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Abstract.  The thermodynamic equilibrium is studied for a system 
of quantised vortices in superfluid liquids in the presence of a coun-
terflow of the normal and superfluid components. The partition 
function is calculated, which takes into account various configura-
tions of the vortex filaments, as well as the distribution of loops in 
length. The dependence of the density of vortex filaments on the 
applied counterflow velocity is discussed.

Keywords: quantum vortices, superfluid liquid, Gibbs distribution, 
partition function.

1. Introduction

In our previous paper [1], we discussed chaotic vortex fila-
ments, or quantum turbulence, in superfluid liquids and in 
Bose – Einstein condensate (BEC) excited by the counterflow 
of the normal and superfluid components. One of the dis-
cussed aspects of the quantum turbulence theory was the 
extraordinary complexity of this problem from the point of 
view of theoretical study and the need for some particular 
approach to the general problem. An important approach is 
the study of thermodynamic equilibrium in a system of quan-
tised vortices in superfluid helium and in BEC in the case of a 
counterflow of the normal and superfluid components. It 
should be emphasised that this problem is important and 
interesting in itself, but from the point of view of turbulence, 
it is also necessary to clarify a number of aspects of the struc-
ture and dynamics of a vortex tangle.

2. Statement of the problem. The discussion  
of the results

This paper describes the dynamics of a vortex filament under 
the action of a random Langevin force in superfluid helium 
and in BEC in the presence of a counterflow with a relative 
velocity uns = un – us. This formulation of the problem is moti-
vated by the fact that ordinary quantum turbulence develops 
in a counterflow of superfluid helium without random mixing 
due to the development of instabilities. Therefore, it is impor-
tant to compare both mechanisms of generation of a vortex 
tangle. Let us choose the equation of motion of the elements 

of the vortex line in superfluid helium in the form (see, for 
example, [2])

( , ) ( , ) ( , ) ( ( , )) ( , ) .t t t t ts s s si s n s ix x a x x xu u u z#= + + - - +o o o o 	(1)

Here, ( , )ts x  are the radius vectors of the elements of the vor-
tex line; ( , )tsi xo  is the self-induced velocity; and a is the fric-
tion coefficient. The quantity ( , )tsi xo  is related to the geo-
metric shape of the line [2]. The Langevin force z(x, t) is 
introduced into the equation of motion of the filament ele-
ments (1), which simulates the thermal effect from the ther-
mostat.

Vortices in BEC are usually examined based on the study 
of a macroscopic wave function that obeys the nonlinear 
Schrödinger equation. The historical aspects of the discovery 
and study of BEC in ultracold atomic gases are described, for 
example, in reviews [3, 4]. The theoretical problems of the 
BEC dynamics are presented in the well-known book of 
Pitaevskii and Stringari [5]. In the domestic literature, rele-
vant studies (both theoretical and experimental) are described 
in Refs [6 – 8].

For the centre line of the vortex in BEC, one can obtain an 
equation similar to relation (1) from [9]. We confine ourselves 
to the study of thermodynamic equilibrium; therefore, we 
assume that the correlation function for the Langevin force 
z(x, t) satisfies the fluctuation – dissipation theorem [10, 11]:
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The Fokker – Planck equation for the time evolution of the 
functional of the probability distribution P({s(x)}, t) = ád(s(x) 
– s(x, t))ñ can be obtained from the equation of motion (1) in a 
standard way (see, for example., [11]):
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It was shown in [12] that equation (3) has a solution in the 
form of the Gibbs distribution:
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Here, N is the normalisation factor and b = 1/kBT. The 
Hamiltonian H{s} with a nonzero relative velocity uns has the 
form

H{s} = E{s} – P(un – us). 	 (5)

Here the energy E{s} and the Lamb momentum P{s} are 
defined (see, for example, [13]) as
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In ordinary statistical mechanics, if P is the true momen-
tum of a particle (or a quasi-particle), the validity of equa-
tions (4) and (5) is obvious and follows from Galilean trans-
formations. Since, for vortices, the Lamb momentum P is not 
a ‘real’ pulse, the validity of relations (4) and (5) is obtained 
from the exact solution of the Fokker – Planck equation (3).

Relations (1) – (3) should be used to calculate the partition 
function and, accordingly, to determine the various proper-
ties of the vortex tangle. By definition [14, 15] the partition 
function has the form
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Here the expression

{ ( )} ( )s s j j
j

x x='
is a set of different loops. The sum symbol implies a contribu-
tion from all possible configurations of each of the loops of 
length l, summation over all loops with different lengths l, 
and integration over the starting points of each loop. Of 
course, it is not possible to list all continuous curves. Usually 
some discrete analogues are used, for example, lattice models 
or a polymer chain model (or their combination), in which the 
number of line configurations increases with its length as 
exp[C(l/a)]. Here, the constant C ~ 1, its exact value is deter-
mined by the used model. For example, for a three-dimen-
sional cubic lattice, C = ln(2D – 1) (D is the dimension of 
space). The value of a is the parameter of the model length. 
For a model with a cubic lattice, this is a cube edge, and for a 
polymer it is an elementary step. In the case of quantum vor-
tices, the quantity a coincides with the coherence length and 
can be taken as the size of the radius of the vortex core (for 
more details, see [14, 15]).

The computed total number of different configurations, 
exp[C(l/a)], should be limited to the choice of specific con-
figurations that fit our task. For example, if we consider 
closed loops of length l, then the total number of configura-
tions exp[C(l/a)] must be multiplied by the probability p(l ) 
of obtaining this configuration. The latter problem relates to 
the physics of polymers, and therefore, the vortex filaments 
possess the topology of polymer chains. It is known that the 
probability p(l ) can be written in the form of an integral 
over trajectories in the following manner (see, for example, 
[16]):
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Here, the quantity a/l eliminates the degeneracy associated 
with the choice of starting points on the loop in the functional 
integral. The Gibbs factor has the form
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The parameters u and w are introduced for convenience. 
Below we will use u and w equal to unity (u = 1, w = 1).

In addition to the configuration factor (8) and the Gibbs 
factor (9), it is necessary to add summation over all loops of 
different lengths l and integration over the initial points rstart 
of each loop, i.e.

( ) .d dn l lrstart yy 	 (10)

In one important case, the so-called local approximation 
case, the energy can be expressed as E = eVl (here, eV is the 
energy per unit length). Then the configuration factor (8) and 
the Gibbs factor (9) are combined as follows:
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It can be seen that for such independent strings the partition 
function diverges at a certain temperature and there occurs a 
phase transition. The corresponding temperature TH is called 
the Hagedorn temperature [14, 15] and is defined as

T
k C
a

H
B

Ve= . 	 (12)

The continuum integral (11) is Gaussian, and the partition 
function can be calculated exactly. This problem coincides 
with the problem of the motion of a charged particle in a con-
stant magnetic field [15]. Performing the procedures described 
in [15], we arrive at the expression for the partition function:
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Using (13), we determine the average energy and momentum:
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Given that in the local approximation the energy is propor-
tional to the length, these formulae make it possible to find 
the density of vortex filaments or the total length per unit vol-
ume. Using the obtained partition function, we calculate the 
structural factors of quantum turbulence, for example, the 
average polarisation of the vortex loops that make up the vor-
tex tangle in a counterflow of He II, as well as the anisotropy 
and average curvature. These factors of quantum turbulence 
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were previously obtained only numerically in [2]. It is interest-
ing to compare the data on the equilibrium properties of a 
vortex tangle, which can be obtained on the basis of the for-
malism developed here, with those on quantum turbulence.

We describe some physical effects that follow directly 
from relation (13). Expanding the expression in square brack-
ets in degrees of the relative velocity uns and using only the 
terms of the second order, we obtain
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Thus, the partition function contains a term independent 
of the relative velocity uns, as well as a term proportional to 
the square of this quantity. The first term describes simply 
thermodynamically equilibrium vortices in helium at rest. 
The problem of thermodynamic quantum vortices in helium 
at rest was previously investigated under various assump-
tions. The most popular were the studies in which vortex fila-
ments were considered to be ideal rings (see, for example, 
[17 – 19]). Another direction, a numerical study of similar 
problems, was to perform calculations for topological defects 
(see, for example, [20]). Quantum vortices in BEC can be 
studied by using a macroscopic wave function obeying the 
nonlinear Schrödinger equation. The analysis is reduced to an 
elegant, albeit complex mathematical apparatus for studying 
the zeros of a fluctuating macroscopic wave function. Recall 
that the vortex lines in BEC are a locus of points at which the 
wave function vanishes. Examples of such studies can be 
work [21, 22]. In these papers the following results were 
obtained. The density L of the vortex filaments at the 
Hagedorn temperature TH is a value of the order of the coher-
ence length, that is, L ~ (1/a)2. Then, L exponentially 
decreases with decreasing temperature. Formulae (13) and 
(14) show that our results are in qualitative agreement with 
those presented above.

Of particular interest is the second term on the right-hand 
side of formula (5), which contains the relative velocity uns = 
un – us. This term is an order of magnitude smaller than the 
first term; therefore, the density of vortices is much lower. 
The structure of the corresponding set of vortex loops is very 
close to what is called superfluid turbulence. An important 
factor is that the density of the vortex lines in this case depends 
on the square of the relative velocity: L µ u2ns. This is a well 
established experimentally and numerically fact (see, for 
example, [23, 24]). According to our data, no theoretical 
methods for obtaining this dependence are still known. Our 
result has been obtained, however, for the thermodynami-
cally equilibrium case, and it is not yet clear how it relates to 
the case of quantum turbulence. This question, as well as 
other questions concerning the relationship of thermody-
namic equilibrium with a turbulent flow, is of great interest 
and will be investigated in the future.

3. Conclusions

Using the Langevin formulation of the problem, the dynam-
ics of a vortex filament is described in terms of the thermody-
namic equilibrium of the vortex system. The corresponding 
Gibbs distribution depends on both the energy and the 
momentum of the vortex loops. The partition function is cal-
culated, which includes the configurational distribution of the 
vortex lines. A preliminary analysis of the partition function 

leads to the conclusion that there are two types of vortex fila-
ments. These are thermodynamic vortices generated by ther-
mal fluctuations and hydrodynamic vortices associated with 
the presence of a counterflow.

In their structure, hydrodynamic vortices resemble a vor-
tex tangle, which is observed in the case of quantum turbu-
lence.
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