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Abstract.  Based on Maxwell’s equations, we derive a van der Pol-
type equation for self-oscillations in the cavity of a diode laser. Its 
solution is self-oscillations (lasing) even in the absence of spontane-
ous emission. This solution differs fundamentally from solutions 
obtained using rate equations containing an additional term in the 
form of spontaneous emission intensity. Taking into account spon-
taneous emission in the van der Pol model makes calculation results 
more realistic and allows one to find parameters characterising 
diode laser output coherence, including the spectral densities of 
laser light amplitude and phase fluctuations.

Keywords: diode lasers, spontaneous emission, fluctuations in 
parameters.

1. Introduction

The question of what role spontaneous emission plays in the 
formation of a spectrum received a clear answer just a few 
years after the advent of lasers (see e.g. Refs [1 – 4]). In par-
ticular, for the diode laser a consistent theory taking into 
account spontaneous emission in single-frequency lasing 
mode was proposed in excellent reports by Vahala and Yariv 
[5, 6]. As shown in their and others’ fundamental works, the 
presence of spontaneous emission sources in an inherently 
nonlinear self-oscillating laser system leads to intermixing of 
spontaneous and stimulated emissions. The result is ampli-
tude and frequency modulations of lasing waves by a ran-
dom signal. Thus, the role of spontaneous emission in a laser 
is to act as an inherent source of noise, which, in particular, 
determines the fine structure of the emission spectrum (the 
lower boundary of the laser linewidth), i.e. the laser coher-
ence limit. Basically, this is what limits the effect of sponta-
neous emission on the formation of a steady-state optical 
spectrum.

Note that it is just such mode that we consider here and in 
what follows, excluding possible transient modes, for exam-
ple, those taking place when pumping is ‘abruptly’ switched 
on or resulting from repeated suppression of lasing at an 
unstable operating point. In such modes, the role of sponta-
neous emission can be considerably more important than in 
the case of steady-state lasing.

The question of the role of spontaneous emission in lasers 
might seem to be exhausted. Nevertheless, theoretical papers 
exist and continue to be published in which the diode laser is 
treated separately from other types of lasers. Such theoretical 
work can be exemplified by Refs [7, 8]. In these and other 
reports, use is made of an approach in which a laser field is 
considered essentially as amplified and spectrally filtered 
spontaneous emission. This physical meaning is suggested by 
theory proposed in Refs [7, 8], in which the spectral intensity 
distribution over modes can be represented as a fraction 
whose numerator is the spectral density of spontaneous emis-
sion and whose denominator is proportional to the difference 
between the loss and saturated gain. This difference charac-
terises the incomplete compensation for the loss by the gain 
for each mode, because this mode in the cavity receives some 
additional constant energy in the form of spontaneous emis-
sion. In Suhara [9], this is reflected explicitly by formulas 
(6.40b) and (6.42). In Ivanov et al. [7], it follows unambigu-
ously from the simplest equation (16). A similar equation 
(13), modified to take into account ‘two-photon absorption’, 
was used in Ref. [8]. Based on this approach and a simple 
solution to rate equations, it was concluded [7 – 9] that the 
experimentally observed multimode operation of a diode 
laser was a consequence of spontaneous emission along with 
the two-photon absorption mechanism. This conclusion has 
no physical meaning and is solely the result of an erroneous 
theoretical approach, which will be discussed below in greater 
detail.

This approach was earlier referred to as ‘an asymptotic 
lasing threshold’ by some authors. It is based on rate equa-
tions for some average intensity and inversion. Their relation 
to foundations of electrodynamics in the form of Maxwell’s 
equations can only be seen, if any, in the form of the conser-
vation-of-energy principle, and to a very limited extent. To 
these equations, some determinate functions, which are inter-
preted as the contribution of spontaneous emission, were 
added ‘manually’ (heuristically).

It is worth noting that misbeliefs about the role of ‘for-
eign’ signal sources in self-excited oscillators, which include 
lasers, have a long history. They were first dispelled at the 
beginning of the 20th century in radio engineering (see e.g. 
Pontryagin et al. [10], Bershtein [11] and Rytov [12, p. 414]) in 
analysis of Thomson’s lamp oscillator. This occurred again 
after the advent of masers and lasers: the approach in ques-
tion was criticised in the initial stages of the development of 
laser theory. In the field of diode lasers, however, these misbe-
liefs persisted for a much longer time, which is surprising 
because works providing sufficiently detailed insight into this 
issue [5, 6] were published long ago.
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One possible cause of this erroneous approach is that a 
number of parameters characterising the diode laser as a self-
oscillating system differ significantly from analogous param-
eters of other types of lasers. This refers primarily to param-
eters such as the spectral density of spontaneous emission ‘in 
a mode’ and the relation between the changes in the real and 
imaginary parts of permittivity in response to a change in 
inversion.

Of course, Refs [7, 8] and other, similar works could be 
ignored as erroneous, without dwelling on them, but the 
approach that uses rate equations containing an additional 
term related to spontaneous emission often ‘roams’ from one 
paper to another in the literature. The process continues at 
present, and this approach appears in a large number of 
books dealing with diode lasers (e.g. in Suhara [9]), so there is 
a need to separately analyse its incorrectness.

In accordance with the above, the purpose of this work is 
to demonstrate once more the effect of spontaneous emission 
on the output spectrum of a diode laser with allowance for 
distinctive features of its parameters, using a consistent analy-
sis (in semiclassical theory) based on Maxwell’s equations.

Since a considerable part of the physical content of this 
paper is more or less present in the extensive literature dealing 
with other types of lasers, this paper inevitably takes the form 
of a review. Moreover, this paper is aimed at representing the 
theory of the diode laser as a section of quantum radiophys-
ics, which differs from its other sections only in quantitative 
characteristics of models, and not in their physical meaning 
and approaches.

For convenience of understanding the paper, we endeav-
oured to sequentially present approaches to the theory of the 
spectrum and intensity and inversion fluctuations of a diode 
laser in single-frequency mode in detail, beginning with foun-
dations of electrodynamics.

In the original part of the paper, we derive expressions for 
the spontaneous emission factor. It plays a key role in the 
quantitative description of the effect of spontaneous emission 
on output laser beam parameters. From the methodological 
point of view, in this paper we use terms and parameters the 
most adequate to experiments with diode lasers. We endeav-
oured to make the final results as accessible for comparison 
with measurement data as possible.

2. Complex dielectric permittivity  
and polarisation of a semiconductor medium

To sequentially find an equation for the field amplitude, it is 
necessary to use Maxwell’s equations for the medium of the 
optical cavity of a diode laser. These equations contain the 
electric induction vector D, which characterises only the 
medium and the interaction of an electromagnetic wave with 
it. It is the sum of the electric field vector E  (averaged over a 
physically small volume) and polarisation vector P  multi-
plied by 4p. The polarisation vector P  is in turn the average 
dipole moment per unit volume:
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where ( ) ( ) ( )r t r t r tintext
j j j= +r r r ; u is a physically small volume; 

qj is the charge of the jth particle; and rjr  is its radius vector, 

which is the sum of two vectors: displacement r extjr  under 
the effect of an external field, i.e. the response of an ele-
mentary charge to the external (stimulating) influence, and 
the vector r intjr  of intrinsic motion under the effect of inter-
nal forces existing in the medium independent of the exter-
nal field.

Consider first sufficiently weak fields, in which the 
response of a charge to an external field arbitrarily varying 
with time t can be taken to be linear. In such a case, without 
loss of generality, only one harmonic, of frequency w, can be 
considered as an external field, i.e. we take that

E(t) ~ [ ( ) ( ) . .]exp i c cA t
2
1 w w- + .

Here and in what follows, we use E for real values and E  for 
the corresponding complex values of the electric field inten-
sity. The time dependence ( )r text

j  is also proportional to the 
field, with a proportionality coefficient a(w), i.e. ( )r text

j =  
( ) ( ) ( )exp iA tja w w w-  as the response of a linear system to a 

harmonic force. The polarisation amplitude induced by an 
external field is then given by

( ) ( ) ( ) ( ) ( )P q A A1ext
j j

j

w u a w w c w w= =/ ,	 (2)

where c(w) is a so-called susceptibility, a complex quantity 
in the general case, characterising the medium in electrody-
namics.

The complex dielectric permittivity e(w) is defined as a 
proportionality coefficient between a Fourier component of 
the external field-induced electric induction D(w) and the 
field, as represented by the relations

D(w) = A(w) + 4pP ext(w) 

	 = A(w)[1 + 4pc(w)] = e(w)A(w),	 (3)

where e(w)  = 1 + 4pc(w).
Thus, two distinct types of charge motion are responsible 

for all electrodynamic characteristics of a medium. One of 
them is the response of charges to an external field, as repre-
sented by the function e(w), and the other is driven by internal 
forces, which in turn depend on the state of the system. The 
latter type of motion is represented by the function ( )r tint

jr  in 
(1). Mathematically, this is expressed by the formulation in 
which the general solution to a linear differential equation 
can be represented by the sum of solutions to the homoge-
neous equation and a partial inhomogeneous equation. The 
latter type of motion includes, for example, the thermal 
motion of charges, which can be viewed as some chaotic cur-
rents distributed at random in the medium and generating 
electromagnetic waves, and the motion of charges due to pos-
sible random external forces. This type also includes the 
motion of a charge accompanying a spontaneous transition 
of a radiating element from its upper energy state to its ground 
state. A general characteristic of this type of motion is its ran-
dom nature.

Clearly, to find the response function a(w)  of charges 
present in a medium, it is necessary to use quantum-mechan-
ical calculations of the forced motion of a huge number of 
interacting charges in the form of electrons and ionic cores 
of a crystal. The problem turns out to be so complex that it 
cannot be solved exactly. Nevertheless, we can approxi-
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mately formulate a physical model for a qualitative analysis 
of a(w)  and, accordingly, e(w). The model considers a set of 
harmonic oscillators with e(w) represented in the following 
form:
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The sum is taken over all j oscillators in a physically small 
volume of a crystal, and the result is normalised to this vol-
ume. Each oscillator is determined by its charge qj, its mass 
mj, its resonance frequency wj, its damping constant jgu  and a 
dimensionless coefficient fj, referred to as the oscillator 
strength (whose sign depends on the direction of the transi-
tion). These quantities can, in principle, be calculated in 
quantum theory.

In reality, however, this formula is of little utility for 
quantitatively determining the e(w) of a semiconductor 
medium with an accuracy necessary for practice. 
Nevertheless, it allows e(w) to be qualitatively divided into 
two distinct parts. The point is that not all oscillators con-
tributing to e(w) are equivalent. Let us separate out in (4) 
the oscillators whose frequencies are far from resonance 
with optical radiation. They correspond to electron transi-
tions to high energy states, which are responsible for absorp-
tion in the ultraviolet and X-ray spectral regions. Because of 
the large number of such oscillators, they determine the 
refractive index of the medium (the real part of its e) and 
cause a small ‘background’ absorption. This part of the 
dielectric permittivity is denoted as ( , )re wu . The other part, 
denoted as ea(r, w, N), is due to the oscillators with reso-
nance frequencies near the external field frequency. The real 
and imaginary parts of this contribution are comparable (in 
magnitude) and depend on the difference between the popu-
lations in the conduction and valence bands, because fj 
changes sign in response to a change in the direction of the 
electron transition (from the valence band to the conduction 
band or in the opposite direction). With this definition, 
ea(r, w, N) can be written in the following form:

¶
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The imaginary part of e(r, w, N) represents optical absorp-
tion (amplification) in the bulk of the medium, including 
that resulting from resonance transitions between the con-
duction and valence bands. It depends on the concentration 
of nonequilibrium carriers, N(r) (inversion), in the active 
region of the laser cavity and differs from zero only for r Î 
Vact, where Vact is the volume of the active region. This 
dependence is represented in (5) in linearised form with 
respect to N. In what follows, the value at which the medium 
has a transmission edge at a given frequency w will be used 
as N0.

The representation of e(r, w) in the form (5) is fairly typi-
cal of analysis of various types of lasers. Distinctions are pos-
sible only in interpretation of the terms. For example, in the 
case of solid-state lasers ( , )re wu  is taken to mean the dielectric 
permittivity of the laser host material and de is the contribu-
tion of active ions.

Clearly, quantitative values of e0(r, w) and de(r, w, N) can-
not be derived purely theoretically with required accuracy. 
Nevertheless, the use of independent experimental data for 
various semiconductor media and optical measurements in 
combination with analytical calculations make it possible in a 
number of cases to find functions approximating e0(r, w) and 
de(r, w, N) with acceptable accuracy.

One distinctive feature of the diode laser is that e0(r, w) is 
a significant function of coordinates. Even though a diode is 
a single monocrystalline chip, it comprises a large number (up 
to hundreds or even more) of layers or regions differing in 
chemical composition and, hence, in dielectric permittivity. In 
the vast majority of cases, it is the spatial distribution of 
e0(r, w) which determines the quantitative parameters of the 
dielectric cavity of a diode laser that are of great importance 
for simulation.

The characteristic size of the layers is comparable to or 
even much smaller than optical wavelengths. This means that, 
from the viewpoint of a single scale of electromagnetic waves, 
the formulation of and approach to problems related to the 
amplification and propagation of waves in a diode cavity cor-
respond to problems pertaining to the microwave range, even 
though the frequency of such waves corresponds to the IR 
and optical regions. Note that, in the case of solid-state and 
gas lasers, analogous problems can be solved by methods 
characteristic of physical (and sometimes even geometrical) 
optics.

Another distinctive feature of the diode laser is that the 
derivative ∂e/∂N comprises not only an imaginary part pro-
portional to the cross section of a stimulated transition, s(w), 
but also an appreciable real part with a coefficient R, i.e.

¶
¶ ( )

( )i
N

n c
Racte

w
s w

=- + ,	 (6)

where nact acte=  is the refractive index of the active region; 
eact is its dielectric permittivity; and c is the speed of light. 
Physically, this means that a change in inversion in the active 
medium is accompanied by changes in not only the gain but 
also the refractive index of the medium. Qualitatively, this is 
an obvious result for all types of lasers if we take into account 
that a gain is produced in the spectral region of anomalous 
dispersion. However, the coefficient R is rather small for most 
types of lasers and can be left out of account. The point is that 
the operating laser transition can be thought of as a transition 
in a two-level system. Since lasing typically takes place in the 
centre of a spectral line, where the contribution to the real 
part of susceptibility is zero because of the anomalous disper-
sion, R is relatively small. In this case, R differs from zero 
only because the laser transition differs from that in an ideal 
two-level system. For example, the R of a Nd : YAG active 
medium ranges from 0.2 to 1.2 [13]. The situation is quite dif-
ferent in the case of a semiconducting active medium, where 
the laser transition occurs between two energy bands, each 
having its own quasi-continuous energy spectrum, so that the 
amplification – absorption spectral line is extremely asymmet-
ric. Besides, the real part of susceptibility is contributed by 
free charge carriers, because the plasma frequency depends on 
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their concentration. This contribution amounts to one-third 
of the contribution from anomalous dispersion. As a result, 
the coefficient R of typical semiconductor media can fall in 
the range 2 – 6. This coefficient became widely known after 
work by Henry [14] in the context of the increase in diode 
laser linewidth because of the spontaneous emission. Since 
that time, it has often been referred to as the Henry factor. 
Note, to be fair, that this coefficient was introduced and used 
significantly earlier by other researchers (see e.g. Refs [2, 3]), 
but, because it is very small in the case of gas lasers and typi-
cal solid-state lasers, it was less needed than in the case of 
diode lasers.

To complete the definition of e(w) in the form (5), atten-
tion should be paid to another important circumstance, 
namely, that the response of a system of charges in a medium 
to an external field is linear, which was first formulated as a 
condition for defining e(w). For this reason, the expressions 
for e(w) do not include field strength in explicit form. On the 
other hand, it is well known that a self-oscillating system is 
inherently nonlinear, so it is impossible to obtain an ade-
quate solution for it in the framework of only a linear 
approach. In this context, consider how a strong field can 
change the state of a medium so that it will lead to a change 
in its response function. Note first of all that e0(w) is deter-
mined by oscillators far from resonance with light, so the 
possible nonlinear component of e0(w) is rather small, 
because the scale is set by the ratio of the external field 
strength to the intraatomic field strength. Such nonlinear 
susceptibility is characteristic of most transparent media. In 
our analysis, it plays an insignificant role and will be omit-
ted in what follows, even though the e0(w) of typical semi-
conductors usually exceeds 10.

A quite different situation occurs for nonlinearity de, 
because it is related to the population of operating levels and 
the polarisation state. A proper analysis of polarisation 
dynamics for operating transitions is extremely complex. In 
some form, it can be done by analysing the dynamics of the 
density matrix and its diagonal and off-diagonal elements, 
for example, at least in a tau approximation. Even though 
there has been extensive theoretical work in this direction, it 
is difficult to expect that the calculational models used com-
pletely described the entire physics of phenomena that occur 
in the active region of an advanced diode laser. Indeed, typ-
ical free carrier concentrations are 1018 to a few times 1019 
cm–3. In intermetallic semiconductors, which are used as 
gain media of diode lasers, even above room temperature by 
100 K and more such concentrations correspond to a degen-
erate Fermi gas with considerable Coulomb interaction 
between particles. Density matrix elements cannot be facto-
rised in the form of the product of one-electron Bloch func-
tions or by any other simple system of functions correspond-
ing to ‘pure’ states.

Approximate calculations for an electron state due to 
Coulomb interaction give a characteristic ‘energy broaden-
ing’ above 10 meV, which corresponds to characteristic phase 
relaxation times of off-diagonal elements (transverse relax-
ation time) in the femtosecond range (under 10–13 s). This is 
confirmed to some extent by experimental data obtained in 
pump – probe measurements with femtosecond optical pulses 
[15]. Therefore, the dynamics of the electron system in each 
energy band can be viewed as the dynamics of a quasi-equilib-
rium Fermi gas characterised by only local concentration and 
temperature if characteristic times exceed 10–13 s.

Thus, it is obvious that, if the field amplitude in a laser 
cavity varies no faster than in 10–13 s, the polarisation of the 
medium ‘has time to forget’ its preceding states and quasi-
statically keeps track of field dynamics. Its amplitude is pro-
portional to the product of the field amplitude and the dif-
ference between the diagonal density matrix elements. The 
phase shift of the polarisation response with respect to the 
field amplitude is taken into account by the spectral form 
factor, so in the case of a laser system there is no need to 
additionally use an equation for polarisation. The complex 
susceptibility due to resonance transitions and, hence, de 
quite adequately describe the dynamics of field – medium 
interaction on account of the dynamics of the diagonal den-
sity matrix elements or, with allowance for the above, the 
dynamics of the carrier concentration in the conduction and 
valence bands.

This significantly simplifies analysis because the non-
linearity of a laser system due to gain saturation is auto-
matically implicitly taken into account in (5) for de through 
the dependence of N on the intensity of an electromagnetic 
wave. Below, this dependence will be found for a simplified 
model of an active region from the carrier balance equa-
tion.

3. Carrier balance in the active region of a laser

The typical geometry of the active region of a modern diode 
laser usually has the form of a flat layer of thickness d (from a 
few nanometres to 100 mm), with carrier injection along the 
normal to it. The carrier balance equation has the form

¶
¶ ( , ) ( ) ( , )

t
N r t
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J r N r t

t= -

	
( ) ( , )

( , )
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N r t
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2
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w
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Here J is the current density distribution; e is the electron 
charge; t is the spontaneous recombination time;E 2  is the 
period-averaged square of the electric field intensity; and 'w 
is the energy of an electron transition from the conduction 
band to the valence band. Ambipolar electron diffusion pro-
cesses are taken into account by the last term in (7), which is 
proportional to the coefficient D . Since the diffusion length 
usually far exceeds the thickness of the active layer, electron 
diffusion in the x direction, normal to the layer, results in a 
completely flat concentration profile. Therefore, diffusion 
in the x direction can be left out of consideration and the 
concentration can be taken with high accuracy to be inde-
pendent of this coordinate. As to the other two directions, 
along the layer ( y and z), the situation is somewhat more 
complex. In this case, one can solve the problem in the form 
of a 2D equation (7) (1D equation for diodes emitting along 
the layer d ), thus finding the spatial carrier distribution. In 
what follows, the steady-state spatial electron distribution 
N(r) is thought to be found by solving Eqn (7) and to have 
the form

( ) ( )N r f rN= ,

where the dimensionless function f (r) is determined by the 
laser configuration and varies little with pump current J by 
virtue of a number of circumstances characteristic of the 
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diode lasers under consideration. Because of this, in what fol-
lows f (r) is thought to retain its form upon changes in pump 
current, in particular above threshold, and to be normalised 
to unity at its maximum, which is located in the origin: f (0) = 1. 
Note that this is a very stringent requirement (assumption), 
which is extremely rarely met in practice. It imposes a con-
straint on the spatial pump distribution J(r) and the spatial 
E 2  distribution. This is quite consistent with the well-known 
fact that diode lasers, e.g. those with a Fabry – Perot cavity, 
extremely rarely operate in single-frequency mode even just 
above threshold.

Let us represent the field amplitude in factorised form:

( , ) [ ( ) ( ) . .]c cE r t t u r
2
1 E= +r ,	 (8)

where ( ) ( ) ( )exp it A t tE w= - ; ( )u rr  is a complex dimensionless 
vector function normalised to unity magnitude in the origin, 
i.e. (0)H(0) 1u uG =*r r ; and A(t) is a ‘slow’ field amplitude.

In a quasi-steady state, where A(t) varies considerably 
more slowly than t–1, the derivative ∂N/∂t in (7) can be 
neglected and, taking into account (5) and (6), we obtain
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( ) ( ) ( )dV u r u r f r Vmc G H= *r ry ; ( ) ( ) dV u r u r Vm G H= *r ry ;

( )dV f r Vact = y .

These designations result from the averaging of the main 
quantities over the active region by integrating over the space 
of the balance equation (7). They have the following physical 
meaning: p is the relative difference between the pump current 
J and the transparency current Jtr; Ntr  is the average trans-
parency concentration; the quantity E s

2  is proportional to 
saturation intensity; and Vact, Vm and Vmc are the effective 
active region, mode and mode – carrier overlap volumes. With 
the quantities introduced above, Eqn (5b) for de can be writ-
ten as

de » ( )
| | /
( )

icn G R
E

f r p
1 E

act

s
2 2w- +

+
e o,	 (10)

where G = Vm s(w)N0 /Vmc is the unsaturated material gain 
coefficient (in inverse centimetres) in the active region. In (10) 
we use the fact that the averaged expression

( ) ( ) [ ( ) ]du r u r N r N Vtr 0G H -*r ry

is zero according to the definition of Ntr(r). Now we have all 
quantities needed to write down the equation for the mode 
amplitude.

4. Equation for the cavity mode amplitude  
in a diode laser without spontaneous emission 
sources

For a static field of the form (8) to meet Maxwell’s equations 
in a cavity, ( )u rr  should meet the equation

( ( )) ( , , ) ( )rotrot u r
c

r N u rk
k

k k2

2

0 0
w e w=r
u

r ,	 (11)

where ,ik k kw w g= -u  and boundary conditions on a surface 
S that encompasses the cavity. This surface can be ficti-
tiously divided into two parts. In one of them (S0), the elec-
tric and magnetic fields are zero. Through the other (S ), the 
cavity is connected to the ambient medium. Equation (11) 
defines a set of ( )u rkr  eigenmodes and kwu  complex eigenfre-
quencies of the dielectric cavity. Thus, the cavity is fully 
defined by setting e(r, w, N) for a particular type of laser 
diode. For example, this can be edge-emitting and vertical 
cavity surface-emitting laser diodes. Clearly, a solution to 
Eqn (11) can only be found for a particular form of e(r, w, N). 
Let ( )u rkr  and kwu  be already found by solving Eqn (11) as a 
separate electrodynamic problem. It should be noted that a 
nontrivial solution to (11) exists not for all e(r, w, N) func-
tions, so to analyse characteristics of such cavities it is rea-
sonable to use an approach described by Vainshtein [16] in 
which an ‘equivalent’ cavity is introduced into analysis. The 
approach builds on the fact that, if frequency w is brought to 
the complex plane and the corresponding g is found, the real 
cavity can be replaced by an equivalent cavity having zero 
fields on the entire outer surface S.

In what follows, we assume that the eigenfunction ( )u rkr  
thus found varies little with concentration N. Thus, Eqn (11) 
can be thought of as an invariant for a particular mode. 
Consider first the field of one mode whose frequency wc is 
close to the spectral maximum in gain G(w). For this mode, 
Maxwell’s equations lead to the equation

¶
¶ ( , )

( ) ( , , ) ( ) ( )i
t
D r t

r N t u r 0Ec c c c2

2
2
0 0w g e w+ - =r ,	 (12)

where wc is the resonance frequency of the cavity and gc is the 
cavity field attenuation constant, which depends on both the 
optical loss in the bulk of the cavity and the output coupling 
losses. Further, we represent e(r, w, N) as a function of fre-
quency in linearised form in the vicinity of frequency wc:

¶
¶( , ) ( , , ) ( )r r Nc c0 0
0de w e w e

w
e w w= + + - .	 (13)

Carrying out standard operations for electric induction and 
taking into account (10) and (13), we obtain

¶
¶

¶
¶

¶
¶( , )

| ( )| /
( ) ( )i

t
D r t

t
p

t E
f r cn G R

i
t1

1E

E

E

s

act
c

c
2

2

0 2

2

2 2e w
w

eD= -
+

-
+

^ h= G)

	 ( ) ( )t u rEc c
2ewD+ r3 . 	 (14)

Here, we use the relation

¶
¶

¶
¶ ( ) ( ) ( )exp i d

t
tEc2

2

w
e w w w w w- -y » 
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	 »
¶
¶

¶
¶ ( )

( )i i
t
t

t
E

Ec c
2w

w
e w- +; E,

and De = wc(∂e/∂w) determines dispersion. Note that induc-
tion D(r, t) is defined according to (3), so that polarisation has 
no terms related to intrinsic charge motion [~qj rj

int(t)]. 
Further, substituting (14) into (12), taking the scalar product 
with ( )u rcr  and integrating over the cavity, we obtain

¶
¶

¶
¶

| ( )| /
( )i

i
t

p
t E
R

t
2 1

1
1E

E

E

s
c

c
c2

2

2 2g
g

g
w eD+ -

+

-
- +

u u
u

^ h= G) 3 	

	 (1 ) ( )t 0Ec
2w eD+ + =u ,	 (15)

where the dimensionless parameter eDu  characterises the total 
dispersion in the cavity and gu  is the effective (average) gain in 
the cavity. If ( )u rcr  and gc are found by solving Eqn (11), the 
above parameters can be found as

cn G
2
actg G

=u
|
,

( ) ( )Re i dU R f r u u V1 1 c c
V

G HG = -u r r; Ey ,

( , , ) ( ) ( ) dU N r u r u r V
V

c c c0 0 G He w= r ry ,

eDu  » ( ) dU r u u V1
c cG HeD r ry ,

( ) ( )Im i dR
U

R f r u u V1 1 c c
V

G H
G

=- -u
u

r r; Ey .

Here dimensionless Gu  and Ru  are analogues of the optical 
confinement factor and amplitude – phase coupling constant 
with allowance for the fact that U, the norm of the eigenfunc-
tion ( )u rcr , is complex-valued. The angle brackets denote the 
scalar product of the vectors.

Equation (15) is an equation for a harmonic nonlinear 
oscillator with a small gu  parameter. It is one of the van der 
Pol-type equations for self-oscillating systems, well studied in 
the theory of oscillations. The small parameter gu  is present as 
a coefficient of the nonlinear term ~ +(1 | | / )EE s

2 2 1- , whose 
physical meaning here is gain saturation as the average square 
of the oscillation amplitude, | |E 2 , rises.

Methods for a general analysis of such equations were 
developed as early as the first half of the 20th century. For 
this purpose, use is made e.g. of the van der Pol method or the 
Poincare method (see e.g. Andronov et al. [17]). In view of 
this, here we limit ourselves to known results. In the case 
under consideration, all solutions are characterised by two 
limit cycles. At a pumping level /p pth c1 g g= u , there is one 
stable limit cycle, which degenerates into the E  º 0 point. For 
p > pth, this point becomes an unstable operating point, 
whereas a circumference of radius A0 =  ( ) /E p p p2s th th-  in 
the van der Pol plane is a stable limit cycle. Thus, the pumping 
level p = pth is the lasing threshold. It follows from Eqn (15) 
that the limit cycle parameters E| | A0=  and w0 meet the rela-
tions

/pth cg g= u ,	

(2 ) (1 )R 0c c c0
2

0
2w w g ew w eD D- - - + =u u u ,	 (16) 

2 2
| | /

2 .i ip
E
R R

1
1
E s

c c2 2g g g-
+

- =u
u u

They reflect the facts that the saturated gain above thresh-
old,   +2 (1 | | / )p EE s

2 2 1g -u , is exactly equal to the loss 2gc and 
that the frequency w0 = wc + Dw differs from the resonance 
frequency wc of a ‘cold’ cavity by Dw » (1 /2)Rc

1g eD+ -u u  
because of the carrier-induced change in the refractive index 
of the medium of the cavity at the lasing threshold. Gain 
saturation above threshold automatically means that the 
electron concentration is constant at the threshold level 

( 1)pN Nth tr th= +  and that the threshold pump current is 
/J e VNth th act t= .

Thus, independent of the initial conditions, | | AE 02  or 
| | AE 01 , all possible solutions to Eqn (15) tend to the form

( ) ( )exp it A tE 0 0w j= - + ,	 (17)

where   2( ) /A E p p ps th th0 = -  and w0 » (1 /2)Rc cw g eD+ -u u . 
This form corresponds to the generation of an ideal mono-
chromatic oscillation with an amplitude A0 and, accordingly, 
an output power ~A0

2, which is a linear function of the pump-
ing level p above threshold.

One important feature of the obtained solution ( )tE =  
( )exp iA t0 0w j- +  is that it does not require or contain any 

external field sources, e.g. such as produce spontaneous emis-
sion. This fundamentally distinguishes (17) from solutions 
presented in Refs [7 – 9] and other works based on the ‘asymp-
totic lasing threshold’ approach.

5. Equation for the cavity mode amplitude  
in a diode laser with allowance for spontaneous 
emission sources

In what follows, an additional term in polarisation, due to 
intrinsic charge motion unrelated to a stimulating field E(w), 
is included in D(t). This term was ignored in (14). Equation 
(12) then takes the following form:

+
¶

¶
¶

¶( , )
( ) ( , , ) ( ) ( ) 4i

t
D r t

r N t u r
t

E P
c c c c2

2
2
0 0 2

2
pw g e w- =-

int

r .	(18)

Let P int  be represented in the form

( )
( )

( )
( )

( )r
r

q r t
r

td1 1P int
j j

j

r

j
j

rj j

u u= =

! !u u
int r r/ / ,

where ( ) ( ) ( )exp it d t td ej j j 0w= -r .
The right-hand side of Eqn (18) now contains a ‘random’ 

force vector (Langevin source). It results from an acceler-
ated charge motion in the form of quasi-periodic, uncorre-
lated oscillations of dipoles in a physically small volume u(r) 
centred at point r. Each dipole is described by its own ran-
dom function dj (t) and unit vector ej. Clearly, the key lasing 
characteristics, such as the field amplitude ( ),tE  concentra-
tion N(t) and phase j(t) are then also random functions of 
time.

There are various methods of solving problems containing 
random quantities. Here we use one of them, based on sto-
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chastic equations with linearisation of nonlinear terms in the 
vicinity of their average ‘operating’ values. Previously [18], it 
was used to study the fine structure of the optical spectrum of 
a single-frequency diode laser at various fluctuations in cavity 
parameters, including the temperature and density of the 
medium. This method is valid if amplitude fluctuations are 
small compared to the corresponding quantities in the absence 
of fluctuation sources. In our case, this means that the pump 
current is well above threshold. In further analysis, we take 
into account this constraint.

Using the solutions (17) found above for the homoge-
neous equation (15), we represent the field amplitude ( )tE  
and dielectric permittivity e for the inhomogeneous equation 
(18) in the following form:

( ) ( ) ( )exp it A t tE 0w= - ,

( ) [1 ( )] [ ( )]exp iA t A a t t0 j= + - ,	 (19)

( , ) ( ) [1 ( )]N r t N r n tth= + u ,

( , , ) ( , , )r N r Nth de w e w e= + u ,	 (20)

where

( ) ( ) ( )icn R f r n tNact thde w
s

=- +u u ;

a(t) and j(t) are real functions describing field amplitude and 
phase fluctuations; and the dimensionless real function ( )n tu  
describes electron concentration fluctuations. All these fluc-
tuations are a dynamic response of the laser system to the ran-
dom force represented by the right-hand part of (18).

Substituting the expressions (19) and (20) for ( )tE  and 
e(r, w, N) into (18) and then performing operations analogous 
to those in Section 4, namely, dot multiplication by ( )u rcr  and 
integration with respect to volume, we obtain an abbreviated 
equation for the amplitude A(t):

(1 )
( / )

( ) ( )
d
d i i
t
A n R A

U
d t u re

1 2
2

j j c
j

r V

0
0

actj

G Hp
e

w
DW- - =

+

!

u u
u

r/ ,	 (21)

where the frequency /(1 /2)0 g eDW = +u u  characterises the 
inverse intracavity field build-up time. In deriving (21), we 
used the following relation stemming from (11):

( ) ( , , ) ( , , ) .i d du u N r V u u N r Vtr thc c c c c c c
2

0
2

0G H G Hw g e w w e w- =r r r ry y

Substituting the expressions for the field amplitude (19) into 
(7) and (21), we obtain a system of equations for amplitude 
fluctuations a(t), relative electron concentration fluctua-
tions ( )n tu  and the ‘instantaneous’ frequency deviation n = 
dj/dt:

( )
d
d
t
a n F t0W- =u ,   ( ) ( ) ( ) . .i c cF t d t u rej j c

j

r Vactj

G Hx= +

!

r/ ,

( )Rn t0 nW F- =u ,   ( ) ( ) ( ) . .c ct d t u rej j c
j

r Vactj

G HxF = +

!

r/ ,	
(22)

(1 ) 2 ( )
d
d
t
n n a h tt qh h+ + + =
u u ,   p

p1
N N
N

th tr

th

th

thq =
-

=
+ ,

x » 
(1 /2)A U0

0p
e

w
D+ u

.

The dimensionless parameter q characterises the difference 
between the transparency threshold of the active medium and 
the lasing threshold.

The equation for electron concentration fluctuations 
contains an additional Langevin source of possible fluctua-
tions, h(t), corresponding to pump current fluctuations J = 

( ),J J td+  where J  is the average current), e.g. due to shot 
noise:

dJ(t) = Jthh(t).

The system of equations (22) can readily be solved by Fourier 
expanding the functions a(t), ( )n tu  and n(t) and representing 
the result through the F(W), F (W) and h(W) Fourier trans-
forms of the functions F(t), F (t) and h(t):

( ) ( ) ( )exp i dF t F tW W W= -
D

D

-
y ,

( ) ( ) ( )exp i dt tF F W W W= -
D

D

-
y ,

( ) ( ) ( )exp i dh t h tW W W= -y ,   0w wW = - .

The integration limits (D) are such as to cover a physically 
significant frequency range. In particular, for F(W) and F (W) 
we have D ³ Dwsp, where Dwsp is the spontaneous emission 
linewidth. In subsequent analysis, we use a ‘slow’ frequency, 
W, along with w0.

Slow dynamics of an individual dipole, dj (t), can also be 
represented in the form of a Fourier integral:

( ) ( ) ( )exp i dd t d tj j 0w W W W= + -
D

D

-
y .

For F(W) and F (W) we then have

( , ) ( ) ( )iF r d u rej
j

r V

j c0

actj

G Hx wW W= +

!

r/

	 ( ) ( )i d u re* *
j

j

r V

j c0

actj

G Hx w W- -

!
*r/ ,

( , ) ( ) ( )r d u rej
j

r V

j c0

actj

G Hx wF W W= +

!

r/

	 ( ) ( )d u re* *
j

j

r V

j c0

actj

G Hx w W+ -

!
*r/ ,

Solving the linearised system (22), we find the spectral densi-
ties of field amplitude, concentration and frequency fluctua-
tions: ga(W), gn(W) and gn(W), respectively. They are related 
to the corresponding amplitudes in the following way, stan-
dard for steady-state processes:

( ) ( ) ( ) ( )a a ga dW W W W W= -* l l ,
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( ) ( ) ( ) ( )n n g*
n dW W W W W= -l lu u ,	 (23)

( ) ( ) ( ) ( )g* dn nW W W W W= -nl l .

In finding the spectral density of dipole oscillations, dj (t), we 
assume them to be statistically independent, so the following 
equalities are valid:

( ) ( ) ( ) ( )d d g ,j i d j iw w w d d w w= -l l ,	

(24)

| ( )| ( )dd t d g
2j d

2 0
2

0w W W= = +
D

D

-
y .

Here ,j id  is the Kronecker delta and d0 is the dipole oscillation 
amplitude. Finally, all key characteristics of fluctuations can 
be expressed through the spectral density of spontaneous 
emission sources, gd (w), which in turn can be found if we 
know d0

2 and r(w) (form factor of spontaneous emission 
lines). The amplitude d0 can be found via direct calculation of 
the corresponding matrix element, but a simpler and more 
convenient approach is to employ the classical – quantum cor-
respondence principle for dipole emission power. In classical 
theory, the power is /( )P n d c3act0

4
0
2 3w= ; in quantum theory, 

we have /P 0'w t= . Therefore, 3 ( )d c nact0
2 3

0
3 1' w t= - .

As to the form factor of spontaneous emission lines, rep-
resenting it by the dimensionless function r(w) º r(w0 + W) 
normalised to unity at its spectral maximum, we obtain

( ) ( )
2

g
n
c3
act sp

d 0 0
0
3

3'w r w
w t wD

W W+ = + ,	 (25)

where

( )dsp 0w r wD W W= +
D

D

-
y .

Thus, using the expression for gd (w0 + W ) and solutions to 
system (22) for fluctuation amplitudes, we finally obtain the 
following expressions for the spectral densities of these fluc-
tuations:

+( )
| | ( / )

[ ( ) ( )] ( )g N
A U

Q Q H
2 1 2

a a a a
0
2

0'b
e t

w
D

W W W W=
+

+ -
u

,

(26a)
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1 2
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0
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2 2 2 2
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e t g
w h r w r w
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+ - +

+ + -
+

u 6 @
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(26b)
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2
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Here

N VNth act= ;    ( )
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2 2 2 2
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act sp0
2

2 3 G Hp
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is a dimensionless coefficient; and

( )
( ) ( )

r
u u

u r u re e

c c

j c j c

G H
G HG H

z =
*

*

r r

r r
.

The spectral density of current fluctuations, gh(W), is given by

 ( ) ( ) ( ) ( ) .h h g*
h dW W W W W= -l l

The parameter z(r) takes into account possible dipole moment 
anisotropy (for example, due to the quantum size effect) in 
the active region. In the isotropic case, z =1/33. The parame-
ter b can be interpreted as characterising the fraction of spon-
taneous emission in the laser cavity mode. Note that, in the 
limit of a homogeneous and isotropic medium with character-
istic geometric cavity dimensions far exceeding optical wave-
lengths, this parameter tends to the inverse of the phase vol-
ume occupied by the electromagnetic wave field, i.e. to the 
frequently used expression in the form D3kV/(2p)3 (the num-
ber of modes in this volume). If cavity dimensions are compa-
rable to optical wavelengths, the definition of this factor is 
less simple and less general. In our calculations, it appears 
automatically as the electrodynamic problem is solved. 
Above, b always appears together with the factor N, which 
denotes the total number of electrons in the active region. 
This corresponds to their physical meaning with respect to the 
effect of spontaneous emission in the form of expressions (26).

Thus, expressions (26) for the spectral density of ampli-
tude, electron concentration and frequency fluctuations allow 
diode laser noise related to spontaneous emission and steady-
state random pump current fluctuations to be characterised in 
sufficient detail.

Figure 1 shows spectral densities of fluctuations calcu-
lated using formulas (26) for a vertical cavity diode laser as an 
example. The parameters used in the calculation were similar 
to those obtained by Vas’kovskaya et al. [19] and Blokhin et 
al. [20] for vertical cavity surface-emitting lasers. Particular 
values are as follows:

V nn n
K c 5 10*
actp

2

0

3 4
#

p
b

m
w= = -` j ;

.n 3 5= ;   3.n 8*= ;

 nact = 3.6;   2 /c0 pw l= ;  l = 0.85 mm;

effective cavity volume

(1 /2) ( ) ( ) ( ) [ (0) (0) ]dV u r u r r V nn u u* *
p 0

1G H G He eD= + -u r r r ry ;

3 ( ) ( ) ( ) ( ) dr f r u r u r V* #G Hm z= r ry
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	 ( ) ( ) ( ) 0.4;du u f r V0 0*
1

# G H =
-

r r< F#

K 30
sp

0

w
w
D= = ;

energy stored in the cavity

 
| | ( / )A U P

8
1 2

2
las0

2

0p
e

k
D

W
+

=
u

;

W 0 = 250 ́  109 rad s–1; q = 10; t = 1 ns; dimensionless (W W–1) 
lasing efficiency k = 0.34; R 3=u ; and spontaneous emission 
power / / 0.37P N I eth' 'w t w= = =  mA ´ 1.45 V = 0.54 mW.

We should also take into account additional information 
about the nature of the noise source, namely, information 
about fluctuations resulting from the summation of a huge 
number of ‘small’, independent, random impacts. In other 
words, by virtue of the Moivre – Laplace theorem they are 
characterised by a normal distribution law. This means that 
a(t) amplitude and ( )n tu  carrier concentration fluctuations and 
the phase change (increase in phase in a finite time interval) 
also have a normal distribution law, with a standard devia-
tion determined by the integral of the corresponding spectral 
density in the form of relations (26).

The spectrum of frequency fluctuations, gn(W ), allows one 
to find the optical emission spectrum of a single-frequency 

laser due to spontaneous emission, S(w0 + W). According to 
previous work [21], neglecting a(t) oscillation amplitude fluc-
tuations we obtain

S(w0 + W) » 
3 ( )

( )exp cos dA t
t t

2 2
F0

2

0
W-; Ey ,	 (27)

where the function

( ) ( ) (0)t tF 2 2j j= -  » 
3

2 ( )
( )cos

dg
t1

0
2W

W
W

W-
ny

characterises time diffusion of the laser oscillation phase 
(oscillator ‘clock’ accuracy). Figure 2 shows ( )tF  phase diffu-
sion and the S(w0 + W) optical spectrum of a vertical cavity 
diode laser as an example. It is seen that, with increasing laser 
output power, the fluctuation amplitudes decrease and the 
resonance frequency rises. This is due to the stabilising effect 
of laser light as a consequence of the higher stability of the 
laser operating point and the faster response of the laser sys-
tem owing to the shorter ‘stimulated’ transition time. At suf-
ficiently long t, the function ( )tF  is proportional to t, con-
firming that the motion of the phase has a diffusion character. 
Numerical calculation using (27) indicates that S(w0 + W) can 
be approximated with good accuracy by a simple expression 
[12, p. 312]:
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Figure 1.  Spectra of fluctuations in (a) the laser emission amplitude 
normalised to the lasing amplitude A0, (b) the electron concentration 
normalised to the threshold value and (c) the laser frequency.
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Figure 2.  (a) Root-mean-square time diffusion of the phase F , (b) ef-
fective phase diffusion coefficien F (t/t)–1 and (c) laser emission spec-
trum S(w0 + W) at different laser output powers and linewidths 
(FWHM): ( 1 ) Plas = 0.0785 mW, Dn0.5 = 241.9 MHz; ( 2 ) 0.19 mW, 
92.7 MHz; ( 3 ) 0.34 mW, 52.2 MHz; n = W/2p. The dashed line shows 
the spectrum calculated using formula (28). The calculation parameters 
are the same as in the case of Fig. 1.
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S(w0 + W ) 

» 
( (0) / )

( ) ( ) (0)A
g

g g g
4 2

00
2

2 2 2p W W
W

+
+

-

n

n n n= G.	 (28)

The optical spectrum has the form of a narrow laser line 
[with a full width at half maximum dw » pgn(0)] having a near 
Lorentzian shape, centre frequency w0 and weak, broad 
wings. The wings have two symmetrically located local max-
ima (or ‘shoulders’ at a sufficiently high laser output power) a 
distance ~W1 from the laser line, which correspond to the sec-
ond term in the square brackets in (28). They correspond to 
the Stokes and anti-Stokes laser light scattering by electron 
concentration fluctuations.

According to (26c), the laser linewidth dw » pgn(0) is 
given by

dw » 
| | (1 /2)
( )

(1 )
Q
PN

A U
R

R
10

0
2

2
2' p

b t
w

e
b

D+

+
= +

u

u
u ,	 (29)

where

P N 0'
t
w

=  and | | /Q A U 1 2
0
2

p
eD

= + u .

In (26) the laser frequency w0 is thought to be located near 
the maximum of the spontaneous emission spectrum, so 
r(w0 +W ) » r(w0 – W ) » 1. Formula (29) for dw has a clear 
physical meaning if we take into account that P is the total 
spontaneous emission power and Q is proportional (to within 
a numerical coefficient) to the laser cavity mode energy and is 
in qualitative agreement with previously reported results. A 
more accurate comparison of dw with other results is difficult 
to perform because of the significant distinctions between the 
physical models used and determinations of b and the norm U 
of the mode. The following expression is typically used as a 
norm:

( , , ) ( ) ( ) dU N r u r u r Vc c c
V

0 0 G He w= *r ry

(by analogy with calculations in quantum-mechanical prob-
lems). It includes not only a standing wave but also travelling 
waves, whereas the expression for U used in this study includes 
mainly a standing wave in the cavity of a diode laser.

6. Conclusions

The present results demonstrate that applying Maxwell’s 
equations to the diode laser leads to a van der Pol-type equa-
tion which has a nontrivial solution without any extra emis-
sion sources (in addition to stimulated emission), in particular 
without spontaneous emission sources.

Taking into account spontaneous emission makes the 
physical model of the diode laser more realistic. Perfectly 
monochromatic light in the van der Pol model is replaced by 
quasi-monochromatic light that has a finite spectral width 
due to spontaneous emission.

We have found an expression for the spontaneous emis-
sion factor that quantifies the effect. The same expression 
is often used for this factor in different problems. It is 
worth noting here that the expression obtained in this 

study for the factor of spontaneous emission to a cavity 
mode differs significantly from that found e.g. by Blokhin 
et al. [20] for the factor of spontaneous emission to one 
transverse mode of a travelling wave. This lends support to 
the idea put forward in discussion in Ref. [20] that a par-
ticular expression for this factor depends on the problem in 
which it is to be employed.

We have obtained for the first time expressions for modi-
fied Gu  and Ru  optical confinement factors and the ampli-
tude – phase coupling constant for a laser cavity.

Expressions have been found for the spectral densities of 
phase and amplitude fluctuations and the spectral density of 
electron concentration fluctuations. All these and other quan-
titative characteristics, including the optical spectrum, have 
been expressed through diode laser parameters that can be 
found from independent experiments or calculated if the 
diode cavity configuration is known.

Lasing and lasing threshold retain their meaning with and 
without spontaneous emission. Clearly, spontaneous emis-
sion leads to fluctuations in all dynamic quantities, which can 
be viewed as lasing threshold ‘broadening’. But this is dynamic 
‘broadening’ (fluctuating in time), rather than some constant 
difference between the gain and cavity loss, in contrast to 
what is assumed in phenomenological ‘asymptotic threshold’ 
models [7, 8] using rate equations.

Another fundamental distinction between the present 
results and results obtained in the ‘asymptotic threshold’ 
models is related to statistical properties of light. As 
pointed out above, the lasing amplitude probability den-
sity in our model has a normal distribution law around its 
average A0. The ‘asymptotic threshold’ model for sponta-
neous emission amplified to the same power and having the 
same spectrum always gives a Rayleigh distribution for its 
amplitude. These are absolutely different distributions 
with different consequences, e.g. in Brown – Twiss interfer-
ometry experiments.
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