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Abstract.  A method for the mathematical processing of digitised 
Fabry – Perot interferograms is proposed and implemented to elim-
inate subjective factors and increase the accuracy of measurements. 
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In this paper, we will focus on determining the frequency shift 
of spectral lines when this shift is comparable with the resolu-
tion of the measuring device. In numerous experimental stud-
ies on stimulated scattering, characterised by small frequency 
shifts of the scattered radiation lines relative to the lines of the 
exciting radiation, to record the spectra by means of the 
Fabry – Perot etalon, the field of view of the spectrum-record-
ing element (film, CCD matrix) is divided into two indepen-
dent areas. Each of the areas is illuminated by only one light 
source (usually this is pump radiation or stimulated scattering 
radiation; see, e. g., [1 – 4]). Adequate determination of the 
frequency shift requires accurate measurements of the diam-
eters of the interference rings. These measurements imply that 
the interference pattern is divided strictly by the diameter of 
the rings. However, in experimental practice, such a division, 
of course, is carried out with some uncertainty, and this 
immediately introduces an error into the spectral measure-
ments. In addition, the image of the rings has a speckled char-
acter, which makes it difficult to find the maximum of the 
spectral line, which will be discussed below. This paper is 
devoted to the development of a method for minimising these 
errors.

Figure 1 shows a schematic of one of the options for imp
lementing this method. Light beams ( 1, 2  ) from different sou
rces fall on an opaque flat thin screen ( 3 ) and then on a lens 
( 4 ), which forms the image of the edge of the screen at infin-
ity. After the lens, parallel beams arrive at a Fabry – Perot 
etalon ( 5 ), and then at another lens ( 6  ), the focus of which is 
a CCD matrix ( 7  ). The vertical dashed line denotes the focal 
plane of lens 4, in which the light-scattering element is some-
times placed to improve the uniformity of illumination of the 
etalon mirrors. In such scheme, a spectral picture arises at the 
focus of lens 6, in one half of which is the spectrum (in the 
form of half-rings) of the radiation from beam 1, and in the 
other from beam 2. The CCD matrix (in our case, the 
WinCamD-UCM matrix of DataRay, 1020 ́  1020 pixels) 

records the spectral pattern, which is usually observed on a 
computer monitor and processed using standard software. 
Note that the CCD matrix is commonly used to record the 
parameters of the near and far zones of laser radiation, the 
patterns that vary fairly smoothly along the transverse coor-
dinate. And the standard processing methods include the 
determination of the intensity maxima positions, average 
transverse beam size, etc., using smoothing functions to con-
struct intensity distributions in fixed sections of a 2D CCD 
matrix.

On the contrary, the pattern of the intensity distribution 
during the registration of spectra using the Fabry – Perot 
etalon is, as noted above, very inhomogeneous (speckled) due 
to the interference of neighbouring portions of the focal ima
ge distribution at a finite aperture of the optical system, as 
well as by the interference of the main image with light, para-
sitically scattered by the elements of the optical system. This 
circumstance does not allow the diameters of interference 
rings to be correctly determined. As an example, Fig. 2 shows 
typical intensity distributions recorded using a CCD matrix 
according to the scheme shown in Fig. 1. These distributions 
correspond to a three-dimensional picture of the ring struc-
ture obtained using two light beams with different intensities.

To increase the accuracy of measuring the parameters of 
the interference pattern, it is obviously necessary to find the 
geometric centre of the system of interference rings and sum 
the radial amplitudes in a certain angle separately for the upp
er and lower half-planes. This procedure is equivalent to aver-
aging over an ensemble of realisations of random phase rela-
tionships of interfering fields, i. e., the transition from coher-
ent illumination to incoherent one.

For definiteness, we will use the programming language of 
the popular mathematical package Mathcad, which allows 
BMP and CSV files to be processed; the form of these files 
makes it possible to represent the results of image recording 
with a CCD matrix, the language itself being intuitive and 
concise. In the initial approximation, we introduce the centre 
coordinates and the radius of the circle a0, b0, and R0 (the 
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Figure 1.  Optical scheme of bipolar measurement of spectra: 	
( 1, 2  ) light beams from different sources; ( 3 ) screen; ( 4 ) lens with a fo-
cal length of 34 cm; ( 5 ) Fabry – Perot etalon; ( 6 ) lens with a focal length 
of 48 cm; ( 7 ) CCD.
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radius R0 can be the approximate radius of any selected ring 
of the interferogram, except, obviously, the minimum one), 
which can be visually determined using an arbitrary graphics 
editor or using Mathcad. We introduce the function F(R, a, b), 
where a, b are the centre coordinates of the circle of radius R, 
of the form

F(R, a, b) := for  j Î 0 .. G

for  i Î 0 .. a0

c

c c + Ai, j   if (i – a)2 + (j – b)2 + R  £ h

c  otherwise

c := 0

ck := 0Rk := k := 1..3 · a

R

k
3

fk := for  j Î 0 .. G

for  i Î 0 .. a

ck

ck ck + Ai, j   if (i – a)2 + (j – b)2 + Rk   £ 0.5

ck  otherwise

Rk

.	 (1)

Here Ai,j is the amplitude of a signal from the pixel with coor-
dinates i, j; 2h is the bandwidth of summation in pixels; and G 
is the size of the square matrix in pixels. We define the domain 
of variation for the discrete coordinates a, b and the radius R as 
a0 – d < a < a0 + d, b0 – d < b < b0 + d, R0 – d < R < R0 + d. 
The value of d is chosen based on simple considerations: It is 
necessary that the true values of the coordinates and radius 
surely fall into the domain of their variation. The first two 
lines of the program (1) define the domains of coordinate 
variation, the third line indicates the summation using the 
conditional operator: If the arguments R, a, b satisfy the con-
dition given in (1), then the corresponding element Ai,j is add
ed to the sum, otherwise 0 is added. The value of the function 
F(R, a, b) is normalised to R, because the number of summa-
tion elements is obviously proportional to the radius R. The 
function F(R, a, b) is the overlap integral of a homogeneous 
ring having a width of ~ 2h and an average radius R, with the 
chosen interferogram ring. Next, using the simple enumera-
tive technique, we find the maximum of this function (this 
procedure is also easily implemented by means of the Mathcad 
software). If we choose the width 2h approximately equal to 
the width of the interference ring, then the corresponding val-
ues of the coordinates a and b practically coincide with the 
coordinates of the centre of the interference pattern (this can 
be understood from simple geometric considerations). Thus, 
using procedure (1), the coordinates a and b of the centre of 

the interference pattern are determined. Note that here we 
have chosen the upper half-plane of the matrix (0 £ i £ a0) as 
the working one. The same can be done with the lower half-
plane (a0 £ i £ G), where an interferogram of another radia-
tion is recorded.

To plot the dependence of the total signal of the pixels on 
the radius, we perform the summation procedure using a vec-
tor fk of the form

F(R, a, b) := for  j Î 0 .. G

for  i Î 0 .. a0

c

c c + Ai, j   if (i – a)2 + (j – b)2 + R  £ h

c  otherwise

c := 0

ck := 0Rk := k := 1..3 · a

R

k
3

fk := for  j Î 0 .. G

for  i Î 0 .. a

ck

ck ck + Ai, j   if (i – a)2 + (j – b)2 + Rk   £ 0.5

ck  otherwise

Rk

.	 (2)

Here, to increase the number of calculation points by a factor 
of three, a discrete variable k is introduced, and the summa-
tion bandwidth is approximately one pixel. The quantities a 
and b correspond to the maximum of the function F(R,a,b). 
Similarly to Eqn (1), the magnitude of the vector fk is nor-
malised to Rk. As an example, Fig. 3 shows the results of pro-
cessing interferograms of the second harmonic radiation of a 
stabilised single-mode continuous-wave Nd : YAG laser. Both 
recorded fields were produced by the same radiation. The 
dashed curve corresponds to the upper field; the solid curve 
corresponds to the lower one. It is clearly seen that the depen-
dences of the intensity on the radius for both registration 
fields practically coincide. This is direct evidence of the cor-
rectness of the chosen method.

Figure 4 shows the interferogram obtained in the study of 
stimulated temperature scattering (STS) in the case of two-
photon absorption in toluene, and the results of its process-
ing. The second harmonic of a single-mode single-frequency 
Nd : glass laser, the radiation of which was focused by a lens 
with a focal length of 5 cm to the centre of a cell 6 cm long, 
served as a pump source. The pulse duration was 10 ns at its 
energy of 3 mJ. The gap of the modernised Fabry – Perot eta
lon [5] was 9 cm. The anti-Stokes shift of the scattered radia-
tion frequency is clearly visible, which is approximately six 
times the theoretically obtained stationary shift Dn = cq2/2p » 
16 MHz, where c is the thermal diffusivity of toluene, and q is 
the modulus of the wave vector of the grating [6]. Thus, the 
method used for processing interferograms allowed us not 

Figure 2.  Illustration of the inhomogeneity ( speckle ) of the ring struc-
ture of the signal recorded by the CCD matrix according to the scheme 
shown in Fig. 1.
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Figure 3.  Results of processing interferograms of the second harmonic 
radiation from a stabilised single-mode continuous-wave Nd : YAG la-
ser. The solid and dashed curves correspond to two fields of interfero-
grams for light beams of the same frequency.
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only to measure the spectral shifts at the limit of the resolu-
tion of the device, but also to quantitatively characterise the 
asymmetry of the line of stimulated temperature scattering of 
the pump radiation in liquid toluene.

In conclusion, we note that in order to speed up the calcu-
lations, we can introduce the corresponding restrictions on the 
domain of variation of the coordinates i and j, and by intro-
ducing additional conditions in Eqn (2), perform the summa-
tion in any arbitrarily given central angle containing arcs of 
interference rings. The coordinates of the centre of the inter-
ference pattern can be determined with greater accuracy using 
the half-plane where the spectrum of the pump radiation is 
recorded, due to its greater monochromaticity compared to 
scattered radiation. The considered method was used to pro-
cess the results in Ref. [6].
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Figure 4.  ( a ) Interferogram and ( b ) corresponding spectra of ( 1 ) 
pump radiation and ( 2 ) anti-Stokes STS component with a frequency 
shift of ~ 100 MHz, obtained as a result of mathematical processing of 
the first two rings.


