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Abstract.  Analytical expressions are obtained for the constants 
determining the energy of the long-range (at large distances exceed-
ing the LeRoy radius RLR » 4n2) polarisation interaction of the 
multipole electric moments of two atoms in identical Rydberg states 
with large principal (n) and maximum orbital (l ) and magnetic (m) 
quantum numbers (|m| = l = n – 1). Asymptotic expansions in pow-
ers of n are found for the components of the van der Waals interac-
tion tensor, which determine the dependence of the dispersion 
energy on the orientation of the interatomic axis. The spontaneous 
and thermally induced broadenings of the energy levels of circular 
states are represented analytically as functions of the principal 
quantum number and temperature. It is found that analytical for-
mulae for the sum of spontaneous and thermally induced line widths 
in the region of high temperatures and large principal quantum 
numbers (assuming n3kBT >> 1) do not contain a temperature-inde-
pendent contribution of the spontaneous part of the broadening. 
Closed analytical expressions are also obtained for the 
Farley – Wing function and for the n- and T-dependent corrections 
to the asymptotic behaviour of the thermally induced shift.

Keywords: atom, Rydberg states, interatomic interaction, Van der 
Waals constant, thermal radiation, shift, width of energy levels.

1. Introduction

The infinite set of Rydberg atom/ion states is of considerable 
interest for the implementation of quantum methods of ultra-
fast computation and information processing [1 – 3]. The cur-
rently existing sources of laser radiation make it possible not 
only to cool atoms deeply and to hold them in electromag-
netic traps, but also to excite these atoms into precisely 
defined states with given quantum numbers. In this case, the 
states with small orbital angular momenta l have a specific 
energy structure characteristic of atomic particles of each spe-
cific chemical element, and states with large angular momenta, 
in particular, circular states with the maximal angular 
momentum l = n – 1 for a fixed principal quantum number n, 
are practically similar for all atoms. This is because the 
Rydberg electron with large orbital angular momentum is 
held in a stationary state by a field that almost coincides with 
the field of a point charge. The main quantitative characteris-
tic of the energy of a single-electron state in an atom is the 

quantum defect. For states with l > 5, it differs little from 
zero, regardless of the structure of the residual ion of any 
chemical element. Therefore, highly excited circular states 
with a maximum projection of the orbital angular momentum 
onto a preferred direction (the quantisation axis) are identical 
to the corresponding state of the hydrogen atom described by 
the Coulomb wave functions. This circumstance allows con-
sidering the Rydberg circular states of all atoms based on the 
quantum theory of the motion of an electron in a Coulomb 
field. Thus, all the results of calculations of the energy of pair 
interaction of two neutral atoms, spontaneous and thermally 
induced widths, as well as thermal radiation-induced shifts of 
energy levels of circular Rydberg states presented in this 
paper are valid and can be used for any atoms and ions of 
almost all chemical elements.

The efficiency of controlling quantum transitions in 
Rydberg states can be significantly limited (or, on the con-
trary, enhanced) by the influence of interatomic forces and 
effects of interaction with external electromagnetic fields that 
change the energy spectrum of bound states of atomic parti-
cles. Therefore, information about the change in the energy 
spectrum induced by these effects is of considerable interest 
for the development of quantum technologies using atoms in 
highly excited states. In particular, the interatomic interaction 
shifts the energy levels of Rydberg states, almost completely 
blocking the possibility of radiative excitation of atoms sur-
rounding one of the atoms of the ensemble, already excited by 
resonant radiation. Such an effect, in the literature referred to 
as the Rydberg blockade, seems promising, e.g., for designing 
quantum logic gates [2].

In addition to interatomic interaction, a significant impact 
on the energy levels of Rydberg atoms can be due to the ubiq-
uitous thermal radiation of the environment, referred to as 
black body radiation (BBR), in the spectral distribution of 
which there are not only the frequencies of resonance transi-
tions between bound states of atoms, but also frequencies 
exceeding the ionisation threshold. The interaction with pho-
tons having such frequencies stimulates the induced processes 
of decay, excitation, and ionisation, leading to an additional 
broadening of the energy levels in comparison with their nat-
ural width. In addition, the interaction of the atom with the 
BBR causes a dynamic Stark level shift, to which photons 
give their contribution at all frequencies, including nonreso-
nant frequencies that do not affect the broadening.

This paper presents the results of quantum-mechanical 
calculations of the quantitative characteristics of the most 
important phenomena affecting the structure of circular 
Rydberg atomic states. Section 2 presents the first-order per-
turbation theory of interatomic interaction for quantitative 
calculations of the energy of a long-range polarisation multi-

Interatomic interactions and thermally induced shifts  
and broadenings of energy levels of atoms in circular Rydberg states

A.A. Kamenski, V.D. Ovsiannikov, I.L. Glukhov

https://doi.org/10.1070/QEL17000

A.A. Kamenski, V.D. Ovsiannikov, I.L. Glukhov Faculty of Physics, 
Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, 
Russia; e-mail: ovd@phys.vsu.ru	

Received 12 March 2019; revision received 18 March 2019	
Kvantovaya Elektronika  49 (5) 464 – 472 (2019)	
Translated by V.L. Derbov



465Interatomic interactions and thermally induced shifts and broadenings of energy levels 

pole – multipole interaction of atoms at large distances R > 
RLR (where RLR » 4n2 is the LeRoy radius [4]). In Section 3, 
the energy of the dispersion interaction of virtual dipole 
moments arising in the intermediate states of the matrix ele-
ments in the second-order perturbation theory is calculated. 
For the van der Waals constant C6 (n, q), which describes the 
most important contribution of DEvdW (n, q, R) = –C6 (n, q)/R6 
to the energy of dispersion interaction, the asymptotic depen-
dence on the principal quantum number of the circular state 
is determined for the tensor C6 (n, q) components. Analytical 
expressions are obtained for the coefficients of the expansion 
of C6 (n, q) in powers of cosq, where the angle q determines the 
direction of the interatomic axis relative to the orbital angular 
momentum of the atom.

Section 4 presents analytical expressions for the spontane-
ous width and thermally induced broadening of the energy 
levels of highly excited circular states. An exponential decrease 
in the contributions to the broadening from excitations of 
high bound states and transitions to the continuous spectrum 
(ionisation) is demonstrated. An explicit expression is 
obtained for the total level width, which takes into account 
the contributions of all spontaneous and thermally induced 
transitions. The correction to the well-known Gallagher –
Cooke formula [5, 6] is calculated, which is proportional to 
the square of the ratio of the energy of transitions between 
adjacent bound states |En – En ± 1| » Z2/n3 to the BBR thermal 
energy kBT. In Section 5, the energy shift of the Rydberg cir-
cular state in the field of the BBR is calculated. An analytical 
expression for the Farley – Wing function ( )yF  is found in the 
form of an alternating series of odd powers of the argument y, 
which makes it possible to determine the numerical value of 
( )yF  with a given accuracy in a wide range of numerical val-

ues of y.
Below in the text of the paper, unless otherwise specified, 

the atomic system of units e m 1'= = =  is used, in which the 
velocity of light numerically coincides with the reciprocal of 
the fine structure constant, c = a–1 = 137.036, the BBR tem-
perature is expressed in kelvins, the Boltzmann constant kB is 
determined by the ratio 1/Ta of atomic unit of energy to 
atomic unit of temperature Ta = 315776 K.

2. Polarisation interaction of atoms

2.1. Asymptotic interaction operator

The operator VABt  of electrostatic interaction of two neutral 
atoms A and B in states with nonzero orbital angular 
momenta LA and LB at large distances, R > RLR, can be rep-
resented as a sum
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Here, the contribution of each of ZA(ZB) electrons, described 
by its radius-vector rr n( ) ( ) ( )A B A B A Bi i i=   relative to the nucleus 
(n ( )A B i  is the unit vector directed from the nucleus to the ith 
electron) of the atom A(B). Each term in sum (1) is an opera-

tor of the interaction of electric moments of atoms A and B 
with the multipolarity 2LA  and 2LB :
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Here we use the conventional notation of the quantum theory 
of angular momentum for scalar and tensor products [7]; and 

( ) /( ) ( )C L Yn n4 2 1L Lp= +m m  is a modified spherical func-
tion that determines the dependence of the multipole interac-
tion on the angular variables of the vector n = R/R, directed 
from atom A to atom B (Fig. 1). 

2.2. First-order perturbation theory for the asymptotic 
interaction of two Rydberg atoms

In the first-order perturbation theory with respect to interac-
tion (1), (3), the energy shift in the system of two atoms 

E ( )
AB
1D = | ( )|ABV ABRABG Ht  is determined by the sum of the 

contributions of the even electric multipole moments  
| |Q C nl r nlL

l L
2

0 2G H= l L02 0   (in fixed parity states, the matrix 
elements of odd moments are zero). Let the wave function 
árA, rB |ABñ = árA |Añ árB |Bñ determine the state of the system 
consisting of two noninteracting atoms A and B in their sta-
tionary states árA(B)|A(B)ñ = árA(B) |nA(B) lA(B) mA(B)ñ with the 
principal quantum numbers nA(B), angular momenta lA(B) ³ 1, 
and magnetic quantum numbers mA(B). Then
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Here, as in Eqn (3), L = LA + LB and we use the generally 
accepted notation for the Clebsch – Gordan coefficients  Ca b

c
a b
g  

and Legendre polynomials P2L(cosq) = C2L 0(q, j). The even 
parity of polynomials corresponds to the fact that energy (4) is 
independent of the choice of direction on the interatomic axis:

R R( ) ( )E E( ) ( )
AB AB
1 1D D= - .

The calculation for the circular state using the Coulomb 
wave functions yields the dependence on the principal quan-
tum number n ³ 2 and the interatomic distance R for the first 
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q q
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Figure 1.  Atoms in similar circular states with maximum magnetic and 
orbital quantum numbers, l = |m| = n – 1, at a distance R from each 
other. The angle between the interatomic axis and the quantisation axis 
(the unit vectors n and a, respectively) is q.
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nonvanishing term of the expansion in powers of 1/R, which 
corresponds to the quadrupole – quadrupole interaction 

( , ) ( 1)
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2 2
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For states with n ³ 3 in sum (4) the following term appears, 
which determines the interaction energy of quadrupole and 
hexadecapole electric moments Q ( )A B
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This energy is of the order of 4n4/R2 with respect to the quad-
rupole – quadrupole term (5). This ratio, which is equivalent 
to the ratio of the mean square of the orbit radius of the 
Rydberg electron án|r2|nñ µ n4 to the square of the distance R 
between the atoms, is sufficiently small when R > RLR » 4n2. 
The next term of the order 1/R9, corresponding to hexadeca-
pole – hexadecapole and quadrupole – 26-pole interactions,
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is about 12n8/R4 relative to the energy DE2 –2(R). Thus, in the 
region of interatomic distances R > RLR, shifts (5) – (7) form 
a decreasing sequence, so that the main contribution to the 
first-order energy (4) is given by term (5), corresponding to 
LA = LB = 1. 

The number of terms on the right-hand side of Eqn (4) is 
determined by the number of contributions to E ( )

AB
1D  from the 

interaction energy of even electric moments with multipolar-
ity 22q, where q = 1, 2, . . . , l = n – 1. In this case, the maximum 
order of the multipole moment of the circular state is 22n – 2, 
and the corresponding power of R in the denominator of the 
fraction in Eqn (4) is 4n – 3. The condition of applicability of 
the long-range approximation for n = 100 is satisfied when 
R > RLR » 4 ´ 104 a.u. » 2.12 microns. At this distance, the 
value of E ( )

AB
1D  < 1 GHz. Such a detuning is quite enough to 

reduce the probability of resonant excitation of the Rydberg 
state by five to six orders of magnitude. It should be borne in 
mind that the individual terms of shift (4) disappear at the 
nodes of the polynomials P2L(na). It should also be noted that 

E ( )
AB
1D  completely disappears after averaging over orienta-

tions of the radius vector R.

3. Dispersion interaction of atoms  
in circular states

3.1. The second-order perturbation theory for interatomic 
interaction

In the second order of perturbation theory, the shift of the 
diatomic energy
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is determined by a matrix element with two interaction opera-
tors (1) and a reduced diatomic Green function, which 
includes sums over bound states and integrals over the states 
of the continuous spectrum of noninteracting atoms:
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The infinitely small imaginary value in the denominator of 
the fraction denotes the rule for circumventing singularities 
on the real energy axis.

The Green function (9) substituted in Eqn (8) takes into 
account the matrix elements of all virtual multipole transi-
tions from LA(B) = 1 to infinity with the same parity of LA(B) 
and L'A(B) in both operators ( )V RL LA B

t  of the second-order 
matrix element. Therefore, the shift ( )E R( )

AB
2D  decomposes 

into a series (8) in even powers of the parameter 1/R. The 
main contribution to ( )E R( )

AB
2D  comes from the term of the 

first nonvanishing order in 1/R, i.e., ( )E R( )
AB
2D  » ( )C n( )

6
2

-  
´ R–6, where the van der Waals constant   ( ) ( )C n n( )

6
2

11 11e=  
determines the interaction of virtual electric dipole moments 
of atoms A and B. From the general relation between the 
coefficients of the series, the inequality n2/R < 1 follows, 
determining the region of convergence of series (8), which is 
consistent with the inequality R > RLR for the first-order 
correction (4).

After integrating over angular variables of Rydberg elec-
trons, the van der Waals constant can be represented as a 
polynomial in powers of the cosine of the angle q between the 
quantisation axis and the interatomic axis (Fig. 1) [8]:

C6(n, q) = B0(n) + B2(n)cos2q + B4(n)cos4q.	 (10)

The coefficients Bk(n) of polynomial (10) are linear combina-
tions of diatomic radial matrix elements of the second order 
dependent on n and having the form [8]

BBA A| ( ; ) |AB r r g r r r r r r ABA B
AB

A Bl l G Hr = l l l l l ll ll l ll .	 (11) 

3.2. Asymptotic dependence of the van der Waals constant  
on the principal quantum number of the Rydberg circular state

The explicit form of combinations of matrix elements (11), 
which determine the irreducible components of the van der 
Waals interaction tensor (10), can be obtained using standard 
methods of the quantum theory of angular momentum [7]. 
The most efficient tool for numerical calculations of l lr l ll  is 
the spectral decomposition of the radial Green function 

BA( ; )g r r r rAB
A Bl l l ll ll  in the complete set of vectors in the subspace 

of diatomic states with orbital angular momenta 1l l !=l  
and l =ll  1l ! , similar to the decomposition of the Green 
function (9). Then the matrix element (11) can be expressed as 
sums over the discrete spectrum states and integrals over the 
continuous atomic spectra:
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Numerical calculations of these matrix elements show 
that the terms of the series for the states of the discrete spec-
trum rapidly decrease with increasing differences n n-l  and 
n n-ll . When n >> 1, the contribution of the discrete spec-
trum states with n n 102-l  and n n 102-ll  becomes pro-
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portional to exp(–2n) for each of the two series (12) and 
does not affect the result of summation up to the fifth or 
sixth decimal digit. Similarly, the contribution of the inte-
grals over the states of the continuous spectrum of both 
atoms is small, too. As the calculation shows, the van der 
Waals constant is positive for circular states with n < 6, 
which corresponds to van der Waals attraction, and nega-
tive for n = 6 and all n ³ 8 regardless of the angle q, which 
corresponds to the repulsion of atoms in circular states with 
the indicated principal quantum numbers. The sign of the 
constant C^(n = 7) = C6 (n = 7, q = p/2) changes from nega-
tive to positive with increasing angle q from zero to p/2 with 
a node at q0 = 34.17°, for which the van der Waals interac-
tion disappears, turning into repulsion for q < q0 and into 
attraction for q > q0. Figure 2 shows the dependence on n 
for the transverse, C^(n) = C6 (n, q = p/2), and longitudinal, 
C||(n) = C6 (n, q = 0) components of the van der Waals con-
stant normalised to the asymptotic dependence C6 (n, q) µ 
n12 in the region of small values of the principal quantum 
numbers of circular states (4 £ n £ 14). 

According to the ‘Bethe rule’ [9], the maximum values of 
the dipole matrix elements in the right-hand side of Eqn (12) 
án + 1l + 1|r |nl ñ » án – 1l – 1|r |nl ñ » n2 correspond to the 
adjacent values of the principal and orbital quantum numbers 
n ± 1 and l ± 1, simultaneously decreased or increased by 
unity with respect to the quantum numbers of the circular 
state. Therefore, the main contribution to sum (12) is made by 
the intermediate states | 1 1n n l l! ! H= =l l  and | 1n n l!=ll ll 

1l ! H=  close to |nl ñ. For n >> 1, the approximate equality 
En – 1 + En + 1 – 2En » –3/n4 holds true. Thus, the matrix ele-
ments with l l 1!=l , 1l l "=ll , i.e.,   rl +1l – 1 = rl –1l + 1 » 
–2n12/3 have the largest numerical absolute values. These val-
ues make the main contribution to the expansion coefficients 
of the van der Waals constant (12). Asymptotic values of the 
irreducible parts

B0 » –n12/24,   B2 » n12/4,   B4 » –3n12/8	 (13)

determine the dependence of C6 (n, q) on the principal quan-
tum number n >> 1 and the angle q of the form

( , ) (1 3 ) ( )cosC n n O n
246

12
2 2 11q q=- - + .	 (14)

The expression in parentheses, which depends on the direc-
tion of the interatomic axis, vanishes at the ‘magic’ value of 
the angle q = qm » 54.7°, which satisfies the condition cos2qm 
= 1/3. Note that the angle qm corresponds to the node of the 
Legendre polynomial P2(cosqm) = 0. In this case, the absolute 
value of the constant C6 (n, qm) decreases significantly, remain-
ing proportional to n11 (Fig. 3).

To determine the value of C6 (n, qm) in the vicinity of 
angles q » qm, one can use the expansion of the coefficients of 
polynomial (10) in powers of n, taking into account the terms 
of the 11th, 10th, 9th, etc. powers of n. These expansions can 
be obtained from the corresponding expressions for the 
amplitudes and transition energies summed in expressions (8), 
(9) and (12). Analytical calculations allow expressions (13) to 
be written with the terms proportional to n11 and n10 taken 
into account in the form [8]

B0 » 
.n

n n24
1 3 33 212

2- - +c m ,  B2 » 
.n

n n4
1 6 14 512

2- +c m ,

B4 » 
.n

n n8
3 1 5 0 7912

2- - -c m .	 (15)

Experimental observation of the above dependences of 
the van der Waals constant on the direction of the interatomic 
axis seems possible when ultracold atoms are placed in a dc 
electric or magnetic field, which not only specifies the direc-
tion of the quantisation axis, but also significantly increases 
the lifetime of circular Rydberg states [1]. The practical imple-
mentation of this possibility is favoured by a higher degree of 
dependence of the constant C6 (C6 µ n12) on n, as compared 
to the dependence on n for the shifts in electric and magnetic 
fields, determined by the polarisability an µ n6 for the qua-
dratic Stark effect and by the Zeeman effect, linear in the 
magnetic quantum number |m| = n – 1, respectively.

4. Natural and thermally induced  
width of the circular state energy level

4.1. Natural width

The spontaneous width of the circular state |nlñ energy level is 
determined by the probability of a dipole radiative transition 
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Figure 2.  Van der Waals constants ( 1 ) C^ = C6 (n, q = p/2)/n12  and ( 2 ) 
C|| = C6 (n, q = 0)/n12 normalised to the asymptotic dependence C6(n, q) 
µ n12.
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Figure 3.  Dependences of the van der Waals constant on the angle q for 
circular states from the shell with n = ( 1 ) 16 and ( 2 ) 100. Near the 
magic angle qm = 0.31p, the absolute value of the constant decreases by 
n times, which corresponds to the transition from the asymptotics of C6 
µ n12 to the asymptotic behaviour of C6 µ n11.
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to the nearest state | 1 1n n l l H= - = -l l  with the emission of 
a photon with the frequency nnw =l E En n- l  » Z2/n3. Here 
and below, Z is the charge of the residual ion equal to unity 
for a neutral atom. The general expression for the probability 
of a dipole radiative transition [9] after integrating over angu-
lar variables and summing over polarisation directions of a 
spontaneously emitted photon and over the projections of the 
orbital angular momentum of the Rydberg electron final state 
can be presented as

( )
( )

| 1 1| | |
c n

n
n l r nl

3 2 1
4 1sp

n
nn
3

1
3

2G Hw
G =

-

-
- -- .	 (16)

Substituting the expressions for the frequency wn n – 1 = Z2 ´ 
(2n – 1)/[2n2(n – 1)2] and the radial matrix element án – 1l – 
1|r |nl ñ into the right-hand side of Eqn (16), we obtain
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As seen from this expression, the natural width of the Rydberg 
circular state Gn

sp » 2Z4/(3c3n5) » 2.6 ´ 10–7Z4/n5 is approxi-
mately n2 times smaller than the widths Gn

sp » 1.3 ´ 10–7 f (n, l ) 
´ Z4/(n3l 2) of states with small orbital angular momenta l = 
1, 2, . . ., which facilitates the ‘survival’ and the possibility of 
practical use of states with maximum orbital momenta from a 
hydrogen-like shell with a fixed n. The factor f (n, l ) smoothly 
depends on l, almost coinciding with the unity,  f (n, l ) » 1, for 
small l, and slowly increasing with the growth of l, so that for 
large values of the orbital angular momentum   f (n, l ) ® 2 
when l ® n >> 1 [9, 10]. Rydberg states possess a high sensitiv-
ity to weak external fields, including the field of environment 
blackbody radiation (BBR). Therefore, when determining the 
frequencies and widths of the lines of radiative transitions 
from Rydberg states, it is necessary to take into account the 
interaction of the atom with the field of the BBR.

4.2. BBR-induced transitions into bound states 

Thermal radiation induces temperature-dependent shifts and 
broadenings of atomic levels, which can be identified with the 
real and imaginary parts of the Stark energy. In the tempera-
ture ranges that are interesting for practical use, for estimat-
ing the Stark energy of the interaction of an atom with a ther-
mal radiation field, it is sufficient to restrict ourselves to 
effects, quadratic in the field strength E, due to the polaris-
ability of atomic levels. Because of the randomness of the 
directions and polarisations of the thermal radiation acting 
on the atom, this energy
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s
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e
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a w wD G
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is determined only by the scalar part of the dipole dynamic 
polarisability tensor [11], which can be represented as a super-
position of second-order radial matrix elements [12]:
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Here ( ) /l l l 1 2= + +2 l  is the larger of the two angular 
momenta l and ll. The real and imaginary parts of the radial 

Green function can be extracted from the spectral expansion 
over the complete set of free atom states using the Sokhotski 
relation for the resonant terms:

rH( ; ) |g r r r n l n li
l
E
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0nl G HG=
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Together with the sum over the states of the discrete spec-
trum, the integral over the continuous spectrum of atomic 
states with positive energy e > 0 and orbital angular moment 
ll is also present here. Then the real part of the Stark energy 
(18) is presented as the principal value of the integral over the 
frequency of thermal radiation, denoted by the symbol P .

Using the Planck distribution for the energy density of 
thermal radiation, the square of the electric field strength at 
the frequency w can be presented as

( )
{ [ /( )] }exp

E T
c k T 1

8
B

2
3

3

p
w

w
w

=
-

.	 (21)

The imaginary part of energy (18) is determined by the total 
probability of radiative transitions induced by thermal radia-
tion from the circular state to the states of discrete and con-
tinuous spectra. The frequencies of such transitions are deter-
mined by the arguments of the Dirac d-functions in the right-
hand side of Eqn (20). In particular, the term corresponding 
to the radiative decay and zeroing the argument of the Dirac 
d-function at the thermal photon frequency w = Enl – En – 1 l – 1 
= wn n – 1 appears in the Green function ( ; )g r ri

l
E 0nl w- + ll  with 

the orbital moment l l 1= -l . In this case, the probability of 
thermally induced decay

( , )n Td sp
n n nn 1wG G= -y 	 (22)

differs from probability (17) of spontaneous transition to a 
circular state from a neighbouring shell with 1n n= -l  by the 
factor

	 ( , )
[ /( )]exp

n T
k T 1
1

nn
nn B

1
1

w
w=

--
-

y ,	 (23)

that determines the number of thermal photons (occupation 
number or population) of the Planck distribution at the fre-
quency wn n – 1 » Z2/n3. Function (23) can be considered as the 
relative probability of the induced radiative decay of a bound 
state of an atom with a transition to a lower energy level:  
( ) ( ) / ( , ) .R T T n Td d sp

n n n nn 1wG G= = -r  An important feature of 
this function of the principal quantum number and tempera-
ture at wn n – 1/(kBT) » Z2/(n3kBT) << 1 is the inverse propor-
tionality to the square of the charge of the residual ion. 
Therefore, the relative decay rate Rn

d(T ) µ 1/Z2 of highly 
excited ion states is reduced by a factor of Z2 in comparison 
with the similar characteristic of neutral atoms.

The asymptotic (for n3kBT/Z2 >> 1) expression for the 
probability of thermally induced decay can be written in the 
form

( ) ( / ) ( / )T
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where

( )Q x x x x x x1
4
3
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5
2 3 4 5

= + + + + -

is a polynomial of the fifth order. The expansion in powers of 
1/n in the first term in brackets proportional to temperature 
arises as a result of the product of the asymptotic expansions 
of the spontaneous width (17) and the transition frequency 
wn n – 1 = Z2(2n – 1)/[2n2(n – 1)2]. The temperature-independent 
term –Gn

sp/2 appears due to the series expansion of population 
(23) in powers of the exponent argument: (expx – 1)–1 = 1/x 
– 1/2 + x/12 – x3/720 + . . ..

In contrast to decay with emission of a photon and atomic 
transition (both spontaneous and induced) to a state with 
lower energy, an atom exposed to the thermal radiation can 
also absorb thermal photons and experience induced transi-
tions to bound states with higher energy. Such states with 
n n2l  and orbital angular momenta l l 1!=l  are present in 
the expansion of the Green function ( ; )g r ri

l
E 0nl w+ + ll  (20). The 

delta functions of the imaginary part select from the integral 
(18) the frequencies of thermal radiation photons that coin-
cide with the frequencies of transitions of the atom to the 
upper bound states: E En n n nw w= = -l l . Thus, the total 
probability of excitations takes the form

,

nl
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/ ,	 (25)

where the summation spans the entire infinite set of bound 
states with the principal quantum numbers n n 1H +l  and 
orbital angular momenta , 2l n n= -l . Analytical expressions 
for radial matrix elements of transitions to states with 
n n p= +l  ( p = 1, 2, . . .)

| 1| | | 4
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show that for n >>   1 the terms of the series in (25) with the 
intermediate angular momentum l l 1= +l  are approximately 
4n2( p + 1)/p times the corresponding terms of the series with  

1l l= -l , in accordance with the Bethe rule [9]. In this case, 
the next term in both series (for l l 1!=l ) is approximately 
2n/p times smaller than the previous one, so that the series in 
Eqn (25) converges rapidly for all values of temperature T. In 
particular, for n = 5 to determine the probability of excita-
tion with the accuracy to the fifth decimal point it is suffi-
cient to take into account the terms of the series with  n 30Gl

; to obtain the accuracy to the seventh digit, it is enough to 
take into account 150 terms in the sum over nl. For n = 10 
and the required accuracy of the fifth and seventh digits, it is 
enough to take into account the contributions from the terms 
with n 261l  and n 851l , respectively. For n = 100, it suf-
fices to take into account no more than five and seven terms 
that determine the sum of the series in Eqn (25) with relative 
errors of 10–5 and 10–7, respectively. This acceleration of con-

vergence is associated with the rapid decrease in the radial 
matrix elements of the dipole transition |n "H  |n n pH= +l , 
whose dependence on the principal quantum number of the 
circular state for large values of n and p (n =l  n + p > >  n >>  1) 
becomes proportional to exp(–2n):

| 1| | |n l r nl 2G H+l  » 4 | 1| | |n n l r nl2 2G H-l  
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where

| 0 1| | |l r nl 2G He = +  » ( 2 )exp
Z
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p
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+

	 (28)

is the matrix element of the threshold ionisation transition to 
the zero-energy continuum state. For the same reason, the 
contribution ( )Tion

nG  of the probability of ionisation transi-
tions to the continuous spectrum states to the total probabil-
ity of excitations of states with energy Eexc > En   becomes 
exponentially small [10], and at n > 10 does not affect the first 
seven decimal digits of the value that determines the total 
width Gn

tot(T ) = Gn
sp(T ) + Gn

d(T ) + Gn
e(T ) + Gn

ion(T ) of the 
circular Rydberg state.

Using analytical expressions for the radial matrix ele-
ments (26) and the transition frequencies n nw l , we can obtain 
the asymptotic representation similar to (24) for the probabil-
ity of thermally induced excitation (25) in the form
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(29)

Formulae (24) and (29) show that in the total probability  
( )Ttot

nG  of spontaneous and thermally induced transitions, 
the temperature-independent component Gn

sp disappears, 
leaving only temperature-dependent terms. Moreover, in the 
sum Gn

d(T ) + Gn
e(T ), the polynomial Q5(1/n) also disappears, 

leaving the coefficient of the term proportional to the tem-
perature to be strictly equal to unity. Thus, if the condition 
Z2/(n3kBT) << 1 is satisfied and the exponentially small prob-
ability of thermally induced ionisation is not taken into 
account, the total width of the circular Rydberg energy level 
can be presented as

( ) ( ) ( ) ( )T T T Ttot sp d e
n n n nG G G G= + +
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6
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Here all terms of the expansion of the matrix elements (26) 
and the frequencies n nw l  in powers of the small parameter 1/n 
<< 1 up to 1/n7, as well as of the exponents present in Eqns 
(23) and (25) for thermally induced widths in powers of the 
small argument h = Z2/(n3kBT) up to h3 are taken into account. 
At T = 100 K and n = 15, the second term in the brackets in 
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Eqn (30) does not exceed 0.1 for a neutral atom (Z = 1), and 
its contribution decreases proportionally to h2. Thus, for h < 
1, the total (spontaneous and thermally induced) width of the 
energy level of the circular state coincides with the asymptotic 
expression Gn

BBR(T) = 4Z2kBT/(3c3n2) for the thermally 
induced width [5, 6] with a relative accuracy of the order of 
h2/12.

4.3. Ionisation of the circular state induced by BBR 

The imaginary part of the integral over the continuous spec-
trum energy in expression (20) for the radial Green function 
g 0i
l l
E

1
nl

!
w

=
+ +

l  at the frequency w > |Enl| is a product of the wave 
functions of the continuum states with the energy e = Enl + w:

	 ( ; ) | |Im g r r r l l ri
l
E 0nl G HG Hp e e=

w+ + l l l ll6 @ .	 (31)

This product corresponds to the imaginary part of the 
dynamic polarisability (19), which determines the ionisation 
cross section of the state |nlñ by photons of thermal radiation:
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Thus, the ionisation component of the thermally induced 
broadening can be presented as
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E

2

nl ps w
w

w
wG = y ,	 (33)

where the fraction in the integrand determines the flux of the 
BBR photon number density [13].

The results of numerical calculations for Rydberg states 
with small orbital angular momenta l << n (for S-, P-, D- 
and F-states of alkali metal atoms [13]) show that the asymp-
totic dependence of the ionisation component of the ther-
mally induced broadening ( )Tion

nlG µ n–7/3 on the principal 
quantum number is remarkably different from the depen-
dences on n of the total probability of thermally induced 
transitions ( ) ( )T Td e

nl nlG G+  µ n–2 to the states of the discrete 
spectrum. For states with large values of the orbital angular 
momentum, 1 << l £ n – 1, the difference between the con-
tributions to the thermally induced broadening from transi-
tions to the continuum and discrete spectrum states increases 
substantially.

For transitions from highly excited circular states with 
n >> 1 to the states of continuous spectrum, one can get sim-
ple analytical expressions that demonstrate the exponential 
decrease in matrix elements with the growth of n:
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where W = w/|En| is the energy of an ionising photon in units 
of binding energy. The exponential decrease in the matrix ele-
ments is ‘transferred’ to the ionisation cross section sn(w) µ 
exp(–2n) [10] and then to the ionisation width (33). Therefore, 
the contribution of ( )Tion

nlG  to thermal broadening   ( )TBBR
nlG  

turns out to be smaller than the errors of numerical calcula-
tions of the probabilities of decay (24) and excitations of 
bound states (29) already at n > 5.

5. Thermally induced shift  
of the circular state energy

The real part of the energy shift (18) after substituting expres-
sions (19) – (21) into the integrand in the right-hand side of 
Eq. (18) can be represented as
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The integration over the frequency of thermal radiation in 
this expression is conveniently represented in the form of the 
Farley – Wing function, introduced in Ref. [6]:
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Using this function, the energy shift (35) can be written as
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The arguments in the function F  here are determined by the 
energy ratios of discrete – discrete and discrete-continuous 
transition energies to the thermal energy of the BBR. 

Function (36) is the Cauchy principal value for the inte-
gral having a pole singularity of the logarithmic type. It is a 
smooth odd function of its argument that automatically takes 
into account the singularities of the integrals over the fre-
quency of thermal radiation and over the states of the con-
tinuous spectrum in Eqn (20). Using the transformation of 
the integrand, function (36) can be presented in the form, for 
which a closed analytical expression exists [14]:

( ) /3 2 [ ( )]Re iy y y yF 2 3p F=- - ,	 (38)

where
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y(x) = d{ln[G (x)]}/dx is the logarithmic derivative of the 
gamma function. Putting z = ± i|y| + d for d ® +0, we obtain
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To determine the real part of the function y in this expression, 
it is possible to use the expansion in series [15]
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where g = 0.5772156649 is the Euler constant. Expanding the 
terms of this series in powers of the ratio y2/(4p2k2) and per-
forming summation over k, we obtain the formal expansion 
of the Farley – Wing function into a power series in odd pow-
ers of the argument:
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where ( )s k
1

s

k
z =

3 -

=
/  is the Riemann zeta function [14, 15]. 

The formal radius of convergence of the alternating series in 
Eqn (41) is determined by the inequality |y | < 2p.

When |y | > 5 the exponential function in the denominator 
of the integrand in Eqn (36) significantly reduces the contri-
bution to the integral from the singularity point x = y and 
from the entire region x > y. In this connection, to estimate 
the integral, it suffices to expand the integrand in a series in 
powers of the ratio x2/y2 < 1 and use analytical expressions of 
improper integrals of each term. As a result, we obtain an 
asymptotic expansion of function (36) in odd powers of the 
inverse argument, which can be represented as
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The presence of factorial in the terms of this series indicates 
its asymptotic character. Since all the terms in this expansion 
are positive, the maximum accuracy for estimating ( )yF  at a 
given y can be provided by Nmax < |y |/2 terms. Numerical 
estimates show that the four terms in the series, written out 
explicitly in Eqn (42), determine the value of function (36) 
with an accuracy of six decimal places in the region |y| > 30.

Attention should be paid to the substantial quantitative 
and qualitative differences in the procedures and results of 
numerical calculations of the sums of an infinite series over 
the states of the discrete spectrum and the integrals over the 
continuous spectrum in Eqn (37). A detailed analysis of the 
contributions of discrete states and the continuum to the sum 
of oscillator strengths, the sum of oscillator strength moments, 
and to thermally induced shifts of states with small orbital 
angular momenta is presented in [10, 12, 16]. For circular 
states with large n, the contribution of the continuous spec-
trum is determined by the exponentially small matrix ele-
ments (34) of the ionisation transition. Therefore, taking into 
account the integral over the continuous spectrum practically 
does not change the result of the calculation of shift (37), 
obtained only by summing up several terms of the series over 
the states of the discrete spectrum.

For the shift, as well as for the broadening of the energy 
levels of the Rydberg circular state, we can offer a polynomial 
approximation that significantly expands the range of use of 
the asymptotic approximation en

BBR(T) = p(kBT)2/(3c3) [6], 
which determines shift (37) with an accuracy of up to three or 
four decimal places, provided that 1/h = n3 kBT /Z2 > 100.

An expression applicable for smaller values of the princi-
pal quantum number n and temperature T can be obtained 
using the polynomial approximation [12]

( )
300 K

T T a a x a x( ) ( ) ( )BBR
n 0

2

0 1 2
2e e= + +

e e e
` ^j h,	 (43)

where e0 = p(kB 300 K)2/(3c3) = 2416.65 Hz is the asymptotic 
(for n3 kBT > 100) thermally induced shift value at room tem-
perature T  = 300 K. The argument of the quadratic polyno-
mial in Eqn (43) can be presented as a combined parameter
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n k T
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B B
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To determine the coefficients   a ( )i
e , we used the method of 

polynomial interpolation of the results of numerical calcula-
tion of the energy shift (43) with n = 15, 60 and 150 for tem-
peratures T = 100, 300 and 1000 K. This dependence can be 
approximated by the polynomial

( )
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a T
k T

b( )
( )

B
i j

ij

j 0

2

=
e

e

=

/ ,   i = 0, 1, 2,	 (44)

in which the coefficients b ( )ij
e  are constants, the numerical val-

ues of which are presented in Table 1. 

6. Conclusions

The results of the analytical calculations of the shifts and 
broadening of the energy levels of circular states obtained in 
this paper provide important information about the effect of 
interatomic interactions and interactions with BBR on the 
spectral characteristics of highly excited Rydberg atoms. The 
choice in circular states is due to the possibility of analytical 
calculations of the interatomic interaction constants, as well 
as thermally induced broadening and a shift in the energy lev-
els of states with large principal quantum numbers. The pro-
portionality to the 12th power of the principal quantum num-
ber is demonstrated for the components of the van der Waals 
constant, which determine the dependence of the long-range 
interaction on the orientation of the interatomic axis.

The probability of ionisation of circular states by the BBR 
field appears to be exponentially small. For states with n > 
10, the ionisation contribution to the broadening of the 
energy levels does not exceed 10–6 of the contribution of ther-
mally induced transitions to the bound states. The tempera-
ture-independent terms of the probabilities of induced BBR 
transitions arising from the expansion in powers of small 
parameters 1/n and h = Z2/(n3kBT ) completely compensate 
for the contribution of the spontaneous width sp

nG  to the total 
width (30). Therefore, for large values of the paramete 1/h = 
n3kBT/Z2 in the expression for the total width of the energy 
level of the circular state, only the terms that are directly pro-
portional to temperature and inversely proportional to its 
integer powers, remain. In this case, the coefficient of the term 
linear in T, i.e., 4Z2kBT/(3c3n2), is exactly equal to unity and 
has no corrections depending on n. The second nonvanishing 

Table  1.  The coefficients bij
(e) of polynomial approximations (43) and 

(44) for thermally induced shifts of the energy levels of circular Rydberg 
states (35).

i bi0
(e)       bi1

(e) bi2
(e)

0 1 1.085 ´ 10–7 – 1.726 ´ 10–10

1 1.165 ´ 10–4 7.287 ´ 10–9 5.234 ´ 10–10

2 –3.145 ´ 10–4 –2.675 ´ 10–7 –3.109 ´ 10–10
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term in brackets in Eqs (30), which determines the total width 
( )Ttot

nG , is proportional to the parameter h2 multiplied by the 
asymptotic series in the parameter 1/n, and contributes a cor-
rection proportional to h2/12 to the unit coefficient.

Along with hydrogen-like atoms and ions, all multielec-
tron atoms have circular states. Therefore, the results of the 
calculations are applicable to almost any atom or ion of any 
chemical element.
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