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Abstract.  We consider a quantum system subjected to a controlled 
phase transformation and interaction with the environment in 
between the acts of selection, which leads to the emergence of inter-
ference effects. It is shown that the shift of the dependence of the 
statistics of contacts’ information with the environement on the 
controlled phase shift can be interpreted as a geometric phase. This 
interpretation is consistent with the known operational approach to 
the geometric phase. As a result, we suggest generalising the opera-
tional approach to the realm of pre- and post-selected quantum 
states.

Keywords: quantum geometric phase, Mach – Zehnder interferom-
eter, two-state vector formalism.

1. Introduction 

Any pure state of a quantum system can be represented by a 
point in a complex projective space. Therefore, continuous 
evolution of a pure quantum state of an isolated system can 
be presented in the form of a continuous curve C in this space, 
to which a complex number exp[ijgeom(C)] is related. Its argu-
ment jgeom(C) is known as geometric (topological) phase [1]. 
It is a kinematic notion stipulated solely by the shape of C and 
independent of the speed with which the system sweeps along 
the curve. The modern concept of geometric phase stems 
from works [2, 3], though some of its optical manifestations 
were revealed earlier [4]. The development and numerous 
applications of geometric phase in quantum and classical 
physics are outlined in [5, 6].

This initial concept of a quantum geometric phase has 
undergone several generalisations. Thus, Uhlmann [7] pro-
posed the first geometric phase generalisation to mixed quan-
tum states. The physically oriented treatment based on an 
operational definition of the mixed state geometric phase 
under unitary evolution was implemented in [8]. Since the 
geometric phase can be measured in interferometric experi-
ments, the authors of Ref. [8] suggested using the 

Mach – Zehnder (MZ) scheme in the following manner: the 
inner state of the system undergoes unitary transformation on 
one of the interferometer’s arms, while a phase shift q is 
inserted on the second arm. The probability difference to 
detect the system in one or another output channel of the 
interferometer demonstrates the interference dependence  
cos(q – qgeom) on q. The shift of the cosine argument gets inter-
preted as a geometric phase. The qgeom depends on the unitary 
transformation and the input state, and in the case of the pure 
one, retrieves the known definition of geometric phase. In this 
scheme, the quantum system is required to be able to propa-
gate along the superposition of various spatial trajectories in 
order to obtain the geometric phase. A relevant example of 
such a system is a photon with a polarisation as its inner state. 

The next natural significant step in developing the theory 
of geometric phase is its definition for an open quantum sys-
tem undergoing nonunitary evolution. It turns out that gener-
alisation of the geometric phase concept to such systems 
depends heavily on the chosen approach (see [9 – 11] for 
details). In the context of the present work, the approach 
studied in [12] is of particular importance. In a sense, it unifies 
ideas from [8, 10, 11]. Here, the geometric phase is detected in 
an interferometric measurement scheme within the aforemen-
tioned operational approach. The unitary evolution from [8] 
is replaced by the interaction of the system with an element of 
environment followed by the measurement of some environ-
mental observable. Consequently, the quantum system under 
investigation becomes open due to its informational contact 
with the environment. It results in a nonunitary transforma-
tion of the internal state of the system. In [12] the idea of a 
special geometric phase stipulated by the measurement out-
comes in the interferometric scheme was proposed. This con-
jecture has been verified in [13]. For the case of a qubit system 
travelling along a sequence of Mach – Zehnder interferome-
ters, there was obtained a general expression for the geomet-
ric phase as a function of the history of qubit’s contacts with 
the environment, i.e. a sequence of fixed measurement out-
comes upon the system’s passing through a chain of interfer-
ometers, given an arbitrary input state.

The aim of the present work is to extend the operational 
notion of geometric phase into the realm of the so-termed 
“two-state quantum physics” known also as “time-symmetric 
quantum physics” [14]. We exploit the approach which incor-
porates significant features of those from [8, 12]. Upon appli-
cation to the time-symmetric setting, the approach reveals 
new peculiarities of the latter. At the same time, it provides a 
natural step toward the revealing of the geometric aspects of 
quantum evolution in the case of the most general form of the 
system’s state known up today.
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2. Scheme for detecting the geometric phase

The scheme introducing geometric phase under pre- and post-
selection is a modification of the interferometric arrange-
ments used in [8, 12]. In one arm of a MZ-interferometer (see 
Fig. 1) a controllable phase shift q is inserted. In the second 
arm, the system interacts with a standard element of the envi-
ronment, initially prepared in the state | e ñ via the unitary 
operator Û. Upon a measurement, the standard element 
finally can be found in an eigenstate | ei ñ of the measured 
observable. The prearranged state | Y ñpre of the system enter-
ing the interferometer is the result of successful preparation, 
i.e. pre-selection. Similarly, experimental runs with post-
selection of the system in | Y ñpost are only considered as suc-
cessful. As mentioned, the probabilities to find the system at 
one of the MZ exits are used as interference fringes. Since the 
output of the interferometer is post-selected, the probabilities 
of various measurement outcomes are interpreted as “inter-
ference fringes”.

Following notations from [8, 12, 13], | 0 ñ and | 1 ñ stand for 
the system’s presence in horizontal and vertical internal or 
external arms of the interferometer. Input and output beam 
splitters make the following transformations: 

| 0 (| 0 | 1 ), | 1 ( | 0 | 1 )
2
1

2
1

" "H H H H H H+ - + .	 (1)

The folding mirrors are responsible for the transforma-
tions | 0 ñ ® | 1 ñ, | 1 ñ ® | 0 ñ. We assume pre- and post-selection 
of pure states to have the form: 

pre 7 7| | | 0 | | 1pre pre
0 1H H H H Hy yY = + ,

= 7 7| | | 0 | | 1post post post
0 1H H H H Hy yY + .	 (2)

Here | pre Hys  and | post Hys  (s = 0, 1) are the vectors in the Hilbert 
space Hs  of internal states of the system. The effect of inter-
action between the system and the environment’s element on 
their compound state is given by a unitary operator Û. 
Depending on two alternative directions from which the sys-

tem enters the interferometer, the ith possible outcome of the 
measurement results in two possible transformations of the 
system state : 
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The first transformation is merely a complex factor ( )0Ei  
acquired by the system’s internal state | y ñ since in fact no real 
interaction takes place. The second one introduces a nontriv-
ial transformation ( )1Ei

t  as a consequence of interaction and 
subsequent reading of the measurement outcome i.

We assume a qubit-type of the environment’s element. 
This allows us to deal with the simplest version of the opera-
tional approach since the interference phenomenon may be 
looked for in the probability difference p1(q) – p2(q) of two 
alternative outcomes. The probability amplitude Ai(q) to get 
the outcome i and than to witness successful post-selection of 
the system in the | Y ñpost * can be written as: 

( ) | (1) | ( ) (0) |exp iA E Epost pre post pre
i i iG H G Hq y y q y y= -+ + - -

t .	 (4)

Here | (| | ) / 2, , ,pre post pre post pre post
0 1!H H Hy y y=! . The amplitudes 

Ai(q) by means of the Aharonov – Bergmann – Lebowitz 
(ABL) rule [15] give the probabilities pi(q) to get the ith out-
come under the condition of successful pre- and post-selec-
tions. For the probability difference we have 
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The dependence on q is given by a term ( )cos geomq q- -  in its 
numerator and a similar term ( )cos geomq q- +  in its denomina-
tor. Expressions for the two geometric phase shifts have the 
form:
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post

0 0Gq y=
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+
t
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The appearance of two geometric phases instead of a sin-
gle one in previous applications stems evidently from pecu-
liarities of the ABL rule for retrospectively calculating prob-
abilities of measurement outcomes preceding the posts-selec-
tion. The ABL rule is a variant of ‘Bayesian inference’ and 
differs immensely from the usual quantum expression for 
probabilities in the case of pre-selected systems.

The phases geomq!  can be understood as sums of two terms, 
i.e. the arguments of multipliers in the square brackets in (6). 
It is the combination of these two terms which guarantees the 
gauge invariance as the main property of geometric phase. 
Indeed, any transformation | Y ñpre ® exp(if) | Y ñpre and 
| Y ñpost ® exp(if') | Y ñpost does not change geomq! . Only the first 
multiplier in the right-hand side of (6) depends on the mea-
surement type. In the limit of negligibly weak interaction 
between the system and environment, Û tends to unit opera-
tor so that (1)Eit  becomes equal to ( )0Eit  and 

( | | )arggeom geom
post pre pre post

" 0 G HG Hq q y y y y!
+ + - - .	 (7)
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Figure 1.  Scheme of the MZ interferometer with selection of the sys-
tem’s states before and after its passing through the interferometer.

* Note that this probability amplitude is conditioned by the system pre-
selection in | Y ñpre.
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This is asymptotic value of geometric phase just before the 
disappearance of interference, when both the numerator and 
denominator of the ratio in (5) have the same dependence on 
q and differ only by the coefficients | (0) | | (0) |E E1

2
2

2
-  and 

| (0) | | (0) |E E1
2

2
2

+  , respectively. In this case, expression (5) 
loses its dependence on q.

3. Discussion 

The considered scheme has a notable feature. In a usual 
experimental setup with initial preparation of | Y ñpre, neither 
p1 nor p2 depends on q since the phase shift and the measure-
ment occur in different arms of interferometer. Any such 
dependence would violate the causality principle. The proba-
bilities pi acquire a q-dependence after specifying a subset of 
experimental outcomes corresponding to successful post-
selection of | Y ñpost. Similarly, there is no q-dependence in the 
ensemble specified solely by post-selection, with a totally 
unknown input state. One can make a conclusion that inter-
ference and geometric phases exist in between the acts of pre- 
and post-selection and originate from them.

The crucial point in the considered interferometric scheme 
is the existence of two alternative directions of spatial motion 
which may form a superposition. If the internal state space of 
the system is two-dimensional, i.e. the system is a qubit, the 
addition of two spatial states | 0 ñ and | 1 ñ makes an effective 
two-qubit system. It is then logical to pose the next ques-
tion: Is it possible to observe the interference in a real two-
qubit system with pre- and post-selection without an inter-
ferometer? 

Consider the scheme presented in Fig. 2, which is different 
from that in Fig. 1 despite some obvious similarities. While 
Fig. 1 depicts the spatial structure of a MZ interferometer, 
Fig. 2 represents the space – time scheme of preparation, evo-
lution and post-selection of a two-qubit system. Triangular 
blocks in the style of the quantum diagrammatic technique 
proposed in [16] stand for pre- and post-selection acts. On the 
worldline of qubit 1 there is a region where it interacts with 
the environmental qubit, while qubit 2 undergoes selective 
phase transformation 

22| [ ] | ( 0,1)exp i"H Hs qs s s = .	 (8)

This selectivity compensates for a lack of an actual interfer-
ometer.

The states | Y ñpre and | Y ñpost can be written in the form 
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Then the probability amplitude defined analogously to (4) is 
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where Eit  is the same as ( )1Eit  from (3). It can be easily noted 
that the necessary condition for interference (and geometric 
phase) – q-dependence in (5) – is the states | Y ñpre and | Y ñpost 
being entangled. Indeed, if they are separable, i.e.

( ) ( ( ),pre post
2 1 1 2 2

, ,pre post pre posty s s s s=, )1 y y ,	 (11)

the q-dependence in Ai(q) reduces to a phase factor: 

( )s ( ) [ ]exp ipost pre
2 2y s qs)

s

y/ ,	 (12)

which does not depend on i and hence does not enter equation 
(5). Remarkably, for the effective two-component system 
considered above the states (2) do not need to be entangled to 
observe interference.

As a conclusion, we have demonstrated the existence of 
interference phenomena stipulated by pre- and post-selection 
procedures which are performed on the state of the quantum 
system. These phenomena reveal themselves in the statistics 
of system – environment interactions in the time interval 
between pre- and post-selection. The geometric phase intro-
duced in the framework of the generalised operational 
approach accompanies the aforementioned interference phe-
nomena.
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