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Abstract.  Approaches to deep cooling of atomic gases are dis-
cussed. The delta kick cooling and adiabatic expansion as well as 
the limitations of the former are considered. The applicability of 
hollow optical dipole traps based on radiation of near-resonance 
transition frequency in atoms is shown. The possibility of designing 
such traps with a size of ~1 mm is analysed and the prospects for 
their use for cooling atoms by evaporation and adiabatic expansion 
are discussed.
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Two significantly different approaches to lowering tempera-
ture can be distinguished. The first one is based on doing work 
by a cooled body, as, for example, is the case in adiabatic 
expansion of a gas or thermoelectric effect [1]. Cooling is espe-
cially effective if the body changes its phase state in the course 
of doing work, which occurs in the vapour compression cycle 
[2], in demagnetisation [3], in the course of anomalous liquid-
crystal phase transition for 3He [4], or in the dissolution of 3He 
in 4He [5]. The second approach is the velocity-selective effect 
on the body particles. In particular, evaporation removes the 
most energetic particles, while the remaining ones collide and 
rearrange into a thermal distribution with a lower temperature. 
Another method of selective impact is laser cooling of gases 
[6 – 9]. In contrast to evaporative cooling, interparticle interac-
tion is not required here; only interaction of particles with radi-
ation is sufficient. The lowest temperature having been achieved 
by any means is 500 pK [10]. This temperature was obtained in 
a cloud of 2500 atoms. In the experiment, several cooling meth-
ods were combined, but the basis was laser cooling of gas by 
resonance radiation, which made it possible to reduce the tem-
perature from 600 K to 100 mK. At the subsequent stages, cool-
ing by evaporation and adiabatic expansion was used. 

This work is dedicated to the discussion of limitations that 
arise in the course of cooling of the atomic gases, and ways to 
overcome those limitations.

The delta kick cooling technique [11] is considered prom-
ising for further temperature reduction. The schematic of the 
method is shown in Fig. 1. At the initial time moment t = 0 
(Fig. 1a), the gas that was previously held in thermal equilib-
rium in a harmonic potential is released into the free space by 

switching off the potential, and spreads up to the time moment 
t = T (Fig. 1b). The ideal gas expansion produces a narrow 
distribution, which is then additionally ‘turned’ in the phase 
plane by a short action of the potential field U = mwx

2x2/2. As 
a result, a distribution arises (Fig. 1c), having a substantially 
lower kinetic energy than the original one. The resulting sys-
tem can be fixed in a new thermodynamically equilibrium 
state by switching on an appropriate harmonic potential.

From the viewpoint of natural temperature scale expressed 
in terms of the Fermi energy EF, the delta kick cooling does 
not lead to any result, since the T/EF value does not change, 
although both the numerator and denominator decrease. Of 
course, the Fermi energy can also be introduced for bosons: 
EF = (6 ) /( )n m2/2 2 2 3' p , where m is half the mass of a boson 
and n is the characteristic concentration of bosons (for exam-
ple, at the cloud centre). The Bose condensation temperature 
can also be expressed in terms of Fermi energy: TBEC » 0.2EF. 
Although the value of T/EF remains unchanged, lowering the 
absolute value of T is of importance because a cold cloud can 
be used to cool another system by bringing the two systems 
into contact.

The efficiency of delta kick cooling is shown not only for 
a noninteracting gas, but also for a wider class of systems, i.e. 
for clouds that expand in self-similar regime after the para-
bolic trapping is switched off [12]. Such systems include Fermi 
and Bose gases at zero temperature, the spatial distribution of 
which is described by the Thomas – Fermi profile, and also 
Fermi gas at an arbitrary temperature in the unitary regime of 
s-interactions [13]. At the end of expansion, the cloud should 
be intercepted again by a potential field of parabolic or near-
parabolic type. The deviation from self-similar expansion 
leads to a decrease in the phase density after placing the gas 
into the final potential and the formation of a new equilib-
rium state with a higher T/EF ratio than in the initial gas. An 
example of self-similarity violation is the Bose condensate 
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Figure 1.  Delta kick cooling. Distribution in the phase space at key 
cooling moments: (a) t = 0, gas release from the harmonic potential; (b) 
t = T, after the collisionless gas expansion; and (c) t = T + dT, after a 
short exposure to the harmonic potential.
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expansion at a finite temperature: both the condensate and 
thermal fraction fly apart, though self-similarly (in the 
absence of interaction between them), but in different ways.

The lack of the possibility of cooling a spatially homoge-
neous gas initially trapped in a potential of rectangular shape 
is a limitation of the delta kick cooling technique. At the same 
time, homogeneous quantum gases are of interest for a num-
ber of reasons. First, the inhomogeneity limits the correlation 
radii near the phase transitions. Secondly, for Fermi gases 
being partially spin-polarised, spatial homogeneity opens up 
the possibility for observation of the Fulde – Ferrell – Larkin – 
Ovchinnikov superfluidity [14, 15] and pairing in the p-chan-
nel according to the Kohn – Luttinger mechanism [16 – 18]. 
These effects are not observed in a parabolic trap because 
most likely they ‘lose out’ to the effect of phase separation 
into the fully paired and fully spin-polarised gas. Recently, it 
has been reported on the preparation of homogeneous Bose 
[19] and Fermi gases [20, 21].

Adiabatic expansion is another method used to lower the 
temperature. In this case, as in the case of delta kick cooling, 
phase density and T/EF ratio remain virtually unchanged. At 
the same time, there are a number of advantages. This method 
is not limited to the use of only parabolic or near-parabolic 
potentials, does not require the self-similarity of expansion, 
and is applicable in the important case of gas trapping in a 
rectangular-well potential. In technical terms, adiabatic 
expansion is simpler than that in the case of delta kick, since 
there is no need in reconciling several effects in place and 
time: original parabolic potential, delta kick potential, and 
final potential for stationary trapping.

Consider in more detail the applicability of adiabatic 
expansion to the homogeneous quantum gases trapped in a 
potential with almost vertical walls. The light fields for the 
formation of such a potential are shown in Fig. 2a. A cylindri-
cal tube restricts the motion of atoms in the xy plane, and the 
motion along z axis is bounded on both sides by flat walls. 
Traps of this type were used for the preparation of quantum 
gases in work [19, 20]. A tube-shaped beam can be obtained 
using the scheme shown in Fig. 3. The tube diameter can be 
varied [22], which opens up a possibility of controlling the 
trap size and the cooling process by means of adiabatic expan-
sion. The light fields form a repulsive dipole potential; for 
this, the laser radiation frequency w must be higher than the 
frequency w0 of the strongest electro-dipole transition in the 
atom. The dipole force potential is related to the light inten-
sity profile I(r) by the expression [23]
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where G is the inverse lifetime of the excited state of the atom.
In experiments [19, 20], the sizes of hollow traps were not 

large, i.e. of the order of 100 mm. As an example, in work [19] 
trap was 75 ´ 35 ´ 35 mm in size. In quantum gases, the inter-
atomic distance ranges from hundreds of nanometres for 
weak s-repulsion to 1 mm in the case of strong interactions. 
Such a trap contains 105– 107 atoms. As the interparticle dis-
tance decreases, three-particle inelastic collisions become 
noticeable, thus leading to a loss of particles from the trap 
and heating of the remaining particles [24, 25]. Increasing the 
trap size and, accordingly, the number of particles in the trap 
is of interest, since the smallest value of T/EF is scaled as 1/
N1/3. This scaling is due to the fact that the distance between 
the energy levels near the chemical potential can be taken as a 

minimum value of T. From the viewpoint of increasing the 
number N of particles, large traps (about 1 mm in size) are 
also of interest due to the fact that they would make it possi-
ble to completely load all atoms trapped in a magneto-optical 
trap at the first stage of cooling. When using a dipole trap 
with trapping in the maximum intensity region, only a small 
part of atoms is commonly loaded from a magneto-optical 
trap [26, 27], although, for lanthanide atom, there is an exam-
ple of loading more than half the particles [28]. Large hollow 
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Figure 2.  (a) Trapping of atomic gas in the space bounded by radiation 
beams and (b, c) beam cross section by (b) yz and (c) xy planes.
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Figure 3.  (Colour online) Optical scheme for obtaining a light tube 
from a beam with a Gaussian transverse mode (shown by the black 
curve): (A) axicon; (L) lens (set in the z = 0 plane); (F) focus of the lens. 
Red lines and shadow show the course of rays in the geometric optics 
approximation, and the dotted line shows the trajectories of the rays 
emerging from the axicon centre. The beam takes the form of a tube 
near the lens focus. The black curve in the inset shows the intensity 
distribution in the z = F plane. 
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traps may also be of interest for the undisturbed trapping of 
Rydberg atoms [29, 30].

Large hollow traps similar to those shown in Fig. 2 have 
not yet been developed. The limitations are associated with 
the laser radiation power and detuning of the frequency w 
from the resonance frequency w0. As can be seen from for-
mula (1), insufficient power and large frequency detuning 
restrict the potential height. In [19, 20], the frequency detun-
ing w – w0 was very significant: (w – w0)/w0 » 0.5 and 0.3, 
respectively. This imposes strict requirements on the inten-
sity, since the ratio I/(w – w0) determines the potential height 
Umax. The choice of a large detuning value is necessary to 
minimise Rayleigh scattering, the rate of which
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decays quadratically with increasing detuning [23].
The use of light with a small frequency detuning w – w0  

makes it possible to design a large-volume trap and ensure the 
Rayleigh scattering within acceptable limits for cooling. We 
show this by the example of a lithium-6 atom, for which the 
resonance wavelength is 2pc/w0 =  671 nm. Consider a trap 
employing radiation at a wavelength of 2pc/w = 669 nm, 
which, at the full trap wall thickness of 16 mm (by the intensity 
level of 1/2) and a diameter of 1 mm, ensures the potential 
height Umax = 150 mK, which is sufficient to intercept most of 
atoms from the magneto-optical trap when using a laser beam 
with a power of 1.3 W. Given the energy contribution of 
Rayleigh scattering, which is approximately equal to 

/( )mc2 2 2' w  per single scattering event, it is possible to find the 
gas heating rate. Assuming that the trap is filled to Umax, we 
obtain that the energy E of the trapped atom increases with 
velocity:
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where a is the ratio of the volume of walls to the trap volume 
and max

RG  is the frequency of Rayleigh scattering on the sur-
face of maximum intensity. Within this trap configuration, 
this gives a heating rate of 0.15Umax per second, which can 
be overcome by rapid cooling. Without loss of particles, this 
cooling is attained by the superposition of optical molasses 
[31], which causes a temperature decrease down to 40 mK or 
less during 1 ms [32]. Cooling can be continued with the loss 
of particles by evaporation [33]. When the gas energy 
decreases during cooling, the heating rate drops. In addi-
tion, when the gas temperature decreases, the required level 
Umax can be reduced by an increase in the detuning value 
w  – w0, which leads to an additional decrease in Rayleigh 
heating.

To change the size of hollow traps, both a shift of flat 
walls and a change in the tube diameter performed by means 
of projection optics or more complex schemes are used [22].

Thus, hollow traps, like the one shown in Fig. 2, make it 
possible to trap a large number of atoms and to conduct both 
evaporative cooling and cooling with adiabatic expansion. 
Under conditions of limited laser power, a large trap volume 
is attained by using near-resonance radiation. At the same 
time, it turns out possible to limit the gas heating caused by 
Rayleigh scattering.
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