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Abstract.  The conversion rate of nuclear spin isomers of water mol-
ecules in space is calculated using the model of quantum relaxation 
in the absence of particle collisions. The model is based on the intra-
molecular mixing of the ortho and para states of H2O by the spin-
rotation interaction and on the interruption of the mixing by radia-
tive transitions of a molecule in a thermal radiation field. The life-
time of water isomers at a thermal radiation temperature T = 50 K 
is ~2 ́  107 years, and at a temperature T = 100 K it is 3 ́  106 years. 
The lifetimes of the spin isomers of water molecules are found to be 
large, but still smaller, for example, than the age of the Solar 
System. The proposed process of conversion of the spin isomers of 
water molecules is important for areas of space with low (n < 
1 cm–3) particle concentrations.

Keywords: spin isomers of water molecules, ratio of ortho and para 
states of molecules in space, Solar System, interstellar space.

1. Introduction 

Symmetric molecules exist in nature in the form of nuclear 
spin isomers, which differ in the states of the spins of identical 
nuclei [1, 2]. The most known are the nuclear spin isomers of 
hydrogen molecules: ortho- and para-H2 molecules. Hydrogen 
isomers have unique properties, for example, an anomalously 
long lifetime, which is equal to months at atmospheric pres-
sure of hydrogen and room temperature [3]. Like hydrogen, 
water molecules (Fig. 1) also have nuclear spin isomers: ortho 
H2O (total spin of two protons, I = 1; symmetric proton spin 
wave function) and para H2O (I = 0, antisymmetric proton 
spin wave function). Quantum statistics requires the antisym-
metry of the full wave functions for H2O relative to permuta-
tions of two identical protons (fermions) in a molecule. This 
leads to certain correlations of rotational and spin states in 
H2O molecules [2]. In populating many rotational states of a 
molecule at high temperatures, the ratio of the concentrations 
of the H2O ortho and para isomers (ortho-to-para ratio, 
OPR) is determined by the nuclear statistical weights of the 
proton spins in the ortho and para states and is equal to 3. At 
low temperatures, when only the lower rotational states of 
H2O are populated, OPR < 3, and OPR ® 0 at T ® 0. 

Relaxation (conversion) of the ortho and para states of the 
isomers of water molecules in the gas phase has not yet been 
detected in laboratory experiments. These studies have an 
extensive and long history [4]. The current state of experi-
ments with spin isomers of water is presented in papers [5, 6], 
devoted to the conversion of water isomers in molecular 
beams at a low temperature.

The spectra of molecules serve as a source of important 
information about the physical conditions in outer space. One 
of the most common and intensively studied molecules in 
space is water molecules [7]. Since the 1980s, the OPR of their 
spin isomers have been measured using both ground-based 
and space-borne telescopes. At the same time, areas in space 
have been discovered in which the value of the OPR of water 
molecules is less than the high-temperature value of 3. Thus, 
in comas of comets, the OPR of spin isomers of water mole-
cules ranges from 2.0 to 3.0 [8, 9]. The values of OPR < 3 are 
also observed in interstellar space. Using Herschel observa-
tions, Lis et al. [10] derived the OPR of 2.35 ± 0.35 toward the 
Sagittarius B2(M) gas cloud core, which is situated near the 
center of our galaxy.

Until recently, it was assumed that the spin isomers of 
water molecules in space have exceptionally large lifetimes. 
Therefore, small OPR values of water isomers were explained 
by the specific conditions of their formation, for example, 
during photodesorption from the ice surface at very low tem-
peratures. However, in recent experiments [8, 11] (see also 
[12]) it has been shown that water molecules desorbed from 

Conversion of nuclear spin isomers of water molecules 
under ultracold conditions of space 

P.L. Chapovsky

https://doi.org/10.1070/QEL17006

P.L. Chapovsky Institute of Automation and Electrometry, Siberian 
Branch, Russian Academy of Sciences, prosp. Akad. Koptyuga 1, 
630090 Novosibirsk, Russia; Novosibirsk State University, 
ul. Pirogova 2, 630090 Novosibirsk, Russia;	
e-mail: chapovsky@iae.nsk.su	

Received 12 March 2019; revision received 26 March 2019	
Kvantovaya Elektronika  49 (5) 473 – 478 (2019)	
Translated by I.A. Ulitkin

H(1)
H(2)

z(b)

x(a)

y(c)

Figure 1.  Water molecule and molecular coordinate system. The letters 
in brackets indicate the directions of the main moments of inertia in 
decreasing order of the rotational constants, Ba > Bb > Bc.
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the ice surface at cryogenic temperatures have a high temper-
ature OPR equal to 3. This fact is well consistent with the 
intuitively expected one, since the formation of water mole-
cules in chemical reactions or during photodesorption 
requires significantly more energy than the energy difference 
between the ortho and para states of H2O.

To explain this phenomenon, one needs to have in space 
the physical processes that can change the OPR of water mol-
ecules from a high-temperature value of OPR = 3, obtained 
by the molecules during their formation, to lower values, 
determined by the low temperature of the space medium. In 
this paper, we propose such a process based on the conversion 
of the spin isomers of water molecules under the action of 
thermal radiation in space.

2. Decoherence by thermal radiation

We now turn to laboratory experiments on the conversion of 
nuclear spin isomers of polyatomic molecules in the gas phase. 
These studies have begun relatively recently after methods 
were developed for the enrichment of spin isomers in the gas 
phase. The most widely used method is based on the effect of 
light-induced drift [13, 14]. Numerous laboratory experiments 
with the spin isomers of polyatomic molecules in the gas 
phase made it possible to reveal that the conversion of iso-
mers is carried out using a specific process, namely, quantum 
relaxation (see [14 – 20] and references therein). The process is 
based on the joint action of two effects: quantum mixing of 
the ortho and para states of the molecule by intramolecular 
hyperfine interactions and the interruption of this mixing 
(decoherence) by collisions with surrounding particles.

Quantum relaxation of spin isomers is the main process in 
laboratory gas systems in the absence of paramagnetic cata-
lysts for the conversion of isomers, such as Fe(OH)3. It is 
important to understand the role of quantum relaxation of 
spin isomers of water in space, by analogy with the conver-
sion of isomers in the laboratory. However, the direct appli-
cation of the quantum relaxation model to the conversion of 
spin isomers in space has led to the conclusion that the rate of 
decoherence due to collisions in space is too low to ensure the 
conversion of isomers within astrophysical times [21 – 24].

It is well known that outer space is filled with electromag-
netic radiation. The minimum density of its energy is deter-
mined by cosmic microwave background radiation corre-
sponding to the blackbody radiation at 2.725 K. Water mol-
ecules interacting with thermal radiation undergo stimulated 
and spontaneous transitions between rotational states of H2O 
(Fig. 2). Due to the stochastic nature of thermal radiation, 
these processes interrupt the mixing of the ortho and para 
states of H2O, similar to interruption of the mixing by colli-
sions. Therefore, intramolecular mixing of the states of the 
spin isomers of H2O together with the radiative transitions of 
the molecule in the thermal radiation field can induce the con-
version of the isomers of H2O. This is the essence of the model 
proposed in this work.

Consider the interaction of thermal low-temperature radi-
ation with water molecules in the ground electronic and 
vibrational state. The distribution of the energy density in the 
spectrum of the equilibrium thermal radiation is described by 
the Planck law:
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Here, the first and second factors determine the density of 
photon states in the phase space and their average energy in 
one state at a temperature T, respectively; and kB is the 
Boltzmann constant.

The interaction of a molecule with thermal radiation is 
described by Einstein’s theory. The relaxation rate of the 
ortho state (a) of water molecules due to radiative transitions 
to other ortho states i with lower energy (Ei  < Ea) and to the 
ortho state j with higher energy (Ej > Ea) is
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Here, A and B are the Einstein coefficients for radiation spon-
taneous and stimulated transitions along the a ® i and a ® j 
channels. Between the coefficients A and B there are known 
relations:
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where ga and gi are the statistical weights of the ortho levels a 
and i, respectively. Formulae, similar to relations (2) and (3), 
also hold for the para-state relaxation rate (a' ) Ga' of the H2O 
molecule. The decoherence rate at the transition a - a' is 
given by the expression [25]:

0.5( )' 'G G G= +a aa a .	 (4)

Thus, the calculation of the decoherence rate Gaa' under the 
action of thermal radiation requires the knowledge of the fre-
quencies of all allowed ortho – ortho and para – para transi-
tions, the rate of radiation relaxation, and the statistical 
weights of the ortho and para states.

The rotational spectra of water molecules are well studied 
theoretically and experimentally. Water absorption spectra in 
the THz region are measured, for example, by pulsed THz 
spectrometers under the laboratory conditions [26]. 
Electrodipole rotational transitions in water molecules are 
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Figure 2.  Rotational ortho- and para states of water molecules in the 
ground electronic and vibrational state. The black arrows indicate the 
allowed electromagnetic transitions without changing the ortho and 
para states of the molecule. Grey arrows show the mixing of ortho and 
para states by intramolecular spin – rotation interaction. Quantum 
numbers of rotational levels are indicated in the systematics JKa,Kc

 [31]. 
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allowed with a change in the spatial parity of the molecule 
and its angular momentum by 0, ±1. The HITRAN database 
contains the frequencies of rotational transitions in the 
ground electronic and vibrational state, the Einstein coeffi-
cients A of these transitions, and the statistical weights of the 
states [27].

Radiation relaxation of the rotational states of water mol-
ecules under the action of thermal radiation turns out to be 
quite fast. For example, the ortho state 11 0 (see Fig. 2) has a 
radiation relaxation rate of 3 ́  10–3 s–1 in the field of cosmic 
microwave background radiation with a temperature T = 
2.725 K and 1 ́  10–2 s–1, if the radiation temperature is T = 
30 K. Relaxation of the states of water molecules by collisions 
in space is significantly slower. For example, the relaxation 
rate of 1 ́  10–2 s–1 due to collisions is reached at a very high 
particle density of 108 cm–3 for open space, if we assume the 
collision cross section to be s = 10–14 cm2 and the gas tem-
perature to be T = 30 K.

3. Conversion of spin isomers of water molecules

Let us now calculate the rate of conversion of the ortho and 
para states of the spin isomers of water molecules in the case 
of intramolecular mixing of the ortho and para states and 
interruption of the mixing by thermal radiation. The 
Hamiltonian of the molecule can be expressed as

H H V0 '= +t t t .	 (5)

Here, H0t  is the main part of the Hamiltonian of an isolated 
molecule, which has pure ortho and para states of H2O as its 
eigenstates (see Fig. 2); and V' t  is the hyperfine intramolecu-
lar interaction mixing ortho and para states of H2O with each 
other. The spatial structure of the H2O molecule and the 
molecular coordinate system are shown in Fig. 1. The quanti-
zation axis z is directed along the symmetry axis of the mole-
cule (as in Ref. [2]). This choice differs from the traditional 
one used in spectroscopy of water molecules [27, 28], but 
makes the analysis of their spin isomers more illustrative [29]. 
It is convenient to perform the calculation of the energies and 
wave functions of the rotational states of the asymmetric top 
of H2O using a modified Wang basis [2, 30]:
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Here, the quantum number is p = 0, 1; | a ñ are the rota-
tional states of the symmetric top; sets of quantum num-
bers are expressed as { , , }, { , , },a J K M a J K M a0/ / /-r  
{ , 0, }J K M= ; and J, K and M are the angular momentum of 
the molecule (in units of ') and its projection onto the molec-
ular and laboratory quantization axes, respectively. 
Depending on the parity of the quantum numbers K and p, 
states (6) generate four different irreducible representations 
of the molecular symmetry group C2u(M ).

Each rotational state of the asymmetric top of H2O is 
characterised by quantum numbers J, M, and p, as well as by 
a set of amplitudes in the expansion of the wave function over 
states (6) with different numbers K. In each such decomposi-
tion there are only states | a, p ñ of one symmetry. Thus, the 

rotational states of the asymmetric top of H2O can be pre-
sented in the form

| , | ,p A a pK
K

b =/ .	 (7)

Here, for the coefficients of the AK expansion, only the sum-
mation index K is indicated, although AK also depends on 
other quantum numbers.

It is convenient to accept the following notations on the 
systematics of rotational states of the H2O molecule. We 
arrange all rotational states (7) belonging to each of the sets 
of quantum numbers J, M, and p, in ascending order of their 
energy and enumerate them with odd numbers 1,3, ... ,JK =   
or even numbers , , , ... ,J0 2 4K =l , depending on which the 
K, odd or even, are present in the expansion of the wave 
function over states (6). Then, each rotational term of H2O 
will be completely determined by a set of quantum numbers 

{ , , , }J M pK/b . The clarity of this classification can be 
explained by the fact that for an elongated symmetric top 
with the C2u(M ) symmetry, KK =  should be satisfied.

Note that the choice of basic rotational states (6) and 
molecular axes, as in Fig. 1, makes the relation between the 
quantum number p and the spatial parity of states very sim-
ple: even states have p = 0, and odd states have p = 1. For 
convenience, we express the relation of the adopted quantum 
numbers of rotational states with the quantum numbers Ka 
and Kc frequently used for water molecules (see, for example, 
[31]) in the form:

0.5(1 ( 1) ), ( 1)p K pKK
a

J K Kc a c= - - = + - + + .	 (8)

Thus, the parities of the quantum numbers p and Kc coincide 
with each other. For the quantum number K , a more compli-
cated relation (8) is valid.

Tennyson et al. [31] presented exact experimental values 
of the rotational levels of H2O. We used these data to calcu-
late the energies and wave functions | b, pñ in the molecular 
coordinate system of Fig. 1. To this end, the rotational 
Hamiltonian of the water molecule, which contains expansion 
in the angular momentum operators up to the 10th degree 
[32], was diagonalised in basis (6), and the rotational con-
stants of this Hamiltonian were then found from the approxi-
mation of the experimental energy values [31] using the least 
squares method. The energies of the rotational levels of the 
ground vibrational state are shown in Fig. 2. The energy gap 
between the lower ortho state and the lower para state of the 
H2O molecule is 23.8 cm–1.

The allowed symmetries of the coordinate and spin func-
tions in the full wave function of H2O can be set as follows. 
Since the full wave function of H2O must change the sign 
when two protons (fermions) are permuted, states with odd  
K  and an even spin function under permutation (total spin of 
two protons I = 1, ortho modification of the molecule) or 
even K  and an odd spin function under permutation (I = 0, 
para modification of the molecule) are allowed. These corre-
lations of the rotational numbers K  and the spin I of protons 
take place for arbitrary quantum numbers J, M, and p.

The quantum kinetic equation for the density matrix of a 
system with Hamiltonian (5) in the representation of the 
eigenstates of the operator H0 has the standard form [25]:

¶
¶

[ , ]it V R
r

r=- +
t t t t .	 (9)
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The matrix of radiative transitions Rt  describes the interac-
tion of a water molecule with radiation. It is assumed in (9) 
that there are no collisions between particles. Since the elec-
tromagnetic field does not produce transitions between the 
pure ortho and para states of H2O, the relation

parad,ortho ad0,R R
' '

a= =aa a a
l/ / 	 (10)

holds for the matrix Rt . Such properties of the radiation 
matrix Rt  allow us to obtain from the kinetic equation (9) an 
equation describing the change in time of the total concentra-
tion of ortho molecules, орто:d,or r a= aa/

parad,ortho ad¶
¶

2 ,Re it V' '
or

r a= aa a a l/ .	 (11)

The off-diagonal elements of the density matrix (coher-
ences) 'raa  necessary for the calculation of ro are found from 
the equation, which also follows from (9):

¶
¶

( )it V '
'
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r

r r rG=- - -
aa

aa aa aa a a aa .	 (12)

In this equation, the relaxation rate 'Gaa  of the off-diago-
nal element of the density matrix 'raa  is introduced. For ther-
mal radiation, 'Gaa  is defined by equation (4).

The intramolecular interaction Vt  does not explicitly 
depend on time. Therefore, t'( )exp iV V' ' w=aa aa aar , where V 'aar  
is a time-independent factor, and waa' = ( ) /E E ' '-a a . The 
conversion of the H2O isomers is accompanied by the rapid 
relaxation of molecules over the rotational states inside the 
ortho and para families of states and exhibits a significantly 
slower conversion of the ortho and para states. This allows 
the use of two important simplifications in equation (12). 
First, it can be assumed that ( )exp i t'' 'r r w=aa aa aar , with the 
time-independent factor 'raar . Secondly, it is possible to make 
use of the equilibrium Boltzmann distributions over the rota-
tional levels of ortho and para molecules with current total 
concentrations of ortho ( ro) and para ( rp) isomers of H2O. 
As a result, from (12) we obtain
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Here

T TB B( / ), ( / )exp expW Z E k W Z E k' 'o p
1 1

= - = -a a a a
- - 	 (14)

are the Boltzmann factors; and Zo and Zp are the partition 
functions for the ortho and para states, respectively. 

The equation for ro now has the form

¶
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t
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(15)

The rates gaa' and ga'a have the meaning of partial isomer con-
version rates through the channels a ® a' and a' ® a, respec-
tively:
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Concentrations of ortho and para isomers are related to 
each other by the relation rp = N – ro, where N is the total 
concentration of water molecules. Using this relation, we 
obtain from (15)

¶
¶

,t No
o po op po

r
gr g g g g=- + = + .	 (17)

The concentration of ortho isomers can be presented as
( )to o odr r r= +r , where orr  and dro(t) are the equilibrium and 

time-dependent parts of the ortho-molecule concentration, 
respectively. These values are found from equation (17):

( ) (0) ,et
N

o o o
op po

potd dr r r g g
g

= =
+

g- r ,	 (18)

where dro(0) is the nonequilibrium part of the concentration 
of ortho molecules at t = 0.

Solution (18) allows us to express the ratio of equilibrium 
concentrations of ortho and para molecules through the rates 
of conversion of the ortho and para states:

/ /o p po opr r g= gr r .	 (19)

An analysis of this relationship reveals an interesting fea-
ture of the quantum relaxation of spin isomers. Suppose, for 
simplicity, that the conversion of spin isomers is essentially 
dependent on the mixing of only two states: m (ortho) and n 
(para). Then from (19) we obtain

TB
expZ

Z
k

E E
p

o

p

o m n

r
r

=
-

r
r

c m.	 (20)

This expression differs from the generally accepted expres-
sion   / /Z Zo p o pr r =r r  (see, for example, [11]). Note that both 
formulae for /o pr rr r  give similar results in the high-tempera-
ture limit at kBT >> (Em – En). At present, it remains unclear 
how fair our relation (19) is. Therefore, in the present work, 
the calculations were performed for not too low tempera-
tures.

There are two types of hyperfine interactions in the H2O 
molecule: the magnetic spin – spin interaction between the 
protons, VSSt , and the spin – rotation interaction of the proton 
spins with the magnetic field caused by the rotation of the 
molecule, VSRt . It can be shown that the VSSt  interaction does 
not mix the ortho and para states of H2O [30], and the 
spin – rotation interaction mixes them. In general, this inter-
action can be represented as [33]:

. . , 1,2h cV I C J k
2
1 ( ) ( )

SR
k

k

k$ $= + =t tt c m/ .	 (21)

Here, I ( )kt  and C ( )k  are the spin operator and the tensor of the 
spin – rotation interaction of the kth proton, respectively; and 
Jt  is the angular momentum operator of the molecule. The 
components of the spin – rotation tensor of water molecules 
are calculated in [23, 34]. The spherical components of the 
spin – rotation interaction tensor, which mix the ortho and 
para states of H2O, have the following values (according to 
the definition [2] of the relationship between Cartesian and 
spherical components of the second rank tensor):

35.2C ,2 1 "=!  kHz, 14.1C ,1 1=!  kHz.
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The calculation of the mixing of the ortho- and para states 
by the spin – rotation interaction in the H2O molecule for-
mally coincides with the analogous calculation for the form-
aldehyde molecule, H2CO [30]. Therefore, we can employ the 
relations obtained in [30] using the above values of the com-
ponents of the spin – rotation tensor. The selection rules for 
mixing the ortho and para states of H2O by the spin – rotation 
interaction have the form

, 1, 1, 0J K p0 ! !D D D= = = .	 (22)

Mixed states of the water molecule are shown in Fig. 2 by 
grey arrows.

The results of the calculation of the lifetime t = g–1 of the 
spin isomers of H2O at various temperatures of thermal radia-
tion are presented in Fig. 3. Calculations were performed only 
for moderately low temperatures (T > 25 K) due to the above-
discussed problem of the validity of the theory in the low-
temperature limit.

4. Discussion and conclusions

We have calculated the rate of conversion of nuclear spin iso-
mers of water molecules in space within the framework of a 
quantum relaxation model based on the intramolecular mix-
ing of the ortho and para states of H2O by the spin – rotation 
interaction and the interruption of the mixing by radiative 
transitions of a molecule in a thermal radiation field. At a 
thermal radiation temperature T = 50 K, the lifetime of water 
isomers is ~2 ́  107 years, and at a temperature T = 100 K it is 
~3 ́  106 years. The lifetimes of the spin isomers of water mol-
ecules turned out to be smaller than the age of the Solar 
System.

Of course, the mechanism of water isomer conversion 
proposed in this work should be taken into account if there 
are no faster, alternative processes, such as chemical reactions 
or proton exchange. In paper [10], for a gas density of 104 cm–3 
in the Sagittarius B2(M) cloud, the lifetime of water isomers 
was estimated to be 3 ́  105 years under the action of proton 
exchange. The mechanism proposed in this work gives sig-
nificantly longer times. However, the estimation of the con-
version time in [10] was made for a very dense gas by cosmic 

standards. In areas with a density of less than 1 cm–3, the pro-
posed mechanism for the conversion of water isomers seems 
to be more important than proton exchange.

An attractive feature of the proposed model is that it is 
based on reliably established effects, such as hyperfine mixing 
of spin isomers, the distribution of thermal radiation in space, 
and the spectral properties of water molecules. The proposed 
model can be applied to calculate the properties of spin iso-
mers of other molecules in space: rare isotopes of water mol-
ecules, ammonia, methane, formaldehyde, and many other 
molecules abundant in space [7, 24].

It is clear what needs to be done next. It is necessary to 
detect and study the conversion of nuclear spin isomers of 
H2O in the gas phase in laboratory experiments. Equally 
important is the continuation of the theory to the domain of 
low temperatures. In the future, when the theory of spin iso-
mers of molecules in space is developed in detail, the conver-
sion processes of nuclear spin isomers of water molecules and 
other molecules can be used to design astrophysical clocks of 
a new type.
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