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Abstract.  Based on a formal asymptotic solution of Maxwell’s 
equations for a field propagating in a vacuum and of the relativistic 
Newton equation for an electron driven by the corresponding 
Lorentz force, we construct a description of the relativistic pon-
deromotive dynamics of an electron in the field of an intense focused 
electromagnetic envelope. A small parameter for the asymptotic 
expansion is proportional to the ratio of the radiation wavelength to 
the focal spot radius. Using the obtained averaged model of pon-
deromotive dynamics, electron beam scattering patterns are plotted 
with regard to an angle relative to the electromagnetic field propa-
gation axis for laser pulses with a Gaussian transverse intensity 
distribution, as well as the energy spectra of scattered electrons 
corresponding to individual ranges of this angle. Scattered particles 
are absent in some ranges of the polar angle.

Keywords: relativistic intensity, ponderomotive force, laser accel-
eration of electrons.

1. Introduction

The problems of strongly nonlinear dynamics of electrons in 
electromagnetic fields have become a topic of particular 
interest with the advent of laser physics of relativistic inten-
sities. This field of research was formed when the level of 
attainable laser intensities exceeded a so-called relativistic 
intensity of approximately 1018 W cm–2 [1]. At optical field 
intensities comparable with or exceeding the relativistic one, 
the dynamics of electrons born due to ionisation of matter at 
the leading edge of the laser pulse or injected into the focal 
region turns out to be substantially relativistic, and, as a 
result of interaction with a focused optical field, electrons 
can acquire significant energies. In the generalised sense, the 
motion of an electron under the action of an electromag-
netic pulse, considered on a time scale significantly exceed-
ing the optical cycle, represents ponderomotive dynamics, 
accompanied with an energy gain by an electron. The con-
struction of a mathematically rigorous theory of pondero-
motive dynamics of an electron in the field of a focused elec-
tromagnetic envelope of relativistic intensity is the goal of 
this study.

The general scenario of the relativistic dynamics of an 
electron under the action of the Lorentz force generated by a 
high-power pulse of focused laser radiation has been studied 
in detail at the level of numerical analysis in many papers (see, 
for example, Refs [2 – 8]): it comprises electron capture by an 
optical field in which it oscillates, gaining energy on average, 
and then an electron ejection from the focal zone with some, 
in many cases relativistic, residual energy. The model used to 
describe this process includes the relativistic Newton equation 
with the corresponding Lorentz force, as well as the expres-
sions for an optical envelope propagating in vacuum. In some 
papers, these expressions were formulated only with allow-
ance for longitudinal corrections to the electromagnetic field 
potential [9, 10], while in more detailed studies, corrections to 
the expressions for the transverse field components [11, 12] 
caused by the finite pulse duration are additionally taken into 
account.

The concept of the ponderomotive dynamics of an elec-
tron in a high-frequency field was formulated in the classical 
work [13], in which the ponderomotive force responsible for 
the average electron motion was shown to be proportional to 
the radiation intensity gradient (see also [14]). It should be 
noted that the results of [13] were obtained in the quasi-linear 
approximation, that is, as applied to a field of moderate 
intensity. In connection with the growth of achievable laser 
intensities, generalisations of the theory of ponderomotive 
dynamics were proposed for the case of relativistic intensities. 
The approach developed in [13] was reproduced in the major-
ity of works devoted to this problem: After the transforma-
tion of the initial equations, a priori assumptions were made 
about the nature of the oscillations of the quantities in them 
(including the relativistic factor for the electron) and on this 
basis the equations themselves were averaged over time [10, 
15, 16]. A step in the direction of constructing a more general 
theory of ponderomotive dynamics of an electron in a strong 
field using the Krylov – Bogoliubov method was made in [17], 
where, however, in the most practically important case of lin-
ear polarisation of electromagnetic radiation, consideration 
was limited to the quasi-relativistic problem because of the 
complexity of complete characterisation of the nature of the 
relativistic factor oscillations.

An important aspect of the problem of ponderomotive 
dynamics – the fundamental difference between averaging 
over the period of field oscillations and over the phase of elec-
tron oscillations – was noted in [18]. According to the results 
of this work, averaging over the phase of the oscillations of 
the particle must be performed under conditions of a signifi-
cant longitudinal displacement of the electron under the 
action of a laser pulse, which, in any case, takes place in the 
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case of relativistic intensity. In contrast to [18], in paper [13] 
averaging was performed over time. Averaging over the 
proper time of the electron, which is proportional to the phase 
of its oscillations, was performed in [19], but in this work the 
authors studied a comparatively less important case of circu-
lar polarisation of the electromagnetic field, for the amplitude 
of which no specific expressions were provided.

In some papers, relativistic ponderomotive dynamics was 
studied in the framework of a one-dimensional problem 
[20, 21]. Significant in this case is the fact that in this approxi-
mation the corresponding equations have an invariant relat-
ing the transverse and longitudinal components of the elec-
tron momentum. A hypothesis was expressed about the pres-
ence of a similar invariant in the three-dimensional problem 
[22], but a rigorous theory of such an invariant remained 
absent.

In this paper, we construct a formal asymptotic solution 
of the relativistic Newton equation for an electron driven by 
the Lorentz force produced by a linearly polarised focused 
electromagnetic envelope of high intensity. The small param-
eter for the asymptotic series is e = l /(2pw0), where l and w0 
are the wavelength and radius of the focal spot of the optical 
field, respectively, and the solution below is calculated up to 
corrections of order of e. Within the framework of the asymp-
totic algorithm used, the phase of the oscillations of the elec-
tron, to which its ‘fast’ and ‘slow’ times are directly related, 
plays the role of the variable on which the desired functions 
depend. The expression for the electromagnetic field pre-
sented in Section 2 includes corrections in the parameter e to 
its longitudinal and transverse components, since they turn 
out to be necessary below for the correct solution of the equa-
tions of electron motion using the Krylov – Bogoliubov 
method. The lowest approximation for the asymptotic solu-
tion includes arbitrary constants depending only on the ‘slow’ 
time, which are further determined on the basis of the first 
approximation from the condition that its secular compo-
nents are equal to zero. In view of this, it should be noted that 
the main goal of introducing first-order corrections into 
expressions for the field is to ensure the correctness of the 
result in the lower approximation rather than to increase the 
accuracy of the approximation. It turns out that the condi-
tions for eliminating secularity are in fact the electron motion 
equations averaged over the phase of its oscillations, that is, 
the desired model of the ponderomotive dynamics of the elec-
tron in the field of a relativistically intense focused optical 
envelope. Thus, when constructing this model, it is possible to 
avoid any a priori assumptions about the nature of the oscil-
lations of various dynamic quantities and even direct averag-
ing of the motion equations. The completely three-dimen-
sional initial equations, as shown in Section 2, have an adia-
batic invariant, which is similar to the exact invariant of the 
corresponding one-dimensional problem and, in particular, 
relates the energy and direction of electron motion after the 
interaction with the field.

The resulting model of ponderomotive dynamics can be 
significantly simplified when modelling the scattering of a 
low-density ensemble of electrons by a linearly polarised rela-
tivistically intense laser pulse with an axisymmetric amplitude 
distribution. If at the initial moment of time the velocity dis-
tribution of electrons is isotropic, then there is a uniform dis-
tribution of scattered electrons over the azimuthal angle in a 
cylindrical coordinate system with the axis coinciding with 
the direction of propagation of the laser pulse and the refer-
ence origin placed in the focus. In Section 4, for the case of a 

Gaussian transverse distribution of the optical field intensity, 
we present typical solutions to the problem of the pondero-
motive dynamics of an individual electron in the field of a 
focused electromagnetic envelope of relativistic intensity, as 
well as angular (relative to the direction of laser pulse propa-
gation) and electron energy distributions formed when the 
electron ensemble is scattered by high-power laser radiation.

2. Asymptotics of the solutions to the electron 
motion equations in a relativistically intense 
optical field

Nonlinear relativistic dynamics of an electron in an electro-
magnetic field obeys Newton’s equations, which in a nor-
malised form can be expressed as:

¶ x pt xg = ,    ¶ y pt yg = ,    ¶ z pt zg = 	 (1)

¶ ¶ ( ( ))p A p At t
1

# #dg= - - ,    p1 2g = + ,	 (2)

where Ñ = (¶x, ¶y, ¶z); ¶x, y, z, t are the derivatives with respect to 
the corresponding variables; g is the relativistic factor; and A 
is the vector potential of the electromagnetic field propagat-
ing in vacuum (hereafter, ¶t denotes the time derivative of the 
time-depending coordinates and momentum p and simultane-
ously the partial derivative of the vector potential). Consider 
the case when the field is a focused envelope; let the coordi-
nates and time be normalised to the focal spot radius w0 and 
to w0 /c, respectively, the vector potential be normalised to 
mc2/e, and the electron momentum be normalised to mc. Then 
Maxwell’s equations (under the Coulomb gauge) take the 
form

¶A A 0t
2D - = ,  ( , ) 0Ad = ,

and in the case of linearly polarised electromagnetic field, 
they can, in particular, have the asymptotic solution:

e( ) ( , , , ) ( , , , ) . .exp i c cA a x y s a x y sx
m

xm
m 1

q t t= + +
3

=

> H/ ,

A 0y = ,    e( ) ( , , , ) . .exp i c cA a x y sz
m

zm
m 1

q t= +
3

=

/

The variables in it, which are interpreted below as fast and 
slow proper times of the electron, are determined by the rela-
tions q = (t – z)/e, s = eq; e = l /(2pw0), t = 2ez.

As shown in [11, 12], the equations of zero and first 
approximation for the amplitude of the vector potential have 
the form

¶4 0i a aD- + ==x ,    ¶ ¶4 4i a a ax x s1 1
2D- + ==x x ,

¶ 0ia az x1- + = ,

where ¶ ¶x y
2 2D = += , and the structure of their solutions is 

determined by the expressions

( , , , ) ( ) ( , , )a x y s a s u x y0t t= ,	 (3)

¶ ¶( , , , ) ( ) [ ( , , )]ia x y s a s u x yx s1 0t t t= x ,	 (4)

¶( , , , ) ( ) [ ( , , )]ia x y s a s u x yz x1 0t t=- ,	 (5)
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in which the function u(x, y, t), in turn, is a solution of the 
Schrödinger equation

¶4 0i u uD- + ==x .

The function a0(s) defines the temporal envelope of the pulse.
The simplest solution to the above equation corresponds 

to an axisymmetric distribution of the amplitude of a 
Gaussian pulse:

( , , )
( , )

[ ( , )]exp iu x y
r

r
12

t
t

t
y t

L
=

+
,

( , )
1

expr r
2

2

t
t

L = -
+

d n,   ( , ) arctanr r
12

2

y t
t

t t=-
+

+ ,

where r x y2 2
= + . A more general solution of the same 

equation is a mode defined through the Laguerre polynomial 
and has the form:

( , , ) ( , , )2u x y u x y r L r
1 1

2
,

/
l

l l l2

2 2

2

t t
t t

=
+ +

d dd dn n

	 [ ( 2 ) ] ( )exp arctan sini l l 0# d t j j+ + ,

where j = arctan( y/x) [11, 12]. In the particular case, when d 
= 0, l = 0 and j0 = p/2, this expression describes a Gaussian 
pulse, and in the general case, it describes a focused pulse with 
an axisymmetric amplitude distribution. An even more gen-
eral solution to this problem is a linear combination of 
Laguerre modes.

The goal of this work is to construct asymptotic solu-
tions with respect to the small parameter e for equations 
(1) – (5), that is, to solve the problem of the relativistic 
dynamics of an electron in an electromagnetic field using the 
same assumptions under which the problem of the propaga-
tion of a focused electromagnetic envelope in vacuum is 
solved. Below, when constructing such solutions, we have 
obtained the results that do not imply the presence of axial 
symmetry of the amplitude distribution of the focused enve-
lope and are fully applicable in the case of any of the 
Laguerre modes or their superposition, and for the particu-
lar case of an axisymmetric optical field, we have obtained 
and investigated a model significantly simplified in compari-
son with the general equations.

It should be noted that, in view of the traditional architec-
ture of the asymptotic algorithm used below, which involves 
the final determination of lower-order solutions using higher-
order solutions, small parameter corrections to the solution 
of Maxwell’s equations describing the electromagnetic field 
are fundamentally necessary when solving the formulated 
problem of the electron dynamics even in the lowest approx-
imation. On the whole, the implemented asymptotic method 
for solving the equations of the electron dynamics is adapted 
to the structure of the above expressions for the electromag-
netic field. With a different structure of the electromagnetic 
field, as, for example, in the case of an electron accelerated 
by an interference field of optical pulses of a complicated 
configuration [23, 24], the nature of this dynamics and, 
accordingly, the solutions describing it can be significantly 
different.

Consider equations (1) and (2) with a vector potential 
defined by equations (3) – (5). Since the equations of the elec-

tron dynamics obtained after calculating the Lorentz force 
in accordance with the above solutions for the vector poten-
tial are ordinary differential equations in time, they have ∂t = 
(  j/eg)∂q, where

j = g – pz, 	 (6)

and the problem can be rewritten in terms of functions that 
depend not on time t, but on q. In the process of constructing 
asymptotics with respect to e, the equations will be solved in 
the variables s = eq and q. The asymptotic series for the coor-
dinates and components of the electron momentum are 
expressed as:

e( ) ( , ) ( , )x t x s x s0 1 gq q= + + ,

e( ) ( , ) ( , )p t p s p sx x x0 1 gq q= + + ,

e( ) ( , ) ( , )y t y s y s0 1 gq q= = + ,

e( ) ( , ) ( , )p t p s p sy y y0 1 gq q= + + ,

e( ) ( , ) ( , )t s s0 1 gt t q t q= + + ,

e( ) ( , ) ( , )p t p s p sz z z0 1 gq q= + + .

In this case, lower-order equations will be ordinary differen-
tial equations with respect to the variable q, and arbitrary 
functions of the variable s will emerge in their solutions as 
integration constants. These functions, in turn, will be deter-
mined from the condition that the secular growth of solutions 
of equations of higher approximations is absent. The com-
pletely nonlinear zero-order solution presented below is 
identical to the well-known solutions of the corresponding 
one-dimensional problem. Below, we will also present gen-
eral solutions of equations for first-order approximations; 
moreover, the equality-to-zero conditions for the secular 
terms, that is, terms proportional to q, entering into them 
will turn out to be the averaged solutions to the problem of 
the dynamics of an electron in the lower approximation. 
This approach avoids the direct ‘averaging’ of nonlinear 
equations, which, as a rule, is based on a priori assumptions 
about the nature of the oscillations of the quantities included 
in these equations.

Let m(x, y, t) = Re u(x, y, t) and n(x, y, t) = Im u(x, y, t). 
Zero approximations obtained by substituting relations 
(3) – (5) and asymptotic series for coordinates and electron 
momentum into equations (1), (2) are as follows:

x0(s, q) = x0a(s),  y0(s, q) = y0a(s),  t0(s, q) = t0a(s),	 (7)

px0(s, q) = a0(s)[m(x0a(s), y0a(s), t0a(s)) cos q

	 –n(x0a(s), y0a(s), t0a(s)) sin q] + px0a(s),	 (8)

py0(s, q) = py0a(s).	 (9)

The functions x0a(s), y0a(s), t0a(s), px0a(s), and py0a(s) in them 
must be additionally defined. It is easy to show that, as in the 
one-dimensional problem, for these lower-order solutions the 
quantity j defined by equation (6) is an invariant, that is, does 
not depend on q:
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g0(s, q) – pz0(s, q) = j0(s), 	 (10)

where

( , ) 1 ( , ) ( , ) ( , )s p s p s p sx y z0 0
2

0
2

0
2g q q q q= + + + ;

moreover, the function j0(s) also has to be determined from 
higher order equations. As follows from (10),

2
( , )

( )
( , ) ( , ) ( )

p s
j s

p s p s j s 1
z

x y
0

0

0
2

0
2

0
2

q
q q

=
+ - +

.

Thus, the relativistic factor for an electron and its energy are 
expressed as

2
( , )

( )
( , ) ( , ) ( )

s
j s

p s p s j s 1x y
0

0

0
2

0
2

0
2

g q
q q

=
+ + +

,	

(11)

( , ) 1.E s0g q= -

In the higher order, the last of equations (1) has a solution

( ) .s( , ) ( )s sa a1 1 0t q t qt= - l

Since the secular growth in the variable q, generated by the 
last term of this solution, leads to the violation of the assump-
tions in the used asymptotic series, it should be assumed that 
the function t0a(s), which is part of (7) and is not defined in 
the lower approximation, is a constant, so that

t0a(s) = t0a,   t1(s, q) = t1a(s).

Similarly, terms proportional to q are found in the following 
approximation to other solutions, and the corresponding 
conditions for the absence of secular growth must be imposed 
on these solutions.

Denote for brevity:

( ) ( ( ), ( ), ),m s m x s y sa a a0 0 0 0t=    ( ) ( ( ), ( ), ),n s n x s y sa a a0 0 0 0t=

¶
¶

( )
( ( ), ( ), )

m s
x

m x s y sa a a
1

0 0 0t= ,  
¶

¶
( )

( ( ), ( ), )
n s

x
n x s y sa a a

1
0 0 0t= ,

¶
¶

( )
( ( ), ( ), )

m s
y

m x s y sa a a
2

0 0 0t= ,  
¶

¶
( )

( ( ), ( ), )
n s

y
n x s y sa a a

2
0 0 0t= ,

¶
¶

( )
( ( ), ( ), )

m s
m x s y sa a a

3
0 0 0

t
t

= ,  
¶

¶
( )

( ( ), ( ), )
n s

x
n x s y sa a a

3
0 0 0t= .

First-order solutions for the transverse coordinates of the 
electron and the transverse components of the momentum are 
expressed as:

( , )
( )

( ) [ ( ) ( ) ]sin cos
x s

j s
a s m s n s

1
0

0 0 0q
q q

=
+

	 ( )s( )
( )
( )

,x s
j s
p s

a
x a

a1
0

0
0 q+ + x- ld n 	 (12)

( )s( , ) ( )
( )
( )

,y s y s
j s
p s

ya
y a

a1 1
0

0
0q q= + - ld n 	 (13)

( , ) [ ( ) ( ) ( ) ( )] ( )cos sinp s s k s k p s, ,
,

x x k x k
k

x a1
1 2

1q a q b q= + +
=

/

	 ( )s + 2 ( )
( ) [ ( ) ( ) ( ) ( )]

,p
j s

a s m s m s n s n s
x a0

0

0
2

0 1 0 1 q-
+lf p 	 (14)

( , ) [ ( ) ( ) ( ) ( )] ( )cos sinp s s k s k p s, ,
,

y y k y k
k

y a1
1 2

1q a q b q= + +
=

/

	 ( )s + 2 ( )
( ) [ ( ) ( ) ( ) ( )]

,p
j s

a s m s m s n s n s
y a0

0

0
2

0 2 0 2 q-
+lf p 	 (15)

where the coefficients included in the terms oscillating in q are 
given by the equations

( ) ( )s a s,x 1 0a =

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
j s

n s p s
m s x s m s y s m s sx a

a a a
0

1 0
1 1 2 1 3 1# t- + + +d n

	 ( )s [ ( ) ( ) ]a n s n s a0 0 3 0t- +l ,

4
( ) ( )

( )
( ) ( ) ( ) ( )

s a s
j s

m s n s n s m s
,x 2 0

2

0

0 1 0 1a =
+ ,

( ) ( )s a s,x 1 0b =-

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
j s

m s p s
n s x s n s y s n s sx a

a a a
0

1 0
1 1 2 1 3 1# t+ + +d n

	 ( )s [ ( ) ( ) ]a m s m s a0 0 3 0t- +l ,

4
( ) ( )

( )
( ) ( ) ( ) ( )

s a s
j s

m s m s n s n s
,x 2 0

2

0

0 1 0 1b =
- ,

( ) ( )
( )

( ) ( )
s a s

j s
n s p s

,y
x a

1 0
0

2 1a =- ,

4
( ) ( )

( )
( ) ( ) ( ) ( )

s a s
j s

n s m s m s n s
,y 2 0

2

0

0 2 0 2a =-
+ ,

( ) ( )
( )

( ) ( )
s a s

j s
m s p s

,y
x a

1 0
0

2 1b =- ,

4
( ) ( )

( )
( ) ( ) ( ) ( )

s a s
j s

n s n s m s m s
,y 2 0

2

0

0 2 0 2b =
- .

The longitudinal coordinate of the electron in the second 
order has the form

( , ) [ ( ) ( ) ( ) ( )] ( )cos sins s k s k s
,

k k a2 2
1 2

t q s q d q t= + +/

	
2 ( )

[ ( ) ( ) ] ( ) [ ( ) ( )]

j s

p s p s a s m s n s2 1x a y a

0
2

0
2

0
2

0
2

0
2

0
2

+
+ + + +

*

	 a1 ( )s 1 q- -tl 4 , 	 (16)

where the coefficients included in the terms oscillating in q are 
determined by the relations
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( )
( )

( ) ( ) ( )
s

j s
a s n s p s2 x a

1

0
2

0 0 0s = .

2
( )

( )
( ) ( ) ( )

s
j s

a s n s m s
2

0
2

0
2

0 0s = ,

( )
( )

( ) ( ) ( )
s

j s
a s m s p s2 x a

1

0
2

0 0 0d = ,

2
( )

( )

( ) ( ) ( )
s

j s

a s m s n s
2

0
2

0
2

0
2

0
2

d =
-7 A

.

The longitudinal momentum of an electron is expressed as:

( , )
( )

( , ) ( , ) ( , ) ( , )
p s

j s
p s p s p s p s

z
x x y y

1
0

0 1 0 1q
q q q q

=
+

	
(17)

( )s

( )

( ) ( ) ( ) ( ) ( )sin cos

j s

s j s a s m s n s j

0

0 0 0
2

1 1 0g q q qP
+

+ + + l7 A% /
.	

The functions x1a(s), y1a(s), px1a(s), py1a(s), t2a(s), and P(s) 
needed to determine first-order corrections in e can be calcu-
lated on the basis of the following approximations, but they 
are not needed to determine the conditions for the absence of 
secularity in the first order. These conditions, as follows from 
equations (12) – (17), consist in the fact that

( )s ,( ) ( )p s j s xx a a0 0 0= l      ( ),s( ) ( )p s j s yy a a0 0 0= l 	 (18)

( )s
2=- ( )

( ) ( ) ( ) ( ) ( )
p

j s
a s m s m s n s n s

x a0
0

0
2

0 1 0 1+
l

7 A
,	 (19)

( )s =- 2 ( )
( ) ( ) ( ) ( ) ( )

p
j s

a s m s m s n s n s
y a0

0

0
2

0 2 0 2+
l

7 A
,	 (20)

( ) constj s0 = ,	 (21)

( )s
2 ( )

( ) ( ) ( )

j s

a s m s n s
a1

0
2

0
2

0
2

0
2

t =
+

l
7 A

	
( )

( ) ( ) 1 ( )

j s

p s p s j sx a y a

0
2

0
2

0
2

0
2

+
+ + -

. 	 (22)

Equations (19) and (20) can be written in the form

( )s
2

¶
( )

( ( ), ( ), ) 0p
j

a s
W x s y sx a x a a a0

0

0
2

0 0 0t+ =l ,	 (23)

( )s
2

¶
( )

( ( ), ( ), ) 0p
j

a s
W x s y sy a y a a a0

0

0
2

0 0 0t+ =l ,	 (24)

( , , )
( , , ) ( , , ) | ( , , )|

W x y
m x y n x y u x y

2 2

2 2 2

t
t t t

=
+

= ,	 (25)

and, therefore, the function ( , , , ) ( ) ( , , )W x y s a s W x yp 0
2t t= =  

represents the ponderomotive potential of the electron in the 
electromagnetic field under study. The longitudinal compo-
nent of the momentum is calculated from equation (10). With 
accuracy of the order of e, equations (18) – (25) form the 
problem of the relativistic ponderomotive dynamics of an 
electron in the field of a focused linearly polarised electro-
magnetic envelope (and a formally strict relativistic generali-
sation of the result [13]).

Obviously, from the point of view of the initial asymptotic 
series, the quantities x0a(s), y0a(s), t1a(s), px0a(s), and py0a(s) are 
the coordinates and components of the electron momentum 
averaged over the phase of its oscillations in the electromag-
netic field. Thus, the equations for these average values arise 
without additional assumptions about the nature of the oscil-
lations themselves and even without the averaging procedure 
per se, representing the conditions for the absence of secularly 
growing terms in the first order of the asymptotic behaviour 
of the solution of the original problem with respect to the 
small parameter e.

The condition for the applicability of the developed 
approximation is the smallness of the parameter e, which in 
terms of the focal spot radius w0 and laser radiation wave-
length l means w0 >> l/2p. In addition, the ponderomotive 
approximation is not applicable directly to the axis of the 
laser pulse propagation (on this axis, the Jacobian used below 
for conversion into cylindrical coordinates vanishes, and the 
relation determining the relationship between the electron 
energy and its angle of motion with respect to the axis of the 
pulse propagation gives a divergence). However, already at 
distances from the propagation axis of the optical field, which 
are of the order of the small parameter, the ponderomotive 
approximation yields acceptable results.

Equations (23) – (25) are derived in the framework of a 
fairly general formulation of the problem of the motion of an 
electron under the action of a linearly polarised relativistically 
intense electromagnetic field propagating in vacuum. A num-
ber of models of ponderomotive dynamics from previous 
works can be obtained from the above presented model as 
special cases when we introduce additional initial assump-
tions or they reveal structural similarities with it. Since g = 1 
in the nonrelativistic case, the variable s = eq introduced 
above in the description of nonrelativistic dynamics can, fol-
lowing the logic of paper [18], be identified with time provided 
that there is no essential longitudinal component in the 
dynamics of the electron. Gaponov and Miller [13] assumed 
that the field does not have a spatiotemporal envelope and 
experiences rapid oscillations in time, but not in a spatial vari-
able, which justified in this case the assumption that the lon-
gitudinal displacement of the electron is small. Assuming s » 
t and a0(s) º 1, it is not difficult to obtain from the equations 
(23) – (25) the classical problem formulated in [13]. In work 
[19], the problem of the ponderomotive dynamics of an elec-
tron in an oscillating field, structurally close to equations 
(23) – (25), was obtained in the case of circular polarisation of 
electromagnetic radiation, which was mathematically sim-
pler, but relatively difficult to implement in the relativistic 
range of intensities; nevertheless, the issue of the presence of 
an adiabatic invariant in this problem and its role in deter-
mining the longitudinal component of the electron momen-
tum was not considered in this study. In paper [17], the result 
for linear polarisation was obtained by averaging over labo-
ratory time without elucidating the limits of applicability of 
this approach and only for an electromagnetic field of moder-
ate intensity.

3. Equations of ponderomotive dynamics  
in cylindrical coordinates

We consider equations (18) – (21) in cylindrical coordinates by 
setting x0a(s) = r(s)cos [j(s)], y0a(s) = r(s)sin [j(s)], px0a(s) = 
r(s)cos [y(s)], and py0a(s) = r(s)sin [y(s)]. Here, the functions 
j(s) and y(s) play the role of azimuthal angles in the spaces of 
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coordinates and momenta in the framework of this des
cription of electron motion. Then, dy(s) = j(s) – y(s) and 
W(x, y, t) = c(r2, j, t0a).

Equations (18) – (21) transform into the system:

( )
( ) [ ( )]cos

r s j
s s

0

dr y
=l ,	 (26)
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2

2
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2
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j t
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j

y r
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2

2
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t

j t
+

_ i
4. 	 (29)

Taking into account equation (10), relating the longitudi-
nal and transverse components of the momentum, the corre-
sponding angle between the directions of electron motion and 
field propagation, as well as the electron energy after the 
interaction, are expressed in terms of r after the interaction, 
which is denoted below as rf, using the following relations:

2
arctan

j
j

1 f

f
2

0
2

0

r
r

X =
+ -

,

2
( )

E
j
j 1f

0

2
0

2r
=

+ - .

In the case of an axisymmetric distribution of the field 
amplitude, these equations can be reduced to a problem for 
three unknowns. Let c(r2, j, t0a) = c0(r2, t0a). Then, after sub-
tracting equation (28) from equation (29), the problem takes 
on a more compact form and equations

¶
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are added to equation (26) instead of (27) – (29). In particular, 
for a Gaussian pulse

,
/ 1exp
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The calculations below are performed for the time profile 
of the electromagnetic envelope, defined as a0(s) = qexp[–(s – 
d )2/s2], where q is the maximum field amplitude, s is the pulse 
duration, and d is the distance from the point at which the 

maximum field is reached, up to the electron at the initial 
moment of time.

Most calculations presented in this paper were performed 
at q = 33 and s = 4. At a wavelength of l = 800 nm and, in 
particular, at e = 0.1, this approximately corresponds to a 
laser pulse with a focal spot 1.3 mm in diameter, a duration of 
17 fs and an intensity of 2.3 ´ 1021 W cm–2.

In this paper, a more compact model, represented by 
equations (26), (30), and (31), is used to study the individual 
ponderomotive dynamics of an electron and the ponderomo-
tive expansion of an ensemble of electrons under the action of 
intense linearly polarised laser radiation, because within the 
framework of this model, as will be shown below, the averag-
ing over random initial directions of the momenta of charged 
particles occurs naturally. At the same time, as an initial illus-
tration, Fig. 1 shows two examples of solving the unreduced 
problem (26) – (29) of an energy increase by an electron in 
interaction with a relativistically intense envelope, clarifying 
its relationship with problem (26), (30), and (31). In these cal-
culations, the initial conditions for the azimuthal angles j and 
y are different; nevertheless, they are selected so that the ini-
tial value of dy is the same in both cases. The initial condi-
tions for r are small random quantities (an almost immobile 
electron). Obviously, the solutions for j and y quickly con-
verge, and for the initial conditions under consideration, the 
quantity j changes little and y significantly, which is explained 
by the presence of a small denominator in the right-hand side 
of equation (29) at the initial stage of the process because of 
the smallness of the initial value of r. In this case, as a result, 
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Figure 1.  Relativistic ponderomotive dynamics of an electron in cylin-
drical coordinates: electron energy E, azimuth of coordinate j, and azi-
muth of momentum y. Optical field parameters: Gaussian pulse, q = 33, 
s = 4, e = 0.1, and d = 10 (interaction with a remote target). Here and in 
Figs 2 – 4, the initial values of the electron momentum components are 
random values within 0.1 % of the relativistic threshold (the value of the 
adiabatic invariant in the calculations fluctuates correspondingly). 
Initial conditions: r(0) = 0.1; (a) j(0) = 3.7, y(0) = 1.3; (b) j(0) = 4.4, 
y(0) = 2.0. Calculations are presented for t0a = 0 (focal plane). The vari-
able s is the proper time of the electron, the difference dy(0) = j(0) – 
y(0) is the same in both cases and the curves of the energy gain by the 
electron are identical.
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the electron is displaced from the focal spot in the direction 
characterised by the final value common for both azimuthal 
angles (in the case shown in Fig. 1, it practically coincides 
with the azimuth of the initial electron position), and at the 
above-defined angle X to the optical propagation axis.

As can be seen in Fig. 1, the curves of energy gain by elec-
trons in cases (a) and (b) are identical, which is consistent with 
the fact that the variables j and y enter the reduced problem 
derived from equations (26) – (29) not separately, but only 
through a combination of dy, and this quantity has the same 
value in both cases. Thus, any solution of equations (26), (30), 
and (31) allows us to determine the parameters of the pon-
deromotive dynamics for a continuum of the corresponding 
solutions to the original problem (26) – (28).

4. Dynamics of electrons in a relativistically 
intense optical field with an axisymmetric 
intensity distribution: trajectories, scattering 
patterns, and energy spectra

In solving the problem of scattering an ensemble of electrons 
by a relativistically intense laser pulse, it is natural to assume 
that, prior to the interaction, noise-level momenta of the 
charged particles are distributed isotropically. From the point 
of view of the above model, this means that for any value of 
the azimuthal angle j on the plane of transverse coordinates, 
there are particles with all possible initial values of the azi-
muthal angle y in the space of the transverse components of 
the electron momentum in the range from 0 to 2p. Moreover, 
the value of dy will also be uniformly distributed over the 
0 – 2p interval for each value of j. Based on this circumstance, 
we can conclude that the calculations using equations (26), 
(30), and (31) should be performed for the full range of values 
of the difference of the angles dy, and the scattering of an 
ensemble of electrons by a laser pulse with an axisymmetric 
intensity distribution is uniform in the azimuthal angle.

It should be noted that in the case under consideration the 
uniform distribution of electrons along the azimuthal angle 
occurs despite the fact that only the field intensity distribution 

is axisymmetric in the lower approximation, and electromag-
netic radiation is linearly polarised and, therefore, the prob-
lem has a preferential azimuthal direction. The explanation of 
this paradigm consists in the fact that the angle of departure 
of an individual electron from the focal spot depends on the 
difference dy, and this quantity, in turn, is random in nature 
and assumes all possible values for various electrons of the 
scattered ensemble, thereby actually being responsible for the 
axial symmetry of the scattering pattern of the ensemble of 
electrons.

It can be expected that a similar symmetry will also be 
observed in the case of scattering of an ensemble of electrons 
by a circularly polarised field for which there is no preferen-
tial azimuthal direction. A complete study of this issue, how-
ever, would require consistent implementation of the above-
described asymptotic algorithm for other conditions, which is 
an independent task and does not seem significant, since there 
are no methods for generating circularly polarised radiation 
of relativistic intensity.

A number of numerical solutions of equations (26), (30), 
and (31) for the case of a Gaussian pulse were obtained in the 
present work using the Runge – Kutta method implemented 
in a standard package of computer algebra with an adaptive 
step and step-by-step accuracy control. The initial conditions 
for electrons in the presented calculations are set such that the 
particles initially possess random momenta of small magni-
tude (within 0.1 % of the relativistic threshold, understood as 
r = 1, which in terms of non-normalised quantities corre-
sponds to the electron momentum equal to mc). This, in turn, 
leads for each electron to small deviations of the adiabatic 
invariant j0 from unity. Two representative calculations of the 
trajectories of relativistic ponderomotive dynamics based on 
equations (26) – (28) are presented in Figs 2 and 3 (the laser 
pulse parameters are listed in the captions to the figures, the 
calculations are given for electrons originally located in the 
focal plane, and the initial distances from electrons to the 
symmetry axis of the optical field intensity distribution are 
indicated directly in the figures). In the case illustrated by Fig. 
2, the ensemble of electrons is scattered by a laser pulse inci-
dent on it from a large distance. Thus, the electron expansion 
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Figure 2.  Relativistic ponderomotive dynamics of an electron in cylindrical coordinates: radial coordinate r, radial component of momentum r, and 
difference of azimuthal angles of coordinate and momentum dy. Optical field parameters: Gaussian pulse, q = 33, s = 4, e = 0.1, and d = 10 (inter-
action with a remote target). The calculations are presented at t0a = 0 (focal plane) and the different initial positions of the electron indicated in the 
figures. The vertical lines here and in Fig. 3 denote the moments when the electron leaves the focal spot.
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takes place under the action of the pulse front, where the 
intensity takes moderate values, which also explains the mod-
erate, despite a substantially relativistic laser radiation inten-
sity, energy range of the electron scatter from the focal spot 
(this effect was discovered both during direct numerical simu-
lation of electron scattering by laser pulses and in experiments 
[12, 25]). In the case shown in Fig. 3, the electrons were ini-
tially placed inside the region of an intense laser field, as 
would be the case in the situation of ionisation self-injection 
[26, 27] (in this paper, we do not attempt to self-consistently 
include ionisation in the model of the electron ensemble scat-
tering). Under the conditions that correspond to Fig. 3, the 
electrons are scattered by the central part of the time sweep of 
the laser pulse and, accelerated by a high-intensity field, are 
ejected with substantially relativistic energies. As can be seen 

from Figs 2 and 3, the angle difference dy quickly becomes 
equal to zero or a multiple of 2p as the electron gains kinetic 
energy. Finally, the capture of the electron by the field ceases 
when it reaches the boundary of the focal spot, which, as is 
also seen from Figs 2 and 3, is almost exactly determined by 
the relation ( ) / 1r s 1 2t+ = .

For two cases shown in Fig. 2, Fig. 4 displays the averaged 
longitudinal component of the momentum and the longitudi-
nal displacement of the electron for two cases of ponderomo-
tive dynamics in a relativistically intense electromagnetic 
field. As follows from the figure, the ponderomotive dynam-
ics of an electron in a relativistic intense field is accompanied 
by a significant increase in the longitudinal component of its 
momentum and a significant shift along the field propagation 
axis. Moreover, the dependences for the averaged longitudi-
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Figure 3.  Relativistic ponderomotive dynamics of an electron in cylindrical coordinates: radial coordinate r, radial component of momentum r, and 
difference of azimuthal angles of coordinate and momentum dy. Optical field parameters: Gaussian pulse, q = 33, s = 4, e = 0.1, and d = 0 (interac-
tion under the conditions of self-injection).
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nal component of the momentum are almost identical to 
those for the amplitude of the transverse momentum r pre-
sented for the corresponding cases in Fig. 2, which directly 
follows from the equation for the longitudinal component of 
the momentum at j0 » 1, that is, for an initially almost sta-
tionary electron .

Figure 5 shows the results of calculations of the energy 
gain by an electron under the action of optical envelopes of 
various durations, in particular, for an envelope with a longi-
tudinal size less than the focal spot. The character of the 
dynamics as a whole remains the same as in Fig. 1, although 
shorter pulses correspond to significantly higher electron out-
put energies. It should be noted, however, that the asymptotic 
algorithm proposed in this work is not applicable for the 
description of pulses with a duration of the order of or less 
than that of the optical cycle and the dynamics of charged 
particles induced by them, and this topic requires indepen-
dent investigation.

Let X be the ejection angle of the released electron with 
respect to the axis of the laser pulse propagation. As follows 
from equations (6) and (11), this angle and the residual elec-
tron energy E obey the relationship

( )
2 ( 1)

arctan arctanp E j
j E j

1z0 0

0 0
2r

X = =
- -

- - , 	 (32)

which allows us to determine X by the corresponding solu-
tions of equations (26) – (28) or problems (26), (30), and (31) 
using equation (11). Moreover, as noted above, for each value 
of X, the electrons scattered by the field with a concentration 
corresponding to this angle are uniformly distributed over the 
azimuthal angle.

The constructed theory of ponderomotive dynamics was 
applied to simulate the scattering of an ensemble of electrons, 
whose density is low enough to neglect Coulomb interactions 
between charges, by a relativistically intense laser pulse. 
According to estimates [28], a description of this situation on 
the basis of separate Newton equations for electrons is accept-
able at electron concentrations of the order of 1016 cm–3 or 
less (already at concentrations of the order of 1017 cm–3, col-
lective effects due to the Coulomb interaction come into play; 
however, this requires a fluid dynamic or kinetic description 
of the field – plasma system, where the electrons are acceler-
ated by wakefields [29], rather than taking into account 
Coulomb corrections). Under the condition of a sufficiently 
low electron concentration, it is acceptable to assume that the 
actual number of particles is proportional to the target den-
sity in model calculations. In the framework of this work, 
5000 particles were involved in each calculation. Figure 6 
shows the pattern of the electron scattering over the angle 
with respect to the field propagation direction for the same 

laser radiation parameters for which the trajectories in Fig. 2 
are plotted. In the depicted polar coordinate system, the 
marked polar angles correspond to the boundaries of the 
ranges of angles of electron escape from the focal spot with 
respect to the direction of propagation of the laser pulse, and 
the distance from the reference point is proportional to the 
number of particles in this angular range. The angles are 
expressed in units of energy into which they are converted 
according to the above expression (32) for X. In azimuth, the 
scattering is uniform. Ranges of angles are selected so that to 
reveal to the greatest extent the structure of the distribution of 
electrons. The subponderomotive noise was filtered out of the 
numerical data, that is, the scatter with the energy at the level 
of accuracy of the asymptotic method implemented in Section 
2. Initially located close to the propagation axis of the field, 
the electrons are scattered with relatively high energies and, 
therefore, according to relation (32), into small angles. 
Electrons located relatively far from the axis are scattered in 
large quantities into large angles. Figure 7, for the same case, 
shows the energy spectra of electron scattering into angles 
0.59 < X < 0.67 and 0.67 < X < 0.79 covering the highly rela-
tivistic energy range (for these parameters of the laser pulse, 
very small electron scattering angles are unattainable under 
conditions of interaction with a remote target). Similarly, for 
the parameters of laser radiation corresponding to the trajec-
tories in Fig. 3, Figs 8 and 9 present the scattering pattern of 
the expansion of an ensemble of electrons with a scale in 
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Figure 5.  Energy gain by an electron in the process of ponderomotive dynamics during the interaction with laser pulses of various durations: s = 
(a) 4, (b) 2, and (c) 0.5. Other calculation parameters: q = 33, e = 0.03, d = 10, t0a = 0, r(0) = 0.1, and dy(0) = 2.
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Figure 6.  Pattern of electron scattering along the angle X relative to the 
propagation axis of a relativistically intense laser pulse with the same 
parameters as in Fig. 2 (interaction with a remote target). The radial 
coordinates of the given points correspond to normalised numbers of 
electrons, the angular sectors correspond to ranges of X, and the energy 
equivalents of the angles in units of mc2 calculated according to equa-
tion (32) for j0 = 1 are given on the angle scale. For each value of X, the 
electrons scattered by the field are uniformly distributed over the azi-
muthal angle y, i.e., around the axis of propagation. At l = 800 nm, the 
calculation parameters correspond, in particular, to a laser pulse with a 
focal spot with a diameter of 1.3 mm, a duration of 17 fs, and an inten-
sity of 2.3 ´ 1021 W cm–2.



945Asymptotic theory of ponderomotive dynamics of an electron in the field

energy units and energy spectra corresponding to angles 0.08 
< X < 0.1 and 0.45 < X < 0.63. The energy intervals in Figs 
7 and 9 correspond to the spread of the energies of electrons 
falling in the considered angular ranges.

5. Conclusions

Based on a strict asymptotic solution of the equations for 
electromagnetic radiation in vacuum and the equation of 
motion of an electron in a propagating field, we have con-
structed a description of the ponderomotive dynamics of an 
electron under the action of a focused relativistically intense 
laser pulse. The parameter for asymptotic expansion is pro-
portional to the ratio of the radiation wavelength to the radius 
of its focal spot.

The electromagnetic field in vacuum is represented by 
expressions that include the ground state, which corre-
sponds to a focused envelope, as well as small-parameter 
corrections to the transverse field component caused by the 
finiteness of the pulse duration and corrections in the form 
of a longitudinal field component. Approximate solutions 
of the Newton relativistic equation are obtained as func-
tions of the proper time of the electron using the 
Krylov – Bogoliubov method, which leads to the equations 
of motion averaged over the phase of the electron oscilla-
tions and makes it possible to reveal the adiabatic invari-
ant corresponding to the equations of the original prob-
lem. This invariant defines, in particular, the relationship 
between the electron energy acquired as a result of interac-
tion with the field and the angle of its exit from the focal 
region with respect to the axis of the laser pulse propaga-
tion.
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Figure 7.  Energy spectra of electrons scattered in separate angular ranges relative to the propagation axis of a relativistically intense laser pulse with 
parameters corresponding to Fig. 2 (interaction with a remote target): (a) 0.59 < X < 0.67 and (b) 0.67 < X < 0.79. For each value of X, the pattern 
of scattering spectra is the same for all values of the azimuthal angle y. At l = 800 nm, the calculation parameters correspond, in particular, to a 
laser pulse with a focal spot with a diameter of 1.3 mm, a duration of 17 fs, and an intensity of 2.3 ´ 1021 W cm–2.
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Figure 8.  Pattern of electron scattering along the angle X relative to 
the propagation axis of a relativistically intense laser pulse with the 
same parameters as in Fig. 3 (interaction under self-injection condi-
tions). The radial coordinates of the given points correspond to nor-
malised numbers of electrons, the angular sectors correspond to rang-
es of X, and the energy equivalents of the angles relative to the propa-
gation axis of the laser pulse (in units of mc2) calculated according to 
equation (32) for j0 = 1 are given on the angle scale. For each value of X, 
the electrons scattered by the field are uniformly distributed over the 
azimuthal angle y, i.e., around the axis of propagation. At l = 800 nm, 
the calculation parameters correspond, in particular, to a laser pulse 
with a focal spot diameter of 1.3 mm, a duration of 17 fs, and an inten-
sity of 2.3 ´ 1021 W cm–2.
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Figure 9.  Energy spectra of electrons scattered in separate angular ranges relative to the propagation axis of a relativistically intense laser pulse with 
parameters corresponding to Fig. 3 (interaction under self-injection conditions): (a) 0.089 < X < 0.1 and (b) 0.45 < X < 0.63. For each value of X, 
the pattern of scattering spectra is the same for all values of the azimuthal angle y. At l = 800 nm, the calculation parameters correspond, in par-
ticular, to a laser pulse with a focal spot with a diameter of 1.3 mm, a duration of 17 fs, and an intensity of 2.3 ´ 1021 W cm–2.
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In the case of scattering of an electron ensemble by an 
optical field with an axisymmetric distribution of the ampli-
tude, the equations of the relativistic ponderomotive dynam-
ics are simplified as a result of their averaging over the initial 
directions of the electron momenta.

The theory presented is used to construct averaged indi-
vidual electron trajectories in a relativistically intense optical 
field with a Gaussian transverse intensity distribution, as well 
as the corresponding patterns and electron energy spectra for 
an electron ensemble scattered by laser radiation.
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