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Abstract.  A scheme is proposed for implementing a hydrogen-mol-
ecule quantum simulator based on two ultracold rubidium atoms 
trapped into spatially separated optical dipole traps. The scheme 
includes the adiabatic preparation of the initial quantum state of 
two atoms and the iterative quantum phase estimation. The accu-
racy of measuring the ground state energy of a molecule is numeri-
cally calculated as a function of the number of iterations. The simu-
lation is performed using two-qubit gates based on the dipole block-
ade effect under short-term excitation of atoms into the Rydberg 
states with allowance for the finite lifetime of Rydberg states and 
the finite energies of the van der Waals interaction.

Keywords: ultracold rubidium atoms, hydrogen molecules, quantum 
simulator.

1. Introduction 

Quantum simulation of complex physical systems is one of 
the most interesting problems of modern physics [1, 2]. The 
main problem of such a simulation on a classical computer is 
the exponential growth of the required computational 
resources with an increase in the complexity of the simulated 
system. In this regard, in recent decades, methods for the 
implementation of quantum simulators have been actively 
developing.

There are two types of quantum simulators [3]. The so-
called analogue quantum simulators are artificial quantum 
systems consisting of separate quantum objects. The interac-
tion between them is described by the operators similar to the 
interaction operators in more complex physical systems. The 
main difficulties in designing such simulators are associated 
with the need to find suitable artificial systems and select their 
parameters, which would be feasible for describing real condi-

tions of an experiment. Another type is the so-called digital 
quantum simulators similar to quantum computers. In such 
simulators, algorithms for estimating the phase of an arbi-
trary unitary matrix are used, allowing one to find its eigen-
values. If a propagator for any physical system is chosen as a 
unitary operator, it is possible to find the energy eigenvalues 
of the corresponding Hamiltonian.

The advantages of digital quantum simulators consist in 
their versatility, and also in the wide possibilities of their 
application, in particular, in the field of quantum chemistry 
[4]. The main problem of quantum chemical calculations is to 
find the possible structure and properties of individual mole-
cules or molecular formations. This problem can be reduced 
to the search for energies of various states of a molecule, or, 
in other words, to the search for eigenvalues of a certain uni-
tary operator. In particular, the known-to-date algorithms 
for finding the molecule eigenstates are based on the phase esti-
mation algorithm (PEA) proposed by Abrams and Lloyd [5].

The main difficulties in the development of digital quan-
tum simulators are primarily related to the limited accuracy 
of the two-qubit gates required for quantum phase estima-
tion. In addition, the decomposition of unitary operators of 
arbitrary dimension, which is necessary for simulation of 
complex multi-particle systems, is a nontrivial mathematical 
problem [2].

One of the promising approaches to the implementation 
of quantum simulators is the use of cold atoms in arrays of 
optical dipole traps. Such arrays can be used to design both 
analogue and digital quantum simulators, which were 
described in detail in [3, 6]. A quantum simulator consisting 
of 51 cold rubidium atoms in a one-dimensional array of 
optical dipole traps was demonstrated in [7]. Examples of 
modern analogue simulators and their possible applications 
were discussed in detail in [8]. At the same time, the problem 
of low accuracy of the two-qubit gates remains relevant for 
atomic systems, which complicates the implementation of 
digital quantum simulators. In this regard, of great interest 
at this stage is the implementation of a simplest digital quan-
tum simulator that can be developed on the basis of two 
neutral atoms trapped in spatially separated optical dipole 
traps.

2. Algorithms of quantum phase estimation

The simplest example of the implementation of a digital 
quantum simulator is the determination of the binding energy 
of the ground state of the hydrogen molecule. Du et al. [9] 
solved experimentally this problem by the Aspuru-Guzik 
method [10] with the use of nuclear magnetic resonance. To 
find the solution to this problem, it is sufficient to use two 
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qubits: the state of one of them encodes the ground state of 
hydrogen molecule, while the second qubit serves to measure 
the phase. The authors experimentally used the adiabatic 
state preparation (ASP) method and iteratively measured the 
phase, thereby receiving 45 significant bits of data.

Following work [9], we used an STO-3G minimal basic set 
for the 1s orbital [11]. At a distance of 1.4 a.u. between the 
nuclei of atoms in the hydrogen molecule, the Hamiltonian 
matrix (in atomic units) has the form [9]:
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As shown in Fig. 1a, the phase estimation algorithm [5, 10] 
uses two quantum registers: the state register S, into which the 
wave function of the system state | y ñ is being written, and the 
readout register R needed for storing intermediate informa-
tion and obtaining the eigenvalues of the energy E. We denote 
the states of the register R as | n ñ. The Hamiltonian Hmol of 
the system in question is used to generate a unitary evolution 
operator

| ( ) | ( ) |exp expi iU H 2mol py t y j y= - =t t .	 (2)

By measuring the phase j, one can find the eigenvalue of the 
Hamiltonian (the system energy) Emeas = –2pj/t. To this end, 

we sequentially, in a controlled manner, apply the operators 
( )exp iU Hmolk

2kt= -t t  to the register S and ultimately obtain 
the following system state:

77| | ( ) | |exp iR S n n2
n

p j y=/ .	 (3)

Then we perform the inverse quantum Fourier transform 
with the register R and measure its state. This allows us to 
evaluate the phase with arbitrary accuracy. Note that the reg-
ister state is measured only once.

This algorithm can be implemented even if the register R 
consists of a single qubit (Kitaev’s phase estimation algo-
rithm, Fig. 1b) [2, 12]. After a controlled unitary transforma-
tion, the two-qubit system passes to the state 

0 1(1/ ) [| (2 ) | ] |exp i2 p j y+ . The system after the 
Hadamard gate is in the state

0 1( ) | | ( ) | |exp expi i
2
1 1 2

2
1 1 2p pj y j y+ + -6 6@ @ .	 (4)

The probability of finding the controlled qubit in the 
state ‘0’ is P = cos2(pj). By measuring the probability P, one 
can find the phase j. Instead of a single measurement of the 
state of a multi-qubit register, multiple measurements of the 
state of a single qubit are required to attain the prescribed 
accuracy.

A distinctive feature of the Aspuru-Guzik algorithm [10] 
shown in Fig. 1c is its recursiveness, allowing one to signifi-
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Figure 1.  (a) General scheme of quantum phase estimation, (b) Kitaev’s quantum phase estimation algorithm [2, 12] using a single controlling qubit, 
(c) Aspuru-Guzik phase estimation algorithm [10], and (d) adaptive phase estimation scheme using a single measurement of the controlling qubit at 
each iteration step [13]. Here H is the Hadamard gate; ( )exp iU Hmolt= -t t ; ( )exp iU Hmolk

2kt-=t t ; FT+ is inverse quantum Fourier transform; and 
RZ(wk) is the qubit rotation around the Z axis by the angle wk.
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cantly reduce the number of qubits in the register R, while 
attaining the required accuracy in phase estimation. In origi-
nal paper [10], it was proposed to use four qubits in register R, 
as shown in Fig. 1c. In the first step, the operator U U0 =t t  is 
applied to the register S. This allows one to estimate the phase 
j with an accuracy of 15/16. After that, a unitary transforma-
tion 

) ]U[ ( 2exp iU 1k k k 1
2p= - - -jlt t 	 (5)

is performed at each iteration step. Here j'k – 1 is the lower 
boundary of the phase estimate obtained at the previous step. 
Thus, at each subsequent iteration step, the next significant 
bit is measured. Du et al. [9] used the Aspuru-Guzik algo-
rithm for the register R consisting of one qubit. In their work, 
they measured three bits at each iteration step, with each iter-
ation step leading to an increase in the accuracy by one bit.

An interesting method of iterative phase estimation was 
proposed in [13]. Its advantage is that each next significant bit 
can be obtained as a result of a single measurement of the 
state of an auxiliary qubit. The phase estimation scheme is 
shown in Fig. 1d. In contrast to the above-considered schemes, 
the measurement starts from the low-order bit of the phase. 
Each iteration includes a single measurement of the state of 
the controlling qubit. Before the measurement, its state is 
adjusted by means of the phase shift RZ(wk) in order to take 
into account the results of previous measurements. 

In accordance with the notation adopted in the mono-
graph by Nielsen and Chuang [2], we represent the phase j as 
a sequence of m bits,  j1... jm, in the form: j = 0. j1j2... jm = 
j1/2 + j2/4 + ... + jm /2m. At the first iteration of the algo-
rithm, a controlled transformation ( )exp iU Hm mol

2mt= -t t  is 
performed (here we put wm = 0). The probability of obtaining 
the ‘0’ result when measuring the state of the first qubit is P0 = 
cos2[p(0.jm)], since all the high-order bits of the phase do not 
affect the result of measurements due to periodicity of the 
complex-valued exponent. Since jm  takes only two possible 
values, it can be measured only once.

The next step is the controlled rotation, ( )exp iU Hm
2 1m

= -
-t t . 

The system state after its implementation, due to periodic-
ity of the complex-valued exponent, can be represented as 
follows: 0(1/ ) [|2 +  1(2 0. ) | ] |exp i m m1p j j y- . In order to 
exclude the already measured bit jm from the problem we 
perform rotation of the control qubit  RZ(wm – 1) by the 
angle wm – 1 = –2p(0.0jm), as shown in Fig. 1d. As a result, 
after performing the Hadamard gate, the probability of 
finding the controlling qubit in the ‘0’ state is P0 = cos2[p(0.
jm – 1)], which allows us to determine the value of the bit jm 

– 1 as a result of a single measurement.
All subsequent bits are measured in the same way. As 

shown in [13], the accuracy of this algorithm is equal to the 
accuracy of the standard measurement based on the inverse 
quantum Fourier transform of the register consisting of 
m bits.

3. Adiabatic preparation of the initial qubit state

Quantum phase estimation algorithms require the controlled 
qubit to be initially prepared in the eigenstate | y ñ of the 
Hamiltonian Hmol

t . To this end, the method of adiabatic prep-
aration of initial state can be used [9, 10]. Initially, the qubit is 
prepared in the state 0 1(1/ ) (| | )2 - , which is an eigenstate 
for the matrix

0
1
1
0xs = e o.

Let the auxiliary Hamiltonian

( ) 1H t T
t

T
t Had molxs= - +t t` j 	 (6)

describe a slow evolution of the system Hamiltonian from 
sx to Hmol

t  during the time T expressed in dimensionless 
relative units. If the system dynamics is described by the 
evolution operator | ( ) |exp iU H tady y= -t t , the qubit will 
remain in the eigenstate of the Hamiltonian Had

t  and ulti-
mately find itself in the eigenstate of the Hamiltonian 
Hmol
t . The evolution of the system state during the time T 
can be divided into M steps. The transformation of the 
qubit state at each step m is described by the evolution 
operator

( ) exp expi iU t M
m T

M
m T H1

2ad mol
m

xsD D
= - - -t tb l: :D D

	 ´ exp i M
m T1

2 xsD
- -b l: D .	 (7)

Here DT = T/M, and m takes values from 1 to M. The evolu-
tion operator can be represented as a sequence of single-qubit 
rotations by using the Trotter formula [14] 

[ ( )]exp lim exp expt A B A n
t B n

t
n

n

+ =
"3

t t t ta ak k: D ,	 (8)

and the basis expansion ( )Tr H2
1 s/H mol i imol s= i

t t/ , where i = 
0, x, y, z.

The accuracy of initial state preparation can be defined 
as  |á yad | y ñ| 2, where | yad ñ  is the state obtained as a result of 
adiabatic preparation. The numerically calculated depen-
dence of the accuracy on the number of steps at T = 18.4 and 
M = 51 is shown in Fig. 2. The numerical error did not 
exceed 10–2.
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Figure 2.  Numerically calculated dependence of initial state accuracy of 
a qubit on the number of iterations in the case of adiabatic state prepa-
ration.
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4. Scheme of quantum simulation using ultracold 
neutral rubidium atoms

In quantum simulation of the hydrogen molecule, we con-
sider two rubidium atoms trapped in spatially separated opti-
cal dipole traps formed by tightly focused laser beams [15]. 
The long-lived superfine sublevels of the ground state of 
atoms are used as the logical states ‘0’ and ‘1’ of qubits. 
Single-qubit gates with ultracold neutral atoms can be imple-
mented using microwave radiation or two-photon optical 
Raman transitions between the superfine sublevels of the 
ground state of atoms. Such gates were demonstrated with 
high accuracy in [16, 17].

The interaction of a two-level system with resonant laser 
radiation can be described by the matrix [18]:

( ),
cos

sin

sin

cosie

ie
R 2

2

2

2
i

i

q c

q

q

q

q=
c

c-J

L

K
K
K

N

P

O
O
O
.	 (9)

Here, the angle q is given by the laser pulse area, and the 
angle c is given by its phase. The values c = 0 and c = p /2  cor-
respond to the qubit rotations by the angle q around the X 
and Y axes, respectively. All single-qubit gates required for 
adiabatic preparation of the initial state and transformation 
of the states of individual qubits during the iterative phase 
estimation can be reduced to a sequence of X- and Y-rotations.

The main difficulty is to implement controlled two-qubit 
unitary operations. To this end, the scheme shown in Fig. 3, 
similar to that proposed by us in work [18 – 20], can be used. 
In that scheme, the dipole blockade effect is employed, which 
consists in the impossibility of simultaneous excitation of 
closely spaced atoms into the Rydberg states [21].

If the controlling atom is initially in the ‘1’ state and is not 
excited by a laser p-pulse ( 1 ) to the Rydberg state | r ñ, the 
result of a sequence of laser p-pulses ( 2 – 6 ) is the transforma-
tion described by matrix (9). If the controlling atom is initially 
in the ‘0’ state, it is excited to the state | r ñ with the laser pulse 
1. Due to dipole blockade which excludes the excitation of 
both atoms to collective states | rr' ñ or | r'r ñ, the action of 
pulses 2 – 6 is ineffective. Then the controlling atom returns to 
its initial state under the action of laser pulse 7. In order to 
exclude an undesirable phase shift during sequential excita-
tion and de-excitation of Rydberg states, the sign of Rabi fre-
quencies of pulses 5, 6, 7 is opposite compared to that of 
pulses 1, 2, 3. This corresponds to the phase shift of laser radi-
ation by p, as shown in Fig. 3.

Experimental implementation of this scheme requires the 
choice of states | r ñ, | r' ñ, | r'' ñ strongly interacting with the 
simultaneous excitation of two atoms to collective states | rr' ñ 
and | rr'' ñ. As an example, consider the states | r = 81S ñ, | r' = 
80S ñ, and | r'' = 82S ñ. The main contribution to the interac-
tion of atoms in the states | 81S, 80S ñ is made by Fӧrster reso-
nance | 81S, 80S ñ ® | 80P3/2, 80P3/2 ñ with an energy defect of 
–161 MHz [22]. The van der Waals interaction energy for this 
channel is U = 4750 GHz mm6. The main contribution to the 
interaction of atoms in the states | 81S, 82S ñ is made by Fӧrster 
resonance | 81S, 82S ñ ® | 80P3/2, 81P3/2 ñ with an energy defect 
of 110 MHz. The van der Waals interaction energy for this 
channel is U = –7350 GHz mm6. Thus, the energy shift imped-
ing laser excitation exceeds 100 MHz already at an inter-
atomic distance of 4 mm or less. The energy gap between the 
80S and 82S states constitutes 27.9 GHz. Two-photon transi-
tions between these states can be implemented using micro-

wave radiation which does not affect the controlling atom in 
the 81S state.

For numerical simulation of this experiment, we decom-
posed the unitary transformation ( )exp iU Hm

2 1m

t= -
-t t  as a 

sequence of X- and Y-rotations by the given angles calculated 
separately for each iteration step. In the calculations, we took 
into account the finite lifetime of the Rydberg states 80S (t = 
208 ms), 81S (t = 214 ms), and 82S (t = 221 ms) at a tempera-
ture of 300 K [23] and the finite energies of the van der Waals 
interaction at a distance of 8 mm between the optical dipole 
traps. To simulate the measurement process, we calculated 
the probability of finding the controlling qubit in the ‘0’ state 
and took its state for ‘0’ if the obtained probability exceeded 
0.5. Note that for all bits except the low-order one, the numer-
ically calculated probability is close either to 0 or 1 for each 
iteration step.

Figure 4 shows the numerically calculated dependence of 
the relative error |(E – Emeas)| /E in determining the binding 
energy of the ground state of the hydrogen molecule on the 
number of iterations of the phase estimation algorithm. 
Here E is the eigenvalue of the matrix Hmol

t , and Emeas is the 
result of numerical simulation using the quantum algorithm. 
The step-wise nature of the dependence is due to the fact 
that the accuracy changes only when the next measured sig-
nificant bit turns out equal to 1. Accounting for the finite 
lifetime of Rydberg states and finite energy of the van der 
Waals interaction does not lead, at the chosen experimental 
parameters, to the deterioration of the calculation accuracy 
which is only determined by the number of iterations. Our 
calculations show that the relative error does not exceed 
10–14 at 50 iterations. We neglect the finite accuracy of one-
qubit gates, and also the effect of the finite width of the laser 
radiation line, finite lifetime of intermediate excited states 
(when using, for example, two-photon laser excitation of 
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Figure 3.  Scheme of controlled qubit rotation for two ultracold atoms 
in optical dipole traps. Laser p-pulses 1, 2, 3, 5, 6, and 7 excite and de-
excite Rydberg states with individual addressing to particular atoms. 
Microwave pulse 4 has an arbitrary area and phase. 
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Rydberg states), motion of atoms, and parasitic electric and 
magnetic fields.

An interesting feature of the results obtained is that the 
algorithm sensitivity to errors in performing the two-qubit 
rotations has a threshold character. This is due to the dis-
creteness of the measured qubit state at each iteration step. 
If the probability of finding a qubit in the state ‘0’ falls into 
the interval between 0.5 and 1, in the case of a single mea-
surement it can be detected in the state ‘1’, which leads to a 
computational error. The finite lifetime of Rydberg atoms 
and finite energies of the van der Waals interaction lead to 
a decrease in the probability of a correct measurement of 
the qubit state. In our calculations, at a distance of 8 mm 
between the atoms, the probability of erroneous measure-
ment of the state of a single bit (except for the three low-order 
bits) does not exceed 2 %. These errors can be easily elimi-
nated at the expense of several additional measurements at 
each iteration step.

5. Conclusions

We have proposed a scheme for the implementation of a 
quantum simulator of the hydrogen molecule using two ultra-
cold atoms in optical traps. The scheme is based on the adia-
batic state preparation and iterative quantum phase estima-
tion with a single measurement of the final state of the atom 
at each iteration step. The advantage of this iterative method 
is that each iteration step requires a single measurement of the 
quantum state of a controlling qubit. The accuracy of mea-
suring the ground state energy of the molecule is numerically 
calculated as a function of the number of iterations. In our 
simulation, the adiabatic preparation of the initial state is pre-
sented as a sequence of one-qubit rotations around the X and 
Y axes. To implement the quantum phase estimation algo-
rithm, we have proposed a scheme for performing controlled 
rotations using the dipole blockade effect under the excitation 
of two atoms to Rydberg states. The calculations show that 
accounting for the finite lifetime of Rydberg levels and the 
final energies of the van der Waals interaction makes it pos-
sible to attain a high accuracy of the molecule energy mea-

surement (the relative error does not exceed 10–14 at 50 itera-
tion steps).

Experimental implementation of this algorithm is of inter-
est for demonstrating the simplest digital quantum simulator 
based on ultracold neutral atoms. The most significant limita-
tion of this approach is associated with the need for individ-
ual selection of parameters of controlled rotations for each 
iteration step within the phase estimation algorithm. An alter-
native to this selection is the use of the Trotter formula [14], 
which requires a sharp increase in the number of two-qubit 
gates, and ultimately leads to a decrease in accuracy [3].
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