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Abstract.  A modification of the classical scheme of the quantum 
ghost image formation is considered, in which an image of the 
object under study is formed and recorded in the object channel. 
This image is used together with the ghost image to construct an 
estimate of the transparency distribution of the object. It is shown 
that this technique reduces the image quality worsening associa­
ted with the non-unit quantum efficiency of the sensors, even when 
the quantum image obtained in the object channel is additionally 
distorted by noise due to photons that did not interact with the 
object.

Keywords: ghost images, measurement reduction, quantum det­
ector efficiency, entangled photons.

1. Introduction

One of the important arguments in favour of using quantum 
ghost images is to provide the most sparing lighting con­
ditions for the studied object when the effect of radiation on 
the object (sometimes irreversible) is minimal [1]. This is espe­
cially important when irradiating living objects, e. g., by 
X-rays.

In the classical scheme of the ghost imaging in the object 
arm (where the studied object is located), radiation is 
detected by an integrating detector, i. e., a single-element 
photodetector that intercepts the entire beam of radiation 
that penetrates through the object of study or is reflected 
from it (Fig. 1). In this case, of course, no image is obtained. 
The image is formed in another channel due to the strong 
correlation between the photons in these two channels. With 
fixed characteristics of the optical scheme and given infor­
mation about the object of study available to the researcher, 
the minimum illumination of the object at which acceptable 
image quality is achievable can only be reduced by increas­
ing the quantum efficiency of the detectors. However, such 
forcing not only has finite reserves, but also leads to growing 
technical difficulties and financial costs. Moreover, if ordi­
nary images only require registration of the photon interact­
ing with the object, the formation of ghost images requires 
registration of a pair of photons, i. e., the average number of 
registered photons is proportional to the square of quantum 
efficiency.

We offer a new schematic solution that ensures, on the 
one hand, the safety of the object of study by reducing the 
light intensity, and on the other hand, improving the image 
quality. Moreover, the increase in the signal-to-noise ratio 
characteristic of ghost images generated by the coincidence 
scheme remains valid, i. e., it is possible to combine the advan­
tages of the ghost image method with the advantages of the 
ordinary image formation.

Consider Fig. 2. In the object channel, as in the reference 
channel, instead of an integrating detector, a photodetector 
array is used, on which an ordinary image of the object under 
study is formed by means of an optical lens. In the case of 
X-ray irradiation, the matrix is placed directly behind the 
object, since in the X-ray region only reflective optical sys­
tems with large angles of incidence work well, and the image 
quality leaves much to be desired.
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Figure 1.  Classical scheme of ghost imaging: 	
(NC) nonlinear crystal; (O) object; (BD) bucket detector in the object 
channel; (L) collecting lens; (CCD) matrix of photodetectors in the ref­
erence channel; (C) intensity correlator; wp is the frequency of the quan­
ta of the pump beam; w1 and w2 are the frequencies of entangled photon 
pairs ( the beams diverge due to the use of a noncollinear process of 
parametric scattering ).
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Figure 2.  Proposed scheme for the formation of a pair of quantum 
images: 	
(NC) nonlinear crystal; (O) object; (L1, L2) optical lenses; (CCD1, 
CCD2) photodetector arrays in the object and reference channels; (C) 
intensity correlator;  wp is the frequency of the quanta of the pump 
beam; w1 and w2 are the frequencies of entangled photon pairs ( the 
beams diverge due to the use of a noncollinear process ).
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Thus, in the considered scheme two quantum images are 
registered, an ordinary image and a ghost one. Their subse­
quent computer processing makes it possible to reduce the 
minimum required number of photons penetrating through 
the object and to improve image quality. Note that the pro­
posed scheme differs from the difference measurement scheme 
(see, e. g., [2]), because, in contrast to the latter, the obtained 
images are not processed by calculating their difference. This 
means, in particular, that the rigorous condition of the abso­
lute identity of the detectors in the object and reconstruction 
channels is removed. In addition, due to the radically differ­
ent operating principles of our scheme and difference ones, 
the layouts of their optical systems differ too.

2. Measurement reduction method

When illuminating an object with a minimum number of pho­
tons, the efficiency of mathematical methods and measure­
ment processing algorithms should be such that they not only 
provide a minimum error, but also allow all information 
about the object available to the researcher to be used. This 
can be achieved using the mathematical method of measure­
ment reduction and the algorithms that implement it.

Consider a typical measurement scheme in which a mea­
sured signal f, belonging to the Euclidean space F , is formed 
at the input of the measuring transducer (MT) [3]. The MT 
transforms the signal f into a signal belonging to the Euclid­
ean space X

x = A f + n,	 (1)

where A : F  ® X is an operator that simulates physical pro­
cesses in the MT that determine the conversion of f into the 
signal A f; below it denotes the simulated MT itself; and n is 
the error (measurement noise). The measurement result dep­
ends on the characteristics of the measured object, interacting 
with the MT and distorted by the measurement, and the res­
earcher, as a rule, is interested in the characteristics of the obj­
ect not distorted by the measurement. Their relation is mod­
elled by an ideal MT specified by the operator U : F  ® U , 
the input of which receives the same signal as the input of MT 
A, but at its output, the signal Uf corresponds to the object 
characteristic interesting for the researcher. The reduction pro­
blem is to find the reduction operator R* for which R*x is the 
most precise version of Uf; the reduction operator R* is syn­
thesised in a computational converter. If in Eqn (1) f is a pri­
ori an arbitrary vector, and n is a random vector taking values 
in the space X and having mathematical expectation En = 0 
and non-degenerate covariance operator Sn: "x Î X Sn x = 
En(x, n), then the linear reduction operator R* : X ® U  is 
defined as the operator minimising the maximum-in-f mean-
square error of interpreting R x as Uf:

h (R, U) = sup R Uf
f

2

F

x -
!

.

This error is minimal [3] for

R* = 
11 1U A A AS S@ @

n n
- - -^ h 	 (2)

and is defined by the expression

h (R*, U) = tr
1 1U A A US@ @

n
- -^ h ,	 (3)

if U (I – A–A) = 0, otherwise the error (3) is infinite. Here I is 
the unit operator; A– is the operator pseudo-inverse to A; and 
the symbol @  means the Hermitian conjugation.

Let the researcher be interested in the distribution of the 
transparency of the object. The pixel transparency values bel­
ong to a unit segment. This is taken into account in the mea­
surement reduction by projecting the estimate onto the set 
[0, 1]dimU  [4 – 6]. Namely, the estimate is defined as a fixed 
point of the mapping combining the linear reduction result 
R*x and some estimate ut  of the transparency distribution as 
uncorrelated results of the ‘main’ and dummy measurements 
followed by projection onto the set [0, 1]dimU  while minimis­
ing the Mahalanobis distance /1 2

RS x
-

*
 associated with the 

covariance operator RS x*  = 
1 1U A A US@ n

- - @^ h  of the linear 
reduction estimate. Besides that, the researcher is aware that 
the transparencies of adjacent pixels, as a rule, differ slightly. 
This information is often formalised [7 – 11] by the sparsity of 
the transparency distribution as a vector Uf in a given basis, 
i. e., as information that a significant fraction of the vector Uf 
components is zero in this basis.

In Refs [12, 13], a reduction algorithm was proposed that 
allows the researcher to take such information into account 
when processing multiplexed quantum ghost images. The 
algorithm is based on testing statistical hypotheses about the 
equality (or inequality) of the estimate components in the sel­
ected basis to zero. The result depends on the algorithm par­
ameter t, the level of the criterion used in the test of hypoth­
eses. The choice of this parameter is determined by a compro­
mise acceptable to the researcher between noise reduction and 
image distortion. To select the value of t, the researcher can 
simulate the registration of a test image containing the req­
uired details, and use the maximum value of t at which they 
are preserved. A similar method for choosing the regularisa­
tion parameter was proposed in Ref. [14], where the result of 
a Gaussian blur of the image corresponding to the lack of 
sparsity information was taken as a test image. An alternative 
way is to set t by comparing the results of reduction for vari­
ous values of t and using available information about noise 
[15].

3. Influence of the quantum efficiency  
of detectors on the measurement scheme

Let the CCD matrices in the object and reconstruction chan­
nels be similar and described by the operator A0. This assump­
tion is made to simplify the formulas below (an arbitrary dif­
ference in the instrument functions requires considering infi­
nite-dimensional spaces F  and X ) and is not fundamental. A 
more detailed study of the effect of differences in the instru­
ment functions of the sensors in the object and reconstruction 
channels, caused primarily by diffraction [16 – 18], is a subject 
of further studies.

With the unit quantum efficiency of the detectors in the 
object and reconstruction channels, the signal measurement 
scheme (1) takes the form

x = 0

1

x
x
e o = 

A
A
n f0

0
e o  + img

img

n n
n
+ e

e o,

where x0 is the result of measurement using the CCD matrix 
in the object channel; x1 is the measurement result of the 
generated quantum ghost image; nimg is the error caused by 
the registration of quantum images; ne is the error of the 
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quantum image formed in the object channel due to noise 
photons; and n is the average number of photons illuminat­
ing the object. Note that during ghost imaging, noise pho­
tons are suppressed by the coincidence scheme if its 
response time is sufficiently short (see the comparison of 
quantum image formation schemes in Ref. [7]); otherwise, 
a term analogous to ne appears in the expression for the 
error of the quantum ghost image. The covariance error 
operator has the form 

Sn = 
( )
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where the operator S( f ) is determined by the variances and 
covariances of the photocounts. For example, if the statistics 
of photocounts is Poissonian, then S( f  ) = n diag f. Hereinafter, 
diag q is a matrix whose diagonal elements are equal to the 
corresponding elements of the matrix q and the rest ones are 
zero; the symbol Ä denotes the Kronecker product. In this case, 
the registration of the spatial distribution of the radiation 
intensity in the object channel does not allow one to improve 
the reduction quality (the result of this measurement does not 
affect the result of the reduction).

With the detector efficiency in the object channel h0 and 
the detector efficiency in the reconstruction channel h1, the 
measurement scheme takes the form

x = 0
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where the additional errors n0 and n1 are due to missing part 
of photons by the detectors in the object and reconstruction 
channels, respectively. The covariance error operator in this 
case has the form

Sn = ( )A S f A
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where the first two terms are of the same origin as in Eqn (4), 
but they are smaller because of the reduction of the average 
number of photocounts, and the last term is directly related to 
the non-unit efficiency of the sensors.

Since the linear reduction operator has the form (2) and 
the error in the reduction estimation in the absence of addi­
tional information is determined by Eqn (3), the gain deter­
mined by the registration of the image on the object channel 
is

Dh = h h { [ ( ) (1 )A A S f Ah h h h+ -trU0
2

0 1
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0 0 1 0 0 0 1h @ @- -
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1A A
A
A

U0 1 0
0

1 0

1

h
h

S@ @
n
-

-
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where the operator Sn is defined by Eqn (5). Figure 3 shows 
the relative gain in the average number of photons illuminat­
ing the object, depending on the quantum efficiency of the 
sensors and the relative average number of noise photons (rel­
ative to the average number of illuminating photons used to 
record only the ghost image) in the case of the same sensor 
efficiencies in the object and reconstruction channels. How­
ever, we have also considered a more general case. The gain is 
defined as the ratio of the decrease in the average number of 
photons required to illuminate the object to the average num­
ber Dn of illuminating photons in the traditional scheme with 
the error of the reconstructed image being constant. It is ass­
umed that the number of noise photons ne decreases propor­
tionally to n. As expected, the gain increases monotonically 
with a decrease in the number of noise photons and with a 
decrease in the quantum efficiency of the sensors h = h0 = h1. 
In the absence of noise photons, the relative gain is 1 – h. If 
there is additional information, the gain, as a rule, decreases, 
with its sign unchanged, because at the same time both com­
pared errors decrease, the larger one being reduced to a gre­
ater extent.

Note that in the case of different quantum efficiencies of 
the sensors in the object and reference channels, it is more 
preferable to place the sensor having greater efficiency in the 
object channel, because, as seen from Eqns (5) and (6), this 
does not change the noise level of the recorded ghost image, 
which is affected by the product of the efficiencies, but reduces 
the noise level of the image in the object channel.

4. Results of computer simulation

Figures 4 – 11 show the results of computer simulation and 
subsequent processing of quantum images by the method of 
measurement reduction using the algorithm described in Refs 
[12, 13]. In the simulation, it was assumed that similar matri­
ces are located in both channels, the sensors in which have a 
size three times greater than the size of the object pixel. In the 
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Figure 3.  Relative gain Dn / n in the average number of photons illumi­
nating the object as a function of the quantum efficiency of the sensors 
h = h0 = h1 and the relative average number of noise photons ne / n ‘(rel­
ative to the average number n’ of illuminating photons used to record 
only the ghost image).
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case illustrated by Fig. 4, each pixel of the object is illumi­
nated on average by 1 photon, the average number of noise 
photons that do not interact with the object but fall on the 
matrix in the object channel is 0.1 photons per object pixel, 
and the quantum efficiencies of the sensors in the object and 
reconstruction channels are 0.4. In Fig. 5, the average number 
of illuminating photons is reduced to 0.7 photons per pixel 
with a proportional decrease in the number of noise photons. 
In Figs 6 and 7, the quantum efficiencies of the sensors in one 
of the channels are reduced to 0.2, and in Fig. 8 the same 
reduction of efficiency to 0.2 in all the sensors is considered. 
Figures 9 and 10 show the simulation results with a decrease 
and increase in the number of noise photons by a factor of 10. 
Figure 11 shows the results of modelling the illumination and 
recording images for another object and with a different basis, 
using which the sparsity information is formalised. Figures 
4 – 11 show the values of the numerical characteristic of the 
overlap c(ut , u) = (ut , u)/(|| ut  || ||  u  ||) of the estimate ut  and the 
transparency distribution u.

As noted above, the parameter t of the algorithm reflects 
a compromise acceptable for the researcher between noise 
suppression and image distortion. The larger the value of t, 
the more noise is suppressed, but the distortion of image det­
ails also gradually increases (compare, e. g., Figs 4h and 4i, 
where the gap image is blurred with increasing t). The value 
t = 0 corresponds to the absence of both additional noise 
suppression associated with the use of sparsity information 
about the transparency distribution and image distortion, 
i. e., it is equivalent to the absence of sparsity information 
about the transparency distribution of the object. The val­
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Figure 4.  Quantum images of ( a ) the object recorded in ( b ) the object 
and ( c ) reconstruction channels and the results of their processing by 
the reduction method: processing of both images ( d ) in the absence of 
sparsity information and ( e, f ) in the presence of such information for 
two values of the algorithm parameter t, as well as ( g – i ) similar pro­
cessing of ghost images only. The average number of photons is 1 pho­
ton per pixel for illumination and 0.1 photon per pixel for noise.
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Figure 5.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their process­
ing by the reduction method: processing both images ( c ) in the absence 
of sparsity information and ( d, e ) in the presence of such information, 
as well as ( f – h ) similar processing of a ghost image only. The average 
number of photons is 0.7 photons per pixel for illumination and 0.07 
photons per pixel for noise.
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Figure 6.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their process­
ing by the reduction method: processing of both images ( c ) in the ab­
sence of sparsity information and ( d, e ) in the presence of such informa­
tion, as well as ( f – h ) similar processing of a ghost image only. In con­
trast to Fig. 4, the quantum efficiencies of the detectors are 0.2 in the 
object channel and 0.4 in the reconstruction channel.
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ues of t used in Fig. 4 are chosen so that in Fig. 4e the distor­
tions are not noticeable yet, and in Fig. 4f they are already 
noticeable.

Comparison of Figs 4 and 5 confirms the above assump­
tion that, if there is additional information, the gain due to 
processing the image recorded in the object channel decreases 
with its sign being unchanged. Attenuation of illumina­
tion, for which the error in the result of the reduction of a 
pair of images in the absence of sparsity information app­
roximately corresponds to the error in the reduction of the 
ghost image before the illumination decrease, is smaller than 
that in Fig. 3. This is because the gain decreases when taking 
into account the information that the pixel transparency 
values belong to a unit segment, and the reduction errors 
decrease slightly more when using sparsity information than 
without using it.

The noise level of the estimate without using sparsity 
information constructed only from the ghost image (Fig. 4g) 
is greater than that constructed from both images (Fig. 4d). 
Therefore, at the same values of the parameter t of the algo­
rithm, which is responsible for the balance between blurring 
of important details of the image and noise suppression, the 
image blur is larger for the estimate constructed only from the 
ghost image: the estimates in Figs 4h and 4i are distorted to a 
greater extent than in Figs 4e and 4f.

Figures 6 – 8 show results similar to those shown in Fig. 4, 
but for different quantum efficiencies of sensors. As one 
would expect, at different sensor efficiencies in the object and 
reconstruction channels, the use of more efficient sensors in 
the object channel improves the reduction quality of the pair 
of resulting images (see Figs 6 and 7), but only slightly affects 
the quality of the reduction of the ghost image only. A 
decrease in the efficiency of detectors in the object channel 
with a fixed efficiency of detectors in the reconstruction chan­
nel faster degrades the quality of the reduction of the obtained 
pair of images than a decrease in the efficiency of detectors in 
the reconstruction channel solely, keeping it fixed in the 
object channel.

Figures 9 and 10 show simulation results similar to those 
shown in Fig. 4, with the number of noise photons decreased 
and increased by 10 times. As expected, an increase in the 
number of noise photons increases the error of the estimate 
constructed using both images and does not affect the error of 
the estimate constructed only from the ghost image due to the 
suppression of the contribution of noise photons by the coin­
cidence circuit.

Figure 11 shows the simulation results for another object 
of study and with the different formalisation of sparsity 
information using the basis of the discrete cosine transform 
rather than the Haar basis of Figs 4 – 10. Due to the greater 
complexity of the new object, a larger average number of 
illuminating photons (10 photons per pixel) was used. In this 
case, it can be seen that despite the greater degree of overlap 
of the transparency distribution and its evaluation when 
processing only the ghost image, Fig. 11i is blurred stronger 
than Fig. 11f.

Finally, the localisation of noise caused by the use of the 
image obtained in the object channel differs from the localisa­
tion of noise associated with the non-unit efficiency of the 
detectors. While for the noise associated with noise photons 
the distribution over the image area, as a rule, is independent 
of the object, for the noise associated with the inefficiency of 
the detectors the distribution over the image area depends 
directly on the object, because the more photons reach the 
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Figure 7.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their process­
ing by the reduction method: processing of both images ( c ) in the ab­
sence of sparsity information and ( d, e ) in the presence of such informa­
tion, as well as ( f – h ) similar processing of a ghost image only. In con­
trast to Fig. 4, the quantum efficiencies of the detectors are 0.4 in the 
object channel and 0.2 in the reconstruction channel.
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Figure 8.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their processing 
by the reduction method: processing of both images ( c ) in the absence 
of sparsity information and ( d, e ) in the presence of such information, 
as well as ( f – h ) similar processing of a ghost image only. In contrast to 
Fig. 4, the quantum efficiencies of the detectors are 0.2.
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sensor, the greater the variance of the photocounts. Therefore, 
a change in the parameter t differently affects the distortion 
of image details located in areas with different average bright­
ness.

5. Conclusions

The results of computer simulation show that, with non-unit 
efficiency of sensors, the registration of an additional image 
in the object channel allows extracting additional information 
from the object at a fixed illumination intensity. In the case of 
a sufficiently good quality of the result of processing only a 
ghost image, registration of an additional image allows a 
reduction of the illumination intensity preserving the quality 
of the processing result.

Note that the considered image registration scheme allows 
improving the quality of the quantum image at the stage of com­
puter processing also by taking into account the diffractional 
limitations of ghost images [16 – 18]. This is because a conven­
tional image is not subject to diffraction limitations present in 
ghost images and associated with the limited transverse dimen­
sions and, therefore, the divergence of the pump beam. The 
study of the influence of diffraction, as well as the case when 
the instrument functions of the sensors are different, is a sub­
ject of further research.
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Figure 9.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their process­
ing by the reduction method: processing of both images ( c ) in the ab­
sence of sparsity information and ( d, e ) in the presence of such informa­
tion, as well as ( e – h ) similar processing of a ghost image only. In con­
trast to Fig. 4, the average number of noise photons is reduced by a 
factor of 10 (to 0.01).
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Figure 10.  Quantum images of the object in Fig. 4a, recorded in ( a ) the 
object and ( b ) reconstruction channels, and the results of their process­
ing by the reduction method: processing of both images ( c ) in the ab­
sence of sparsity information and ( d, e ) in the presence of such informa­
tion, as well as ( e – h ) similar processing of a ghost image only. In con­
trast to Fig. 4, the average number of noise photons is increased by 10 
times (up to 1).

a b c

d e f

g h i

c » 0.888 t = 0.2, c » 0.934 t = 0.5, c » 0.961

c » 0.868 t = 0.2, c » 0.934 t = 0.5, c » 0.967

Figure 11.  Quantum images of ( a ) the object recorded in ( b ) the object 
and ( c ) reconstruction channels, and the results of their processing by 
the reduction method: processing of both images ( d ) in the absence of 
sparsity information and ( e, f ) in the presence of such information, and 
also ( g – i ) similar processing of a ghost images only. In contrast to Figs 
4 – 10, to formalise sparsity information the basis of the discrete cosine 
transform was used rather than the Haar basis.
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