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Abstract.  The laser pulse evolution in a normal-dispersion fibre 
amplifier is studied. The cases of ideal spectrum-homogeneous and 
transform-limited amplification are considered. It is shown that the 
envelope transformation of the input pulse to a parabolic form is 
possible not only for spectrally-flat amplification, but also for tran
sform-limited one. In the latter case, an important parameter is the 
optimal amplifier length. The results demonstrate that, in the case 
of a sufficiently wide amplification spectrum, it is always possible 
to find the optimal amplifier length, after passing through which the 
output pulse envelope is close to a parabola.

Keywords: fibre amplifiers, parabolic pulses, normal dispersion.

1. Introduction

Pulsed fibre lasers and amplifiers are currently widely in dem­
and in optical communications, materials processing, medi­
cine, etc. [1, 2]. The need to further enhance the energy and 
peak power, as well as to reduce the duration of output pulses 
of fibre systems stimulates the development of new approa­
ches to the amplification and generation of laser pulses. One 
of these approaches, intensively developing in recent decades, 
is the concept of similariton-like (self-similarly evolving) par­
abolic laser pulses with linear frequency modulation [3, 4]. 
Such pulses represent an ideal object for optical processing; in 
particular, they can be compressed with a high compression 
ratio both in temporal [5, 6] and spectral [7, 8] regions, with 
the attainment of a high peak power or spectral density.

Parabolic similariton pulses are an asymptotic solution of 
the nonlinear Schrödinger equation (NSE) with a constant 
gain in the case of normal dispersion [9]. This means that, in 
normal-dispersion fibre amplifiers, parabolic pulses, as one 
would think, should be formed automatically, acquiring high 
energy without critical distortions leading to the pulse destruc­
tion (wave-breaking effect [10]). However, unlike the ideal case 
described by the NSE, in real amplifiers the gain is not constant 
either in spectrum (due to the limited width of the gain line) or 
in length (due to the gain saturation). It has been shown that 
saturation does not limit the formation of parabolic similariton 

pulses in the amplifier [11]; however, the limited spectral band 
of amplification is a critical factor. Indeed, the similariton spec­
trum width is proportional to E 1/3 (E is the pulse energy) [3], 
and when it grows up to the values comparable to the gain 
bandwidth, it is impossible to obtain a high-quality parabolic 
pulse of significant energy. A promising method for generating 
parabolic similaritons using passive fibres with normal disper­
sion decreasing in length [12] has not led as yet to breakthrough 
results. This is mainly due to the fact that the formation of a 
parabolic envelope requires the use of a fibre of considerable 
length, at which the negative effects of higher-order dispersions 
[mainly, third-order dispersions (TOD)] turn out critical [13]. 
Interesting results were obtained in the case of generation of 
parabolic pulses in long (~1 km) length-inhomogeneous 
Raman amplifiers [14]. Nevertheless, even in this case of small 
and sufficiently wide-band Raman amplification, the limita­
tions caused by the spectral boundedness of the gain band and 
the presence of TOD did not allow one to obtain high-quality 
parabolic pulses with energies exceeding 1 nJ. The possibilities 
of generating parabolic pulses have been intensively studied in 
recent years. In this context we can mention, for example, 
papers [15, 16], in which the formation of parabolic pulses in 
long (hundreds of metres) length-inhomogeneous fibre ampli­
fiers is considered by means of simulation, and attention is paid 
to the problem of TOD compensation. It is important to note 
that the amplification spectrum boundedness has not been 
taken into account in these works.

The object of this study is somewhat different from those 
above-specified – these are relatively short (not more than a 
few metres long) fibre amplifiers. Physically, they correspond 
to normal-dispersion Yb- or Er-doped fibres with sufficient 
high-power pumping. The aim of the work is a search for 
parameters of amplifiers providing the maximum closeness 
of the output pulse to a parabolic similariton.

2. Problem statement. Basic equations

Consider a fibre-optic amplifier with normal group velocity 
dispersion (GVD). The signal propagation in the amplifier is 
described by the Ginsburg – Landau equation for the complex 
field amplitude A(z, t) [17]:
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where z is the longitudinal coordinate; t is the time in the trav­
elling coordinate system; b2 > 0 is the normal GVD coeffi­
cient; g is the Kerr nonlinearity parameter of the fibre; and 
g is the gain. The dispersion dependence on the wavelength, 
i. e., higher dispersions (of the third and higher orders), is 
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neglected, since the amplifier length is small. The contribu­
tions of higher nonlinearities (nonlinearity dispersions and 
SRS) are also not taken into account, since pulses with a dur­
ation of ~1 ps or more are considered, and again, because of 
small amplifier length. Equation (1) differs from the NSE by 
the presence of a term describing the spectrum-parabolic 
amplification, with the parameter Wg determining the gain 
line width (in s–1), and also by the fact that, due to the satura­
tion effect, the gain g depends on the amplifier length:

g = g0
( , ) d

E

A z t t
1

sat

2 1

+

-

f py
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Here g0 is the small-signal gain, and Esat is the saturation 
energy. The parameters of the amplification system under 
consideration are as follows: g = 6 W–1 km–1, b2 = 50 ps2 km–1, 
and g0 = 0.88 m–1. As the initial pulse, a transform-limited 
Gaussian pulse with a duration of t = 0.3 ps and a peak power 
of P = 100 W is used. Next, we consider a few typical cases of 
the pulse evolution described by Eqn (1).

2.1. Spectrum-homogeneous amplification without  
saturation

This option corresponds to the NSE with a length-constant 
gain g = g0, which can be obtained from (1) in the limiting 
case Esat ® ¥, Wg ® ¥. It is known that, under these condi­
tions, the initial pulse with energy Ein (in this case Ein » 75 pJ) 
and an arbitrary envelope transforms asymptotically (at z ® ¥) 
to the form of a parabolic similariton [3]:

A(z, t) = |A(z, t)|exp(iF (z, t)),
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Note that the asymptotic pulse chirp is determined by the 
gain and GVD: a = g/(3b2); the similariton pulse duration tp 
and, accordingly, the width DW » 2patp of its spectrum inc­
reases exponentially with the length z.

Equation (1) with the specified parameters was simulated 
by the standard split-step Fourier transform method [17]. The 
simulation results in comparison with the asymptotic expres­
sions are shown in Fig. 1. As can be seen, in the initial phase 
of amplification the pulse is far from asymptotics (3) (Fig. 1a). 
However, Eqn (3) describes, in fact, a nonlinear attractor of 
the dynamic system, which confirms the actual coincidence of 
the simulation results with the asymptotics after the pulse 
passes several metres in the amplifying fibre (Fig. 1b). As a 
characteristic of the difference between the |Au |2 value deter­
mined by the simulation of equation (1) and the analytical 
expressions for |A|2 (3), we used the envelope misfit (MF) 
parameter ([14, 18]):
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Figure 1.  Spectrum-homogeneous amplification without saturation. The 
radiation pulse and the change in its instantaneous frequency at the am­
plifier length L = ( a ) 0.1 and ( b ) 6 m. The results of simulation ( solid 
curves ) and calculation by asymptotic expressions ( 3 ) ( dashed curves ); 
( c ) change in the envelope misfit parameter along the amplifier length; 
( d ) chirp evolution, dashed line is the asymptotic limiting value a = 
g/(3b2).
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Figures 1c and 1d additionally illustrate the above said: as 
the pulse amplifies, the envelope tends to a theoretically pre­
dicted parabolic form, and the chirp value approaches the 
asymptotic value a = g/(3b2).

2.2. Spectrum-homogeneous amplification  
with saturation

This option can be obtained from (1) in the limit Wg ® ¥ at a 
finite value of the saturation energy Esat < ¥. To analytically 
solve the resulting equation, a variational method [19, 20] can 
be used, in which the probe pulse is written as a parabolic 
similariton pulse

u (z, t) = u0(z)
( )t z
t1
p
2

2

- exp i[a(z)t2 + j(z)], |t| < tp.	(5)

The dynamic system equations for the time-averaged NSE 
Lagrangian,
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lead to a system of equations describing the evolution of the 
pulse parameters during amplification:
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The saturation energy Esat was chosen equal to 10 nJ (~135 
energies of the initial pulse Ein). The initial values of the par­
ameters of system (6) were chosen as follows: u0

2(0) = P = 100 W, 
a(0) = 0, tp(0) = tp = 3pt/4 » 0.7 ps, i. e., the energies and peak 
powers of the initial Gaussian pulse used for the simulation 
of Eqn (1) and those of the initial parabolic pulse evolving 
according to system (6) are equal. The results of simulating 
Eqn (1) are presented in Fig. 2 in comparison with the results 
of solving system (6). As in the previous case, we should 
emphasise the existence of a nonlinear attractor contributing 
to the formation of a parabolic envelope and linear frequency 
modulation. Naturally, with the same fibre length and satu­
rable amplification, the pulse energy and its chirp magnitude 
turn out significantly smaller than those with constant ampli­
fication. It is important to point out the presence of a clear 
local minimum of the mismatch parameter (near L » 3.8 m) 
indicating the closeness of the pulse envelope to the parabola 
shape at a given point (Fig. 2c). However, at this time moment, 
frequency modulation rate (chirp) of the simulated pulse does 
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Figure 2.  Spectrum-homogeneous amplification with saturation. The results of simulation ( solid curves ) and calculation by asymptotic expressions 
( 3 ) ( dashed curves ). The radiation pulse and the change in its instantaneous frequency at the amplifier length L = ( a ) 0.1 and ( b ) 10 m; ( c ) change 
in the MF parameter along the amplifier length; ( d ) evolution of frequency modulation rate ( chirp ).
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not quite correspond to the value obtained from the varia­
tional calculations (Fig. 2d).

2.3. Transform-limited amplification with saturation

Next, consider the case that is closest to real fibre amplifiers, 
in which the gain line width is taken into account. To do this 
when simulating Eqn (1), the parameter Wg was chosen equal 
to 20 ps–1, which corresponds to a gain bandwidth of ~ 40 nm 
in the wavelength range of ytterbium fibre lasers (l = 1050 nm). 
The saturation energy remains unchanged (Esat = 10 nJ ).

The initial Gaussian pulse evolution in the fibre amplifier 
described by Eqn (1) is compared with the evolution of the 
parameters of the parabolic pulse described by system (6). A 
direct comparison of these processes is not entirely correct, 
because the Lagrangian L does not correspond to Eqn (1), 
which contains a transform-limited amplification term. Thus, 
other parameters being equal, the pulse evolving according to 
(1) receives less energy than the parabolic pulse whose param­
eters change according to (6). However, the research problem 
can be reformulated as follows: it is necessary to find the 
parameters of the fibre amplifier described by Eqn (1), which 
provide the maximum closeness of the amplified pulse enve­
lope to a certain parabolic pulse that evolves in a system with 
uniform saturated amplification, i. e., the equality of initial 
energies is optional. (A pulse in the system with uniform amp­
lification has a smaller initial energy.) As a result, the problem 
of finding the optimal parameters of a fibre amplifier, which 
are optimal for parabolisation, is reduced to finding the mini­
mum of the envelope misfit functional (MF parameter value) 
similar to (4):

MF = 

A

A u

4

2 2 2
- dt

dt

8 B

y
y

.	 (7)

In this case, optimisation at certain length L of a ‘real’ ampli­
fier occurs not only at the expense of the choice of the param­
eters of Eqn (1), which determine the pulse |A|2. By selecting 
the initial values of tp(0) and u0(0) in a certain range, we spec­
ify the parabolic pulse u (z, t) of form (5), which evolves in the 

amplifier with uniform saturable amplification and provides 
a minimum MF value.

Let us illustrate this by an example. The minimum value of 
functional (7) for the specified amplifier parameters is MF » 
9 ́  10–4 (the rightmost point in Fig. 3a). This value corresp­
onds to L = 2.03 m at the initial parameters u0

2(0) = P, tp(0) = 
0.86 tp of the parabolic variational solution. Next, we calcu­
late the minimum of this parameter with a decrease in the 
GVD of the amplifier. The results are presented in Fig. 3a. 
When searching for optimal values of the MF parameter, the 
amplifier length was varied in the range 1.5 – 2.5 m, while the 
values of u0(0) and tp(0) were varied in the range (0.9 – 1)P and 
(0.8 – 0.95) tp, respectively. As can be seen, at b2 = 30 ps2 km–1 
the minimum value of the envelope misfit parameter can be 
reduced to ~ 5 ́  10–4. At this GVD value, having been opti­
mised for the given amplification system (b2 = 30 ps2 km–1), 
the dependence of the MF parameter minimum on the gain 
saturation energy Esat is presented in Fig. 3b. The results show 
that the ‘parabolicity’ quality of the envelope at the optimal 
value Esat = 1 nJ can be brought to a level that virtually cor­
responds to the ideal case of the spectrally homogeneous 
amplification with MF » 3 ́  10–4. Naturally, however, that a 
drop in the output pulse energy becomes the payment for a 
decrease in the saturation energy.

Figure 4 shows the results characterising the initial pulse 
evolution under transform-limited amplification with the par­
ameters Esat = 10 nJ and b2 = 30 ps2 km–1. When selecting the 
optimal amplifier length L = 1.97 m, the output pulse enve­
lope is close to a parabola (Fig. 4a). It is seen from Fig. 4b 
that the optimal length is determined quite clearly. If the amp­
lifier length deviates from its optimum, the misfit parameter 
increases significantly. Despite the incomplete pulse chirp lin­
earisation at a given length (we should note the nonlinear fre­
quency modulation on the pulse wings) during the pulse pas­
sage through the linear dispersive element, there occurs a sig­
nificant temporal compression of the pulse, accompanied by 
an increase in peak power. Figure 4c shows the envelopes of 
the output pulse and the output pulse passed through the lin­
ear dispersive element – a pair of diffraction gratings with 
anomalous dispersion b2 = – 0.07 ps2 km–1. A more than six-
fold peak power increase indicates the linearity of frequency 
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modulation of the output pulse, sufficient for high-quality 
temporal compression. Figure 4d presents the envelopes of the 
output pulses passed through amplifiers of various lengths. 
One can see that, if the amplifier length is less than that opti­
mal for parabolisation, the envelope retains a shape close to a 
Gaussian one. If the optimal length is exceeded, the pulse 
envelope becomes deformed and takes the triangle shape.

3. Discussion of the results. Conclusions.

The conducted studies of the laser pulse evolution in a nonlin­
ear amplifier allow a number of conclusions to be drawn. The 
well-known fact of the existence in an amplification system 
with normal GVD and unlimited gain spectrum of a nonlin­
ear attractor in the form of a parabolic similariton can be 
supplemented with an important observation. This asymp­
totic convergence is nonmonotonic and has a number of local 
minima (see Figs 1c and 2c) related to the gradual lineariza­
tion of the pulse frequency modulation. When considering the 
transform-limited amplification, it can be noted that the first 
local minimum of the asymptotic convergence of the pulse to 
a parabolic form is also preserved in this case. In other words, 
with a wide enough gain spectrum, one can always find the 
optimal amplifier length, after passing through which the pulse 
will have an envelope close to a parabola (see Fig. 4). By opti­
mising the GVD of the amplifier and pump, the differences in 
the envelope shape from a parabola can be minimised (Fig. 3). 
All these conclusions are made for short amplifiers, which jus­
tifies the neglect of the factors of highest dispersions (third-

order dispersions and higher) and nonlinearities (SRS and 
nonlinear dispersion) in our calculations. The proposed cal­
culation method can be useful in setting up a series of experi­
ments on the generation of pulses with parabolic envelope in 
real fibre amplifiers of optimal length. The developed genera­
tors of parabolic pulses can be used in systems for temporal 
and spectral compression [21, 22], optical processing [23], and 
also for subsequent amplification of pulses to ultrahigh ener­
gies [24, 25].
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