E2 transition in the lin ̂  lin configuration of the field 
(Fig. 5a) is similar to that obtained in the s+ – s– configura-
tion of the field (Fig. 3a). The minimum kinetic energy of 
cold atoms, Ekin –~ 7.6'w0r, is reached in the region of small 
detunings (d = –g). In this case, the temperature obtained by 
approximating the momentum distribution by the Gaussian 
function (Fig. 6a) is ~2 mK, which is only slightly lower than 
that for the E1 transition.

4. Conclusions

We have examined the possibility of ultra-deep laser cooling 
of alkali atoms using a narrow quadrupole optical transi-
tion  2S1/2 – 2D5/2 between the hyperfine structure levels with 
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Figure 5.  Kinetic energy of cold atoms in units of recoil energy in the 
lin ̂  lin configuration of the field resonant to (a) quadrupole and (b) 
electric dipole transitions as a function of the dimensionless parameter 
u (18).
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Figure 6.  Momentum distribution of cold atoms in the lin ̂  lin con
figuration of the field in units of the recoil momentum 'k in fields 
resonant to (a) quadrupole and (b) electric dipole transitions for the 
light field parameters corresponding to the minimum kinetic energy of 
the atoms (Fig. 5): (solid curves) d = –g, W (2) ~–  0.5 g for cooling using 
the E2 transition and d = –10 g0, W  ~–   0.5 g0 for cooling using the E1 
transition, as well as (dashed curves) an approximation by the Gaussian 
function.



	 A.A. Kirpichnikova, O.N. Prudnikov, D. Wilkowski448

Fg = F ® Fe = F + 2. The attainable energies of an ensemble 
of cold atoms are analysed on the basis of a numerical solu-
tion of the equation for an atomic density matrix with full 
allowance for quantum recoil effects in the interaction of 
atoms with photons of a light field. Based on the one-dimen-
sional problem, for the lin ̂  lin and s+ – s– configurations of 
the light fields formed by orthogonally polarised counter-
propagating waves, we have employed for caesium atoms a 
simplified model of optical transitions with Fg = 1 ® Fe = 2 (E1) 
and Fg = 1 ® Fe = 3 (E2) to calculate the minimum attainable 
values of kinetic energies and to estimate the temperatures.

It is shown that the use of a quadrupole transition allows 
one to cool atoms to energies equivalent to several recoil ener-
gies. Note that the recoil energy 'wr produced by an atom 
when a photon is absorbed by a field resonant to the E2 tran-
sition is slightly higher than the recoil energy 'w0r in a field 
resonant to the E1 transition. This makes it impossible to 
obtain significantly lower laser cooling temperatures than 
those reached by standard methods using an electric dipole 
E1 transition in the lin ̂  lin configuration of the field.

Note that the attainable kinetic energy of cold atoms dur-
ing laser cooling using the E2 quadrupole transition in the 
lin ̂  lin and s+ – s– configurations of the fields has similar 
dependences on the parameters of the light fields. Its smallest 
value is reached at small (d  –~ – g) detunings, in contrast to 
laser cooling in fields resonant to the E1 transition. Also 
during cooling using the E1 transition, there is a significant 
dependence of the results on the selected polarisation configu-
ration of the light field, which is explained by the manifestation 
of various polarisation mechanisms of sub-Doppler cooling 
in the lin ̂  lin and s+ – s– configurations of the fields. Slight 
differences in the results of laser cooling using the E2 transi-
tion in fields with different polarisation configurations, as 
well as the failure to reach temperatures below the Doppler 
limit (determined by the natural width of 2D5/2), demonstrate 
the low efficiency of the sub-Doppler polarisation mecha-
nisms of laser cooling in fields resonant to the E2 quadrupole 
transition.

A significant difference between the studied laser cooling 
schemes using light fields resonant to the E1 or E2 transitions 
is observed in the s+ – s– spatial configuration of the fields. 
Such configurations of light fields are used for laser cooling of 
neutral atoms in a magneto-optical trap, where the lin ̂  lin 
configuration of the field does not lead to the formation of a 
magneto-optical potential. In this connection, laser cooling of 
alkali atoms using a quadrupole transition can be promising as 
the second stage for deeper laser cooling in a magneto-optical 
trap.
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