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Abstract.  Taking into account spontaneous emission by adding its 
intensity in the form of a constant term to the laser emission inten-
sity in rate equations is shown to be an inadequate approach. The 
use of rate equations without equations for phases of waves is lim-
ited to problems in which light is characterised by its total intensity, 
without its spectral composition. Such equations are incapable of 
adequately modelling the emission spectrum of diode lasers.
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1. Introduction

This paper can be viewed as a continuation of a previous one 
[1]. I use the same notation as previously and continue to crit-
ically examine the approach to the theory of the diode laser as 
a laser with an ‘asymptotic’ lasing threshold and the ideas 
described in Refs [2, 3].

In the literature dealing with diode lasers, so-called rate 
equations are rather often used as a point of departure for 
analysis of their characteristics. They are very convenient 
owing to their clarity and simplicity. In problems where 
coherent properties of light are unimportant and only the 
total light intensity is considered, these equations rather ade-
quately describe the real situation because the underlying 
physical models rely on the conservation-of-energy principle 
as applied to a system comprising a gain medium and an elec-
tromagnetic field in a cavity.

From early work (see e.g. Basov et al. [4] and references 
therein) to the present day, rate equations have been success-
fully used to study unsteady-state operation of diode lasers 
and the dynamics of laser output intensity in the case of direct 
high-frequency modulation by the pump current. The conve-
nience and simplicity of using rate equations led many 
researchers to modify them in order to extend the range of 
problems that can be treated using them. This probably was 
one of the reasons that works began to appear where the 
physics underlying rate equations turned out to be insufficient 
for solving the problems involved. This refers to studies of the 
steady-state operation of diode lasers, in particular to analy-
sis of spectral characteristics of light in this mode. Indeed, a 
given energy in a cavity can be concentrated in one spectral 
line or distributed over several lines (modes). In connection 

with this, it became necessary to modify rate equations with 
allowance for additional physical mechanisms capable of 
controlling the energy distribution over laser cavity modes. It 
turned out that, in Refs [2, 3] and other works, rate equations 
were modified inadequately.

Given the above, the purpose of this work is to analyse the 
applicability of rate equations to modelling the spectral char-
acteristics of diode lasers.

2. Analysis of rate equations

In this work, rate equations, no matter how written, are taken 
to mean equations in which an electromagnetic field is repre-
sented only by light intensity (absolute square of the wave 
amplitude) at one or several optical frequencies, whereas the 
phase of waves at these frequencies is completely ignored. 
Another feature of rate equations is that spontaneous emis-
sion is taken into account by introducing a constant term or 
terms for the intensity of each laser mode. The most complete 
and typical form of rate equations is presented in Suhara [5] 
[Eqns (6.29a) and (6.29b)]:
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where (like in the original publication) Sm and Gm are the pho-
ton density and gain coefficient of the mth mode; N is the 
electron concentration (inversion density); tph is the photon 
lifetime in the cavity; the coefficient Csm takes into account 
the contribution of spontaneous emission to the mth mode; 
Gm is the optical confinement factor of the mth mode; the 
coefficients xmj take into account gain saturation; d is the 
thickness of the active layer; q is the electron charge; J is the 
pump current; and ts is the spontaneous recombination time.

It is worth noting two serious drawbacks to Eqns (1) and 
(2). One of them is that spontaneous emission is taken into 
account without proper substantiation and, as a consequence, 
inadequately. Indeed, physical considerations suggest that 
spontaneous emission ‘entering’ a particular cavity mode is 
spectrally limited by the transmission band of the cavity. This 
means that it will certainly interfere with (‘laser’) light already 
present in the mode. Since the transmission band of the cavity 
corresponds to the inverse of its response time, such dynamic 
interference will lead to inversion dynamics and, hence, the 
dynamics of the gain and other lasing parameters. The 
dynamic interference effect due to the addition of the ampli-
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tudes of a strong (laser) and a weak (spontaneous) field con-
siderably exceeds the effect due to the addition of their inten-
sities. In connection with this, taking into account spontane-
ous emission by adding a time-independent term to the 
intensity (addition of intensities), which completely ignores 
the interference effect, appears at least unjustified.

The other drawback stems from the fact that the equa-
tions are written not in terms of mode amplitudes but in 
terms of mode intensities, Sm, so they automatically ignore 
the mechanism of interaction between the fields of different 
modes through intermode intensity beating and the corre-
sponding inversion oscillations. Even in the first studies of 
lasers (see e.g. Refs [6; 7, p. 315]), this mechanism was 
included in analysis as predominant in multimode lasing. It 
can only be revealed by sequentially solving Maxwell’s equa-
tions together with equations for the gain medium density 
(inversion) matrix. In the case of diode lasers, interaction 
between the fields of different modes is especially strong. 
The corresponding induced additional gain (absorption) can 
exceed the spectral difference in material gain between 
neighbouring modes by an order of magnitude and more. 
This mechanism was first studied with application to diode 
lasers by Bogatov et al. [8]. To obtain direct evidence of 
whether or not the corresponding modification of rate equa-
tions is adequate for modelling the emission spectrum of a 
diode laser, I sequentially analyse the dynamics of lasing 
intensity proceeding from Maxwell’s equations for each 
physical process involved.

3. Contribution of spontaneous emission

Consider first a rate equation of the simplest form, which was 
used by Suhara [5] [Eqns (6.28a) and (6.28b)] for single-mode 
lasing:
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Sequentially deriving a dynamic equation for single-mode las-
ing intensity involves the following: All the terms of the 
abbreviated equation (21) in Ref. [1] for the ‘slow’ mode 
amplitude A(t) should be multiplied by the complex conjugate 
of the amplitude, A*(t), and then the same should be done 
with the complex conjugate of Eqn (21). Adding up the two 
equations obtained, we have
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Here | |S A Q2
!=  is the mode energy, which is often referred 

to (not quite adequately) as ‘photon density’, and the coeffi-
cient x ~ / Q1  is defined by relations (22) in Ref [1]. In this 
way, we obtain a dynamic equation for S, where n2W0 u  is a 
so-called net gain, i.e. gain minus loss. This expression is com-
pletely analogous to the term GG – 1/tph in (3b). The second 
term (in the square brackets) represents the action of sponta-
neous emission sources. It is nothing but energy inflow [or 

outflow, depending on the relationship between the phases 
of  A(t) and dj (t)] in the laser cavity due to the interference of 
the laser field with microcurrents of spontaneous emission 
sources. As a result, Eqn (4) describes the electromagnetic 
field energy balance in the laser cavity, including the term 
representing spontaneous emission sources. This can be 
imagined clearly if we take into account that harmonic time 
dependences of the field E(t) and dipole oscillations meet the 
relation
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where j(t) is the sum of microcurrents in the cavity due to 
intrinsic electron motion upon resonance transitions.

Thus, only Eqn (4) can be thought of as an adequate rate 
equation for single-frequency lasing with allowance for spon-
taneous emission sources.

The term CsN/ts, corresponding to spontaneous emission 
in (3), differs fundamentally from its analogue in (4), as a 
result of which the effect of spontaneous emission is inade-
quately taken into account in ‘asymptotic threshold’ models. 
The misinterpretation of the positive definite term CsN/ts, 
attributed to the effect of spontaneous emission and appear-
ing in equations of the form (3), is most likely the result of 
intuitive views of the addition of the intensities of separate 
fields: ‘laser’ field and ‘spontaneous emission’ field. Actually, 
these fields are indistinguishable and are a single field in the 
cavity. What can be thought of as spontaneous emission in a 
cavity originates in it from microcurrents of randomly oscil-
lating dipoles (incoherent with the laser field) at once in the 
form of stochastic modulation of the laser field amplitude. 
Gain saturation also results not from the sum of the ‘laser’ 
intensity and independently arriving ‘spontaneous’ emission 
but from a single field with an amplitude and phase modu-
lated by the currents of incoherently emitting dipoles, as 
shown earlier [1]. The latter refers to the interpretation of 
mathematical expressions and can be understood differently. 
This is particularly noticeable if lasing is interpreted in terms 
of quantum theory.

It is also worth paying attention to the fact that, perform-
ing operations over the starting equation (21) from Ref. [1], 
which led to the rate equation (4) for mode intensity S, we lost 
some of the information present in the starting equation (21). 
Equation (4) is not ‘closed-form’ because it does not contain 
the laser field phase in explicit form. It describes the dynamics 
of only laser output energy (intensity). It is easy to see that 
this information can be retained. To this end, we should find 
the difference A*dA/dt –  AdA*/dt. This will allow us to obtain 
another equation for the phase j:
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This equation together with (4) and the equation for electron 
concentration (3a) form a complete system similar to the sys-
tem of equations (22) and capable of providing adequate 
solutions analogous to those to Eqns (22).

Thus, Ivanov et al. [2] and Kurnosov V.D. and 
Kurnosov K.V. [3] are mistaken in not only that they inade-
quately represent the contribution of spontaneous emission 
but also that they basically ignore the dynamics of the laser 
field phase, which makes their calculation inadequate. 
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Clearly, in the case of single-frequency lasing, with spontane-
ous emission neglected, the rate equations (3) are quite ade-
quate. In such a case, they merely reflect the conservation-of-
energy principle. However, in the case of multimode lasing, 
Eqns (1) and (2) written in terms of individual mode intensi-
ties become, generally speaking, inadequate, even if spontane-
ous emission is neglected. Such equations do not contain 
dynamics due to oscillations at difference mode frequencies 
because the oscillation amplitude depends on phase relation-
ships between mode field amplitudes.

4. Photons in the cavity of a diode laser

Discussion of whether the presence of the term CsN/ts, 
thought to represent spontaneous emission, in a rate equation 
is adequate almost always evolves into discussion of whether 
this circumstance is obvious. As a rule, it is stated in this con-
text that, in a steady state, the energy balance constraint 
should be met in the laser cavity. Next, passing to the quan-
tum theory language, researchers put forward an argument 
that is convincing and obvious in their opinion: since the 
energy in a cavity is determined by the number of photons, 
the balance should be extended to include the number of pho-
tons. There are three mechanisms controlling such balance: 
stimulated emission, absorption and output coupling losses 
and spontaneous emission. Without spontaneous emission, 
the photon generation rate would be equal to the rate of 
decrease in the number of photons. However, an additional 
photon inflow due to spontaneous emission disturbs this 
equilibrium, so the gain in a laser is always lower than the loss 
because there is always spontaneous emission. Accordingly, 
lasing threshold is never reached. The gain in a laser only 
asymptotically approaches the loss from below as the pump 
current (laser output power) increases. According to a num-
ber of researchers, this is the ‘asymptotic’ property of the las-
ing threshold.

One observation follows from the doubtfulness of adding 
up and subtracting ‘photons’ like Cuisenaire rods. The con-
cept of photon emerged in quantum theory as a minimum 
discrete characteristic of a change in electromagnetic field 
energy. As to physical quantities, including field energy, they 
are found in quantum theory as the trace of the product of the 
operators of the corresponding quantity ( a+a for the number 
of photons) and the density matrix or as the average of the 
action of an operator on the wave function of a pure state.

Quantum theory treats an electromagnetic field as a sys-
tem of oscillators in which to each oscillator corresponds its 
spatial mode (see e.g. Ref. [7, p. 158]). In our case, this is a 
vector function of spatial coordinates, ( )u rr , defined by the 
classical equation (11) in Ref. [1]. In such a case, quantum 
theory deals only with the temporal dynamics of the field 
amplitude (for example, of the electric field intensity), which 
can be expressed through a generalised canonical coordinate  
xu  and generalised canonical momentum k of an oscillator 
using secondary quantisation. To a pure state with a particu-
lar energy or (what is the same) a particular number n of 
quanta (photons) there corresponds a wave function in a 
coordinate representation, ( )xnj u , in the form [9]

( , ) ( ) ( ) ( /2 )! exp ix t n H x x n t2/ /
n

n
n

21 4 1 2pj = - -- -
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where Hn is a Hermitian polynomial.
To this quantum state with a particular number of pho-

tons, n, there does not correspond any state of a classical 

oscillator. In this state, the potential and kinetic energies are 
equal to each other and time-independent, and the oscillation 
phase is not completely definite. An approximate classical 
analogue of this state is an ensemble of an infinite number of 
identical oscillators with an evenly distributed oscillation 
phase. For this reason, the state of the field in a laser cavity is 
described by other states, so-called coherent states, in which the 
potential and kinetic energies are oscillating functions of time, 
periodically transforming into each other (like in a classical 
oscillator), except for the zero oscillation energy. Each of these 
coherent unsteady electromagnetic field states, represented by 
the function ( , )x ty u , are a superposition of an infinite number 
of ( , )x tnj u  functions corresponding to steady states with a par-
ticular energy (number of photons) [7, p. 158; 9]. The function 
( , )x ty u  of a generalised canonical coordinate  xu  and time t can 

be written as follows:
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It follows from the right-hand side of Eqn (5) that, in the case 
of the existing dynamics of a coherent state of the field, its 
‘coordinate’xu  (field amplitude) behaves very similarly to the 
coordinate of a classical oscillator with an amplitude b! .

The average field energy in a cavity can be expressed 
through the average number of photons, nr , in a coherent 
state if we take into account that the numbers Cn

2 are a Poisson 
distribution with an average b2/2. As a result we obtain 

( / )n b 22 'w=r . Note here that it is somewhat inconvenient to 
use the quantum approach because, even though functions of 
a coherent state form a complete set, they are not orthogonal 
to each other, which further complicates the mathematics 
involved.

Another, no less significant, argument for choosing the 
classical approach is that, at e.g. a laser output power of at 
least 10 mW, cavity Q no less than 103 and photon energy of 
~1 eV, the number of photons is nr  > 10. It is clearly demon-
strated in Schiff [10] that, even at nr  = 10, the classical and 
quantum oscillator coordinate probability density distribu-
tions differ rather little. Since practically significant powers of 
diode lasers are well above 10 mW (the same refers to their Q), 
the field in their cavity can be analysed with good accuracy in 
terms of classical theory. In the IR and, especially, microwave 
regions, the critical power at which quantum effects are sig-
nificant only decreases. Because of this, in the vast majority of 
cases, self-oscillators are analysed in terms of quantum theory 
and its concepts just for the love of the game and sophisti-
cated mathematics.

Another remark should be made in connection with the 
notion of ‘spontaneous photons’ arriving at a laser cavity. It 
reduces to the observation that one often intuitively uses only 
one of the two representations of a photon, namely, corpus-
cular. Spontaneous emission emergence in a cavity reduces to 
sort of two steps. In the first step, all photons emerge. In the 
second, some of them enter the cavity in addition to the pho-
tons already present in the cavity. It should be kept in mind 

 



731Rate equations for the diode laser and their applicability area

that any arithmetic operations with the number of photons 
are the result of a very loose interpretation of quantum the-
ory. Quantum theory deals with amplitudes of states and 
operators. The creation of ‘spontaneous’ photons in a laser 
cavity is a change in the amplitude of the state of the field in 
the cavity as a result of its interaction with dipoles, which is 
represented by the dipole current operator and the vector 
potential of the field [7, p. 158]. The probability that a system 
is in a particular state is determined by the absolute square of 
its amplitude. As to the amplitudes of states, they can inter-
fere with allowance for their phases. This corresponds to the 
notion of interference between field amplitudes in classical 
electrodynamics.

5. Multimode operation of a diode laser

In analysing single-frequency lasing in previous work [1], we 
proceed from the fact that a spatial electron distribution, 
f(r), above threshold does not vary or varies insignificantly. 
This means that the electron ‘burnout’ due to stimulated 
transitions is compensated for by the pump current exceed-
ing threshold, the compensation being uniform throughout. 
Clearly, this is not so in general and such compensation is 
only possible in rare cases. To this end, special laser cavity 
designs are needed. The point is that the spatial pump distri-
bution J(r)/ed, inversion decay ~Im(de) ( , )E r t2r  and electron 
diffusion are different mechanisms, characterised by differ-
ent functions. The question that arises in this context is to 
what extent the change in f(r) described by Eqn (7) in Ref. [1] 
is critical so that it can be thought of as ‘small’ (in particu-
lar, from the viewpoint of the suppression of the single-fre-
quency lasing considered above and excitation of multiple 
modes).

Consider this issue with application to a diode laser hav-
ing a Fabry – Perot cavity and parameters similar to those 
for which calculations were performed and references to 
experimental data were given in previous work [2, 3]. The 
existence of modes and the possibility of exciting them are 
determined by Eqns (11) and (12) in Ref. [1]. In such lasers, 
modal losses  gk can be thought to be equal because they are 
spectrally independent. In connection with this, regular spec-
tral discrimination of modes is only due to the shape of the 
gain spectrum profile. It is easy to show that, in an ideal case 
(based on previously reported measurements [11, 12]), gain 
deficiency in the longitudinal below-threshold modes closest 
to the lasing mode with respect to it ranges from 10–5 to 10–4. 
This means that lasing occurs on an essentially flat top of the 
spectral profile.

A slightest distortion (at a level of 10–4) of such a gain 
spectrum profile entails either lasing switching from one 
mode to another or even suppression of single-frequency 
lasing and simultaneous excitation of several modes. 
Calculation of such spectral profile distortion upon electron 
distribution  N(r) ‘burnout’ involves finding a self-consistent 
solution to a complicated nonlinear problem which includes 
Eqns (7) and (9) and equations of the form (11). For exam-
ple, in the case of a laser with a Fabry – Perot cavity and a 
‘horizontal’ waveguide formed by amplification, the solu-
tion presented in Ref.  [1] is unreasonably simplified and, 
hence, inadequate. Indeed, to solve Eqn (7) one should 
know the spatial distribution ( )r u( ) ( )E r u r*2

!G Hr r r . To find 
u( )rr , it is in turn necessary to solve Eqn (11) for wk

2 eigenval-
ues and ( )u rkr  eigenfunctions. This requires knowledge of the 
complex dielectric permittivity  e(w, r) and, hence, the spa-

tial distribution N(r), which completes the iteration cycle. 
The functions ( )u rkr , N(r) and e(w, r) thus found prove to be 
interdependent. The interdependence is especially strong for 
all so-called gain-guided lasers, or lasers with a ‘weak hori-
zontal’ waveguide (in the plane of the p – n junction), in 
which ( )u rkr  [solution to Eqn (11)] is determined by the imag-
inary part of the e(w, r) profile. It is such lasers that were 
modelled not quite successfully in Ref. [3].

Clearly, such a problem cannot be solved analytically and, 
moreover, certain difficulties are encountered in attempts to 
solve it numerically. A separate, nontrivial problem is the sta-
bility of the solution found and the ambiguity of solutions to 
nonlinear equations. Nevertheless, some estimates can be 
done without solving this complicated problem.

We can separate out three main physical mechanisms 
responsible for regular distortion of the spectral profile of the 
modal gain at pump currents above threshold.

One mechanism is the spatial nonuniformity of pumping 
and inversion decay, as considered above.

Another mechanism is related to a fundamental property 
of a semiconductor gain medium, namely, to the dependence 
of the spectral profile of a gain line on electron concentration 
because of the sequential filling of the corresponding band 
(subband) of electron states. In such a case, the increase in 
gain with increasing electron concentration is accompanied 
by not only an increase in gain in the spectral maximum but 
also a considerable shift of the peak to shorter wavelengths. 
This effect is well known and has been the subject of extensive 
theoretical and experimental studies (see e.g. Batrak et al. [11] 
and Bogatov et al. [12]). In quantum-confined heterostructure 
lasers, the spectral shift can be comparable to the gain line-
width.

The third mechanism is the dependence of the transverse 
distribution of the field amplitude u( )rr  (intensity) along the 
plane of the layers on the distribution of the gain [imaginary 
part of e(r, N, w)] and, hence, wavelength (this was also con-
sidered above). If we take into account that even the funda-
mental transverse mode in the lasers under consideration 
occupies a region no smaller than the pump region (3 – 5 mm 
according to Gorlachuk et al. [13]) in a direction along the 
plane of the active layer, it becomes clear that the gain of this 
mode is determined by different shapes of spectral profiles. 
Each profile corresponds to its own concentration, which in 
turn varies from the highest value on the optic axis to zero in 
the peripheral parts of the active region.

Thus, spatial nonuniformity of the carrier distribution 
contributes to the ‘inhomogeneous’ gain linewidth, compara-
ble to the quasi-homogeneous linewidth. As a result, gain 
saturation is nonuniform not only spatially but also spec-
trally. Since the difference between the unsaturated and satu-
rated gains is of the same order as the threshold gain, The 
spectral distortion of the profile is comparable to its spectral 
width and the relative amplitude of such distortion always 
exceeds the above-mentioned gain deficiency (10–5 to 10–4) by 
several orders of magnitude. Accordingly, single-frequency 
lasing is almost never observed in this type of laser. Even a 
fraction of a percent above the lasing threshold, excitation 
conditions are fulfilled for several modes. As a result, the las-
ing threshold of such lasers is sometimes difficult to determine 
from spectral measurements only. With increasing pump cur-
rent, a typical experimentally observed picture for such lasers 
appears as a smooth transition from a few spectral lines of 
amplified spontaneous emission to a picture of several multi-
mode lasing lines. Note that, as the pump current rises to 
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above threshold, the number of excited modes sequentially 
increases and the laser spectrum broadens, reflecting the spec-
tral flattening of the saturated effective modal gain profile 
near its top.

Such behaviour of the spectrum proves to be rather sensi-
tive to a particular laser design and even to distinctive fea-
tures of a particular sample, which can be related to devia-
tions of the optical properties of the diode cavity from ideal 
properties because of its technological imperfections. All this 
leads to diverse behaviour of experimentally observed spectra 
of this type of laser.

In other words, unlike Kurnosov V.D. and Kurnosov 
K.V. [3], I think that the problem is not to explain multimode 
lasing but to formulate single-frequency lasing conditions. 
Assumptions about them were made previously [1]. Potential 
candidates for single-mode (single-frequency) lasers are 
diodes in which the spatial distribution of the mode ampli-
tude uk ( )rr , i.e. the solution to Eqn (11) in Ref. [1], is only 
determined by the real part of e(w, r) and is independent of its 
imaginary part. This is possible if ‘frozen-in’ (set by the dielec-
tric cavity design) spatial variations in the real part of permit-
tivity, dRe(e0(w, r), far exceed variations in its part related to 
electrons, | de(w, N(r), r) |. In such a case, Eqn (11) drops out 
of the system and can be solved separately. Besides, gain defi-
ciency (difference) between neighbouring modes should be 
sufficiently large. This can be reached e.g. by using a small 
cavity length or placing a spectrally selective component in 
the cavity.

Not only the three mechanisms considered above can be 
responsible for multimode lasing. In some diode laser designs, 
multimode lasing is a consequence of periodic self-sustained 
pulsations of light at a gigahertz frequency. The pulsation 
regime was the subject of one of the first studies dealing with 
diode lasers [14]. Bogatov et al. [15] demonstrated connection 
of the pulsation regime with multimode lasing. Later, special 
diode laser designs were proposed in which this regime 
emerged reproducibly at regular intervals slightly above the 
lasing threshold [16]. Such lasers have a regular spectrum 
(with a controlled linewidth) and are used in CD devices for 
suppressing speckle patterns during reading. Another impor-
tant mechanism governing the formation of a multimode las-
ing spectrum is nonlinear interaction of modes through 
dynamic inversion oscillations at a difference frequency (see 
e.g. Refs [8, 17, 18]).

The purpose of the above is to call attention to the fact 
that the mechanisms responsible for multimode lasing are 
unrelated to spontaneous emission. Spontaneous emission 
does not play any role in the formation of a multimode lasing 
spectrum, in contrast to what is stated by a number of 
researchers {see e.g. formula (13) in Ref. [3] and formula 
(6.42) in Ref. [5]}.

In this context, it is worth mentioning work by Meller et 
al. [19], who rather adequately took into account the contri-
bution of spontaneous emission to lasing on a large number 
of modes. Quite reasonably, they divided the problem into 
two independent parts: the problem of multimode lasing in 
the absence of spontaneous emission, whose solutions they 
used, assuming them to be known, and the problem of assess-
ing the effect of spontaneous emission on each mode. The lat-
ter problem was the subject of their report. Its result differs 
little from that obtained in Ref. [1]. The effect of spontaneous 
emission reduces exclusively to spectral broadening of excited 
modes, for which a threshold condition is met no matter 
whether or not there is spontaneous emission.

6. Two-photon absorption

The use of the ‘asymptotic threshold’ model leads to a para-
doxical result as an unavoidable consequence. At a suffi-
ciently high pumping level, the emission spectrum should 
always have the form of a single, predominant line, whose 
intensity rises linearly with current, whereas the intensity of 
the other modes should saturate at some constant level. 
Clearly, this is absolutely inconsistent with reality because, as 
mentioned above, the vast majority of diode lasers operate in 
a multimode regime, if they do not have a specially designed 
cavity.

Clearly, this led to a search for ‘foreign’ physical mecha-
nisms capable of modifying the model in question so as to 
eliminate the inconsistency between theory and experiments. 
According to Kurnosov V.D. and Kurnosov K.V. [3], one 
such mechanism is nonlinear optical losses due to two-photon 
absorption. Taking into account such absorption in their 
model, they simulated a multimode diode laser spectrum. The 
input rate equations were as follows:

( )
d
d
t
S G S S R S1 1

ph
sp

m
m m m m

2e t b g= - - + -; E ,	 (6a)

( )m
d
d
t
N

eV
I R G S S1
cta

meS= - - -S .	 (6b)

Here Sm and Gm are the photon density and gain coefficient 
of the mth mode; tph is the photon lifetime; the coefficient b 
takes into account the contribution of spontaneous emission 
to the mode; g is the nonlinear loss due to two-photon 
absorption; e is the spectral hole burning coefficient; Rsp is 
the spontaneous recombination rate; RS is the total rate of 
radiative and nonradiative recombination; Vact is the vol-
ume of the active region; e is the electron charge; and I is the 
pump current. This form of rate equations, used in Ref. [3], 
coincides with the typical form of such equations used by 
other researchers, except for the last term on the right-hand 
side of (6a).

That Eqns (6) are inadequate for analysing spectral char-
acteristics of diode lasers was pointed out above. Kurnosov 
V.D. and Kurnosov K.V. [3] went even further. Using numer-
ical simulation, they allegedly showed that introducing a neg-
ative term, – gSm

2 , into (6a) leads to a transition from single-
mode to multimode lasing. Below, it will be shown that this is 
another erroneous result.

Note first of all that, in the few-mode regime, the total 
intensity S(t) is an inherently dynamic quantity, because there 
is field intensity beating at different frequencies. Let us repre-
sent the complex field intensity amplitude of multimode las-
ing, ( )tE , in the form of an expansion in terms of modes:

( ) ( ) ( )exp it A t tE k k
k

w= -/ .

The total intensity S(t) can then be written as the average (Su ) 
and a variable part a(t), whose average is zero in the case of 
quasi-steady-state multimode lasing:

( ) ( )S t S a t= +u ,	 (7)

( ) ( ) ( ) ( )exp ia t A t A t t
2
1 *

k j k j
k j

w w= - -
!

6 @/ ,	 (8)
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where

| ( ) | ( )S A t S t
2
1

m m
m m

2
= =u / / .

It is seen from (8) that, if the variation in the Ak(t) ampli-
tudes is sufficiently slow, the dynamics of the a(t) intensity are 
represented by a quasi-periodic function with a period T0 = 
2p /W = 2Lngr /c, which corresponds to the cavity round-trip 
time, where W = | wj – wj+1 | is the intermode intensity beat 
frequency.

Like in (6), in Eqn (8) the coordinate dependence, which 
corresponds to the spatial intensity distribution in the cavity, 
is neglected. This is an inherent drawback and property of 
rate equations, but in the case under consideration a different 
issue is of importance. Equations (6) do not contain a dynamic 
term ( )a t!  at all. This makes them initially inadequate 
because two-photon absorption is a ‘fast’ process, which 
responds to instantaneous intensity, and one should take this 
into account when performing any averaging. Summing (6a) 
over m and averaging over ‘slow’ time T ³ T0, we obtain for 
multimode lasing

[ ( ) ] ( ) ( ) ( )
d
d
t
S G N S T S T b T2a g g= - --
u u u ,	 (9)

where ( ) ( )b T a T2
=  > 0.

The steady-state equation for single-frequency intensity 
S0 has the form

[ ( ) ]
d
d
T
S G n S S0 0 0 0

20 a g= = - - .	 (10)

Let S(0) = S0 at time T = 0. Using (10) and the fact that  
gb(t) ³ 0 is a positive quantity, we obtain / ( )d dS t b tg=-u  £ 0. 
Given that Su  can be only positive or zero, we find that two-
photon absorption leads to further stabilisation of single-
frequency lasing and suppression of multimode lasing. In 
contrast, single-frequency lasing suppression and a transi-
tion to multimode lasing can be caused by the nonlinear 
absorption mechanism, which has the opposite sign (  g < 0), 
for example, saturable absorption. This mechanism is well-
known in laser physics and employed in passively Q-switched 
and passively mode-locked lasers [20]. We have to conclude 
that Kurnosov  V.D. and Kurnosov K.V. [3] seem to be 
unaware that two-photon absorption was proposed previ-
ously (almost 50 years ago), not quite properly, by Popov and 
Shuikin [21] as a mechanism of multimode operation of diode 
lasers.

7. Conclusions

Thus, the present results demonstrate that the applicability 
area of rate equations for diode lasers is limited to simulation 
of the dynamics of their total output intensity and does not 
include details of their emission spectrum.

Attempts to take into account spontaneous emission in 
the framework of rate equations are likely to lead to errone-
ous (inadequate) results. The reason for this is that rate equa-
tions completely ignore one of the main characteristics of 
lasers: coherence of their output. Rate equations can be mod-
ified further by adding equations for phases, but this will 

hardly simplify analysis compared to the use of equations for 
amplitudes derived directly from Maxwell’s equations.

Modelling a steady-state emission spectrum of a diode 
laser using rate equations, in particular, that in Ref. [3], 
should be considered erroneous.

At present, it seems questionable from the viewpoint of 
both practical application and the development of theory 
whether modelling multimode operation of diode lasers is a 
topical issue. There is only one example of a practical prob-
lem in which reduced laser coherency was needed. It was men-
tioned by Miftakhutdinov et al. [16] in the context of the 
development of CD devices. The problem was resolved in its 
time and is no longer of practical importance because the 
manufacture of CDs is currently very limited, if any. Also, the 
issue hardly has something new for theory, and possible 
results can hardly be useful because of their inherently limited 
applicability.

Acknowledgements.  This work was supported by the RF 
Ministry of Science and Higher Education (state research task 
No. 0023-2019-0002).

References

  1.	 Bogatov A.P., Drakin A.E. Quantum Electron., 49 (8), 717 (2019) 
[ Kvantovaya Elektron., 49 (8), 717 (2019)].

  2.	 Ivanov A.V., Kurnosov V.D., Kurnosov K.V., Romantsevich V.I., 
Ryaboshtan Yu.A., Chernov R.V. Quantum Electron., 36 (10), 918 
(2006) [ Kvantovaya Elektron., 36 (10), 918 (2006)].

  3.	 Kurnosov V.D., Kurnosov K.V. Quantum Electron., 48 (9), 807 
(2018) [ Kvantovaya Elektron., 48 (9), 807 (2018)].

  4.	 Basov N.G., Nikitin V.V., Semenov A.S. Usp. Fiz. Nauk, 97 (4), 
561 (1969).

  5.	 Suhara T. Semiconductor Laser Fundamentals (New York – Basel: 
Marcel Dekker Inc., 2004) Ch. 6.6.3. 

  6.	 Lamb W.E., Jr. Phys. Rev., 134 (6a), A1429 (1964).
  7.	 Quantum Optics and Electronics (New York: Gordon and Breach, 

1965; Moscow: Mir, 1966).
  8.	 Bogatov A.P., Eliseev P.G., Sverdlov B.N. IEEE J. Quantum 

Electron., QE-11 (7), 510 (1975).
  9.	 Pippard A.B. The Physics of Vibration (Cambridge: Cambridge 

Univ. Press, 1983; Moscow: Vysshaya Shkola, 1989).
10.	 Schiff L.I. Quantum Mechanics (New York: McGraw-Hill, 1949; 

Moscow: Inostrannaya Literatura, 1957).
11.	 Batrak D.V., Bogatova S.A., Borodaenko A.V., Drakin A.E., 

Bogatov A.P. Quantum Electron., 35 (4), 316 (2005) [ Kvantovaya 
Elektron., 35 (4), 316 (2005)].

12.	 Bogatov A.P., Boltaseva A.E., Drakin A.E., Belkin M.A., 
Konyaev V.P. Quantum Electron., 30 (4), 315 (2000) [ Kvantovaya 
Elektron., 30 (4), 315 (2000)].

13.	 Gorlachuk P.V., Ivanov A.V., Kurnosov V.D., Kurnosov K.V., 
Marmalyuk A.A., Romantsevich V.I., Simakov V.A., 
Chernov R.V. Quantum Electron., 48 (6), 495 (2018) [ Kvantovaya 
Elektron., 48 (6), 495 (2018)].

14.	 Basov N.G., Morozov V.N., Nikitin V.V., Semenov A.S. 
Fiz. Tekh. Poluprovodn., 1, 1570 (1967).

15.	 Bogatov A.P., Eliseev P.G., Ivanov L.P., Logginov A.S., 
Manko M.A., Senatorov K.Ya. IEEE J. Quantum Electron., QE-9 
(2), 392 (1973).

16.	 Miftakhutdinov D.R., Batrak D.V., Bogatov A.P., Drakin A.E., 
Plisyuk S.A. Quantum Electron., 36 (8), 751 (2006) [ Kvantovaya 
Elektron., 36 (8), 751 (2006)].

17.	 Batrak D.V., Bogatov A.P., Kamenets F.F. Quantum Electron., 33 
(11), 941 (2003) [ Kvantovaya Elektron, 33 (11), 941 (2003)].



	 A.P. Bogatov734

18.	 Batrak D.V., Bogatov A.P. Quantum Electron., 37 (8), 745 (2007) 
[ Kvantovaya Elektron, 37 (8), 745 (2007)].

19.	 Meller A.S., Khandokhin P.A., Khanin Ya.I. Sov. J. Quantum 
Electron., 16 (11) 1502 (1986) [ Kvantovaya Elektron, 13 (11), 2278 
(1986)].

20.	 Letokhov V.S. Zh. Eksp. Teor. Fiz., 55 (3), 1077 (1968).
21.	 Popov Yu.M., Shuikin N.N. Zh. Eksp. Teor. Fiz., 58 (5), 1727 

(1970).




