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Abstract.  Possible generation of light-induced harmonic popula-
tion gratings in a quantum system by two half-cycle pulses is stud-
ied using the approximate solution of the Schrödinger equation. 
The case is considered where the duration of pulses is shorter than 
the resonance transition periods in the system and the pulses do not 
overlap in the medium. The grating modulation depth is determined 
by the pulse electric area.

Keywords: light-induced gratings, attosecond pulses, sub-cycle pul
ses, ultrafast optics.

1. Introduction

Presently, electromagnetic ultrashort (few-cycle) pulses (USPs) 
have been experimentally obtained in the attosecond range 
(1 as equals 10–18 s) [1 – 6]. Such pulses are actively used to 
control the dynamics of wave packet in various substances at 
times on the order of an oscillation period of a light wave 
[2 – 4]. Recently, half-cycle attosecond pulses became available 
in the optical range [4 – 6]. Conventionally, half-cycle pulses 
obtained experimentally comprise a unipolar electromagnetic 
field ‘spike’ (half-wave) and a long damping small-intensity 
tail of opposite polarity [4 – 6]. Such pulses may have a ‘close-
to-unity degree of unipolarity’, which is defined as [7 – 9]:
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The numerator in (1) is the electric area of the pulse deter-
mined by the relationship [10]
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It is an important characteristic in problems of interaction of 
half-cycle USPs with resonance media. The pulse area is ret
ained during pulse propagation through the macroscopic 
media with dissipation in the 1D case [10, 11], and substan-
tially affects the interaction of ultrahigh-power USPs with 
quantum systems [8, 9, 12 – 16]. Interest in quasi-unipolar pul
ses is related to the possibility of unidirected action on charged 
particles, which may be used to efficiently control the dynam-
ics of wave packets in matter and for accelerating charged 
particles (see, for example, reviews [7 – 9] and papers [11 – 15]. 
Various methods of generating quasi-unipolar half-cycle pul
ses are described in [7 – 9, 11] and references therein.

The duration of attosecond pulses may be well below the 
polarisation relaxation time T2 and inversion time T1 in a res
onance medium. This determines a possibility of coherent int
eraction of pulses with matter [17], in which Rabi oscillations 
may occur – a fast change of atomic inversion at times on the 
order of a light wave oscillation period [18, 19]. This fact con-
firms the possibility of superfast control over medium state 
and poses the task of producing inversion gratings in a reso-
nance medium by a sequence of successive sub-cycle pulses.

Presently, monochromatic laser radiation is used for pre-
pare electromagnetic-induced gratings in a medium due to 
interference of two or more light beams, which overlap in the 
medium [20 – 22]. A periodical distribution of brightness in the 
beam overlapping domain changes populations of atomic lev-
els, and a population grating arises in the medium. Diffraction 
of a probe beam on the electromagnetically induced gratings 
has numerous applications in optics and spectroscopy (see, 
for example, [20 – 22]).

However, in interference of the ultrashort pulses with a 
duration on the order of a light wave oscillation period, the 
overlapping domain will be rather small, which prevents gen-
erating even several interference fringes in the resonance 
medium. Nevertheless, if short pulses interact with medium 
coherently, light-induced population gratings may be pro-
duced in the medium when the pulses do not meet [23 – 29]. 
This fact was discovered already in first experiments on pho-
ton echo in [23, 24], in which long-duration (of nanosecond-
range) pulses were used (see also review [25] and references 
therein). Producing gratings by a sequence of pulses not over-
lapping in the medium is related to the interaction of the inci-
dent pulses with travelling waves of medium macroscopic 
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polarisation [23 – 29]. Indeed, if a short pulse (of duration 
tp < T2) passes into a medium then a travelling polarisation 
wave arises, which remains in the medium after the pulse 
leaves it and persists for the time T2 in the medium. If another 
USP passes into the medium in a time interval shorter than T2 
then a harmonic polarisation gratings may arise as a result of 
interaction with this polarisation wave. By using diffraction of 
probe radiation on such gratings, the polarisation relaxation 
time T2 of such a medium was measured [24, 25]. However, this 
method for generating gratings by using short pulses non-over-
lapping in a medium has not been widely applied in optics.

Recently, interest in obtaining attosecond and quasi-uni-
polar pulses initiated theoretical studies of the possibility of 
inducing and superfast controlling population difference gra
tings [26 – 29] under excitation of a resonance medium by a 
series of attosecond pulses (both bipolar [26, 27] and unipolar 
[28, 29]) non-overlapping in the medium. It was shown that 
gratings can not only be created but also erased and the spa-
tial frequency of the gratings can be multiplicated. This cir-
cumstance opens new prospects in superfast optics of attosec-
ond pulses because it allows one to change a state of matter at 
the attosecond scale. In all previous studies, theoretical analy-
sis was based on numerical and analytical solutions of the 
Maxwell – Bloch system of equations, and the resonance med
ium was described in the two-level approximation. The prob-
lem of grating generation in multilevel media has not been 
considered thoroughly.

In the case of sub-cycle attosecond pulses, the pulse dura-
tion can be less than periods of resonance transitions in an 
atom. In this case, the employment of a two-level or low-nu
mber-level approximation is not sufficient for correct desc
ription of USP interaction with an atomic system. Thus, the 
question arises as to the possibility of inducing population 
difference gratings by sub-cycle pulses in real media possess-
ing a large number of energy levels. One of the best descrip-
tions of USP interaction with an atomic system is related to 
solving the Schrödinger equation for an atomic wavefunction.

The present article is aimed at analysis of the possibilities 
of a superfast control over a multilevel medium state by a pair 
of sub-cycle unipolar pulses. The duration of pulses is ass
umed less than the inverse frequencies of atomic transitions. 
The possibility of generating light-induced harmonic popula-
tion difference gratings by a pair of such pulses in the medium 
is demonstrated.

2. Theoretical consideration

Consider a resonance medium of length L arranged along the 
z axis (Fig. 1). The concentration of particles we will assume 
small in order to neglect the profile variation of the pulse as it 
propagates through the medium. Let pulse 1 pass into the 
medium at the initial instant at the point z = 0 and propagate 
from left to right in the medium. We assume that as soon as it 
leaves the medium, pulse 2 enters the medium and propagates 
from right to left. Obviously, in this statement of the problem, 
the pulses never meet in the medium. Pulse 1, having left the 
medium, leaves behind oscillations of medium macroscopic 
polarisation, which persist for time T2 [26 – 29]. We assume 
that pulse 2 enters the medium in a time interval much shorter 
than T2. A result of its interaction with the polarisation wave 
will depend on a phase of medium polarisation oscillations at 
each spatial point and on the moment of pulse arrival at the 
point prescribed. Indeed, depending on the delay between the 
pulses, pulse 2 may either stop medium polarisation oscilla-

tion at the spatial point or, on the contrary, enhance it. Hence, 
in the case of a medium with a low particle concentration 
(Fig. 1) where a change in the pulse profile can be neglected, 
the problem concerning the action of two USPs on an 
extended medium can be reduced to the problem of unity 
response of the atom to the pair of USPs acting with a certain 
relative delay D. We are interested in the possibility of a sup
erfast control over the medium state and generating gratings 
by using ultrashort sub-cycle pulses. We assume that the pulse 
duration is less than the inverse frequencies of transitions in a 
system. In this case, the pulse action on the system can be 
approximately reduced to the action of a delta-shaped pulse. 
Thus, for simplicity, let us first consider the medium response 
to the action of two delta-shaped pulses:

E(t) = SE1d(t) + SE2 d(t – D),	 (2)

where SE1, SE2 are the electric areas for pulses 1 and 2; and D 
is the delay between the pulses. Below, the calculation result is 
generalised to the case of a pulse with a finite attosecond 
duration.

Interaction of a USP with a quantum system is described by 
the temporal Schrödinger equation for a wavefunction y [30]:

¶
¶

i
t
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 = (H0

t  + V(t)) y.	 (3)

Here, '  is the reduced Plank constant; H0
t  is the eigen Ham

iltonian of the system; V (t) = – dE(t) is the potential of sys-
tem interaction with a radiation pulse, which in the case of 
not strong field can be considered as a weak perturbation; 
and d is the atomic dipole momentum. We restrict ourselves 
to the case of radiation with a fixed linear polarisation when 
the dipole moment is directed along the incident field. We 
assume that the perturbation acts for a finite very short time 
comparable to the period of resonance transitions in the 
atom or shorter. Let prior to the action the system be in the 
ground state y0. Due to perturbation, the system may trans-
fer to any other excited state. The incident field is assumed 
weak. Then, a standard perturbation theory can be applied 
for solving the wave equation (3) [30]. The probability of 
system transfer from the ground state of a discrete spectrum 
to the kth state can be found in the first-order perturbation 
theory [30]:

w0k = ( )exp i dV t t1
k k2 0 0

2

'
wy .	 (4)
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Figure 1.  Resonance medium and a pair of sub-cycle pulses propagat-
ing towards each other from the opposite directions with a certain delay 
and not meeting in the medium.
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Here, V0k = – d0k E(t) is the matrix element of the perturbation 
operator; and d0k and w0k are the dipole moment and fre-
quency of the resonance transition.

Now we assume that the pulses have equal areas SE1 = 
SE2 = SE. By using (2) and (4) and performing integration, one 
can easily obtain the expression for the transition probability 
under the action of two USPs:

w0k = 2
Ed Sk
2

0
2 2

'
(1 + cos w0kD).	 (5)

From (5), one can see a periodical dependence of the transi-
tion probability (population of the kth excited state) on the 
delay between pulses D. Formula (5) explicitly demonstrates 
the possibility of a superfast control over the medium state by 
using half-cycle pulses and adjusting the delay between those. 
One can see that the result of pulse action on the medium is 
determined by the pulse electric area. This fact once more 
confirms the possibility of affecting a quantum system by uni-
polar pulses (in contrast to bipolar pulses with a zero electric 
area). Note that the possibility of efficiently affecting simplest 
quantum systems by a single high-amplitude quasi-unipolar 
USP (with a duration shorter than the inverse transition fre-
quencies in the system) was also studied in the sudden-pertur-
bation approximation in [13, 14].

We now consider generation of population gratings by a 
pair of sub-cycle pulses. Since in the case of the extended med
ium shown in Fig. 1 the delay D(z) ~ z/c determines the differ-
ence between the instants of pulse 1 and 2 arriving to the 
medium point with the coordinate z we may assume that for-
mula (5) describes the harmonic population difference (inver-
sion) gratings generated by two USPs in the extended medium. 
The modulation depth of the gratings is proportional to the 
pulse electric area and to dipole moment of the corresponding 

resonance transition. This conclusion was drawn from a solu-
tion of the Schrödinger equation, and hence the result obta
ined illustrates the possibility of generating gratings in multi-
level media and generalises previous studies in the two-level 
approximation.

3. Inducing light-induced gratings  
by a pair of attosecond pulses

Previously, in view of a short duration of incident pulses we 
considered delta-shaped pulses to make calculations simpler. 
However, a similar result can be obtained for pulses with arbi-
trary profiles. To illustrate the suggested idea, we will consi
der the action of a pair of pulses of finite attosecond duration 
on the medium. For clearness, we use incident pulses of rect-
angular shape with amplitude E0, duration tp, and delay bet
ween them D. Some methods for obtaining quasi-unipolar pul
ses of rectangular and triangle shape are described in [31 – 35] 
and reviews [7 – 9]. Using formula (4) one can easily obtain the 
expression for the transition probability:

w0k = 4
d E

k

k
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0
2

0
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2

' w
(1 – cos w0k tp){1 + cos [w0k (D + tp)]}.	 (6)

This expression shows that the grating modulation depth 
depends on the ratio of squares of the Rabi frequency of inci-
dent pulses /d ER k

2
0
2

0
2 2'W =  and frequency of considered res

onance transition 2
k0w . Note that at tp ® 0, by applying the 

Taylor formula to cosine in the first brackets we obtain 1 – 
cos w0k tp » /2pk0

2 2w t . In view of the expression for a rectangu-
lar pulse area SE = E0 tp, formula (6) transfers to formula (5).

We now present numerical estimates. Let the medium be 
excited by rectangular pulses with tp =500 as. We take the 
transition frequency w0k = 2.4 ́  1015 rad s–1, which corres
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Figure 2.  Dependences of the transition probability w01 on the delay between pulses D for field amplitudes E0 = ( 1 ) 0.5 ́  107, ( 2 ) 107, and ( 3 ) 
2 ́  107 V cm–1; tp = 500 as, w0k =2.4 ́  1015 rad s–1, d0k = 7.6 D, T0 = 2p/ w0k = 2.65 fs is the resonance transition period.
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ponds to the resonance transition D1 in rubidium vapours 
Rb87 with a wavelength of 794.767 nm (52S1/2 ® 52P1/2). The 
dipole moment of the transition is d0k = 7.6 D [36]. Figure 2 
illustrates the dependence of the transition probability on the 
delay between pulses obtained from formula (6) at three val-
ues of the incident field amplitude E0. The pulse amplitudes 
and durations are comparable to experimental results given in 
[4]. One can see that at E0 = 107 V cm–1 the transition proba-
bility is ~ 0.05.

It also follows from (6) that the grating modulation depth 
depends periodically on the pulse duration tp. This makes us 
assume that in a multilevel medium, contributions of various 
transitions may be either great or small (depending on the 
ratio between the pulse duration and transition frequency). 
This is illustrated in Fig. 3, which presents the dependence of 
the transition probability on the delay between pulses and 
pulse duration. The modulation depth periodically depends 
on the pulse duration. A large modulation depth at a pre-
scribed resonance transition requires pulses of duration ~1 fs. 
Thus, in a multilevel medium, the contribution from various 
resonance transitions is determined by the ratio between the 
pulse duration and frequency of the considered transition.

Concluding, note that formula (6) has been obtained acc
ording to the perturbation theory in the case of weak fields; 
hence, it is valid under the condition on a transition probabil-
ity w << 1. This condition is generally satisfied when the pulse 
Rabi frequency is substantially less than the medium tran
sition frequency (WR << w0); however, it is valid for a greater 
Rabi frequency if the pulse duration is sufficiently short 
(w0ktp << 1).

4. Conclusions

Thus, basing on an approximate solution of the Schrödinger 
equation we have shown the possibility of a superfast control 
over parameters of a multilevel resonance medium by using a 
pair of sub-cycle unipolar pulses. In the case, where the pulse 
duration is shorter than the inverse frequencies of atomic 
transitions, the result of their action is determined by the 
pulse electric area, which again illustrates prospects of using 
quasi-unipolar pulses for efficient control of the dynamics of 
wave packets in matter.

It is shown that, similarly to a two-level medium, light-
induced harmonic population gratings can be generated when 
the pulses do not overlap in the medium. The lattice modula-
tion depth depends on the relationship between the pulse 
Rabi frequency, frequency of the considered transition, and 
pulse duration. Earlier studies of generating gratings by USPs 
considered a resonance medium in the two-level approxima-
tion only, which is not always applicable in the case of atto-
second sub-cycle pulses. The result obtained above generalises 
the results obtained earlier in a two-level medium to the case 
of multilevel systems.

A possibility of inducing gratings by using a pair of atto-
second pulses in rubidium vapours is studied theoretically, 
which confirms the possibility of controlling the quantum sys-
tem state by a sequence of such pulses. Diffraction of probe 
radiation on such light-induced gratings can be used for mea-
suring a polarisation relaxation time T2 in various media, 
designing superfast switches and deflectors for laser radiation 
[23 – 29].

In experiments, it is necessary to employ media with a 
large relaxation time T2. These are, for example, gases, atomic 
vapours, and quantum dots at low temperatures [37].
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