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Abstract.  Quantum key distribution plays an important role in 
modern cryptography, since the security of the transmitted keys is 
guaranteed by fundamental laws of nature. A method using pseudo-
random number generators well known from classical cryptography 
is considered. It is shown that their use in quantum cryptography 
makes it possible to increase the key generation rate under very 
weak assumptions about the capabilities of the eavesdropper. A 
practical scheme of a coherent-state quantum key distribution pro-
tocol using pseudorandom sequences is proposed. The crypto-
graphic strength of the proposed protocol against a beam-splitting 
attack is considered.

Keywords: quantum cryptography, quantum information, coherent 
states, pseudorandom number generators.

1. Introduction

Quantum cryptography, which was proposed more than 
30 years ago [1], has been rapidly developing in recent years. 
There are a number of commercial schemes for quantum key 
distribution, including quantum key transfer between cities 
[2] and from a satellite to the ground [3].

The key advantage of quantum key distribution over the 
classical one is that the security of the keys is guaranteed by 
the fundamental laws of nature and cannot be reduced to 
assumptions about the limited capabilities of the eavesdrop-
per. Classical cryptography is mainly based on the assump-
tion that some computational tasks cannot be solved 
quickly. However, this assumption has not yet been proven, 
which entails the potential vulnerability of classical crypto-
graphic schemes, both due to the improvement of the com-
putational capabilities of the eavesdropper and to the devel-
opment of new algorithms. Thus, in 1998, the EFF’s DES 
cracker was built, capable of performing a brute force search 

of the DES cipher’s key in a matter of days, which was due 
to a rapid increase in the processing power of computing 
devices in two decades after the adoption of the DES stan-
dard in 1977.

In addition, Shor [4] showed already in 1994 that the 
implementation of a quantum computer can make a number 
of important classical schemes completely unsecure, including 
losing all secrecy of information encrypted by this time. This 
leads to the idea that information, for which security is impor-
tant for a long time, should now be encrypted using the 
schemes that will be fault-tolerant despite the appearance of a 
quantum computer at the eavesdropper’s disposal in the fore-
seeable future [5]. Classical cryptography schemes that are 
resistant to the appearance of a quantum computer are called 
post-quantum cryptography [6].

In this context, an important advantage of quantum cryp-
tography is that it allows one to keep the transmitted keys 
secure for an infinitely long time, and the eavesdropper has 
no way to obtain additional information about the key when 
solving computational problems or when he has new techno-
logical means. It should be noted that the implementation of 
quantum cryptography protocols, as a rule, has its draw-
backs, which leads to the possibility of performing attacks 
relying on imperfection of the equipment or on targeted dam-
age to individual elements of legitimate user schemes by the 
eavesdropper [7, 8]. However, all attacks of these kinds are 
related to real-time attacks and do not provide an opportu-
nity to obtain a secret key after the end of its generation ses-
sion.

An important goal of scientific and experimental groups 
working on quantum key distribution is the high-speed and 
long-distance transmission of keys. At the same time, practi-
cal encryption schemes, even based on quantum cryptogra-
phy for key generation, can in some cases use elements of clas-
sical cryptography, such as AES schemes, to increase the 
speed, which makes the system no longer completely secure, 
since the key length is less than the length of the encrypted 
message. This approach may be appropriate for applications 
where the use of a perfectly secure one-time pad is practically 
not justified due to the rapid use of the key. For such applica-
tions, the urgent task is to increase the key generation rate in 
quantum cryptography protocols using a number of classical 
cryptography technologies, albeit at the cost of abandoning 
full theoretical security.

An important concept of classical cryptography, which 
can also be used in quantum technologies, is a pseudorandom 
number generator [9], i.e., a function that from a given initial 
key of length K (sometimes called a pseudorandom sequence 
seed) constructs a string of longer length q(K) (a pseudoran-
dom sequence). This string cannot be easily (from a computa-
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tional point of view) distinguished from a random one, i.e., it 
is difficult to calculate the seed from the output string and 
predict the following symbols of the pseudorandom sequence 
[10]. Such a generator can be obtained from classical encryp-
tion systems, such as AES, if one runs them in output feed-
back mode (OFB) [11].

An example of the application of pseudorandom number 
generators in quantum cryptography is the Y-00 protocol 
[12 – 14], which uses coherent states that are well distinguish-
able if the pseudorandom sequence is known and are poorly 
distinguishable without this knowledge. This protocol will 
be further discussed in detail. Pseudorandom sequences 
were also proposed to be used when choosing bases in sin-
gle-photon protocols of quantum cryptography [15], which 
allows the key generation rate to be increased while main-
taining unconditional security. It was shown that a quantum 
stream cipher based on a pseudorandom sequence is no lon-
ger able to ensure theoretical security [16]. In addition, 
‘quantum Enigma’ [17] deserves mentioning – a method 
that allows one to transmit a secret message of arbitrary 
length in the presence of a key of limited length between 
legitimate users. However, this method requires legitimate 
users to be able to perform transformations over quantum 
states in large-dimensional spaces, which complicates its 
practical use.

In this paper, we propose a scheme that uses pseudoran-
dom number generators as an integral part and therefore 
requires assumptions regarding the computational capabili-
ties of the eavesdropper. We will use the assumption that the 
eavesdropper cannot calculate the seed of the pseudorandom 
sequence during the communication session, which, as a rule, 
is no longer than several minutes. At the same time, when 
fulfilling this weak assumption, the security of the distributed 
keys is maintained for an unlimited time, which confirms the 
important advantage of quantum cryptography over classical 
cryptography.

The work is organised as follows. Section 2 is devoted to 
the protocols of quantum cryptography with symmetric 
coherent states. It introduces a general scheme of such proto-
cols, summarising the two currently proposed protocols, and 
proposes an optical measurement scheme. Section 3 describes 
the main protocol with a pseudorandom choice of bases. 
Section 4 considers the beam-splitting attack and discusses 
why this attack is close to optimal for the proposed protocol. 
Section 5 is devoted to possible modifications of the protocol 
in various practical conditions. The Conclusions provide the 
main results of the work.

2. Use of symmetric coherent states in quantum 
cryptography

Attenuated laser radiation is one of the most accessible 
sources of quantum states in practice and, therefore, much 
attention is paid to the protocols of coherent-state quantum 
cryptography. The coherent state defined by the complex 
number a is written as
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where | n ñ is the nth photon state. The parameter a is related 
to the light beam intensity as

m = | a |2.	 (2)

The scheme with four geometrically uniform coherent 
states [18] is one of the first proposed protocols of coherent-
state quantum cryptography. This configuration of states is 
close to the BB84 protocol, because the knowledge of the 
basis increases the probability of distinguishing the states. 
However, since coherent states are nonorthogonal, states in 
one basis are also not orthogonal, and the protocol is similar 
to the B92 protocol using two nonorthogonal states [19], 
which is why it is also called the 4 + 2 protocol.

This protocol uses | a ñ, | ia ñ, | –a ñ and | –ia ñ states forming 
two bases {| a ñ, | –a ñ} and {|  ia ñ, | –ia ñ}. In describing quan-
tum key distribution protocols, the active agents, between 
whom the keys are distributed, are customarily called Alice 
and Bob. The communication channel between them can be 
intercepted by an eavesdropper called Eve. We denote the 
used basis by the parameter b !  {0, 1}, and the sent bit of the 
message by k. Then Alice sends a state | (–1)kiba ñ in each mes-
sage. Bob uses a Mach – Zehnder interferometer for measure-
ments. Changing the phase on the lower arm of the interfer-
ometer, Bob takes a measurement in a randomly selected 
basis. With a probability of 1/2, he correctly guesses the 
basis, and then with a probability of 1 – e–m, one of the detec-
tors is triggered. Then, as in the BB84 protocol, Alice and 
Bob communicate over an open channel and discard the 
messages where their bases did not coincide, after which 
they carry out error correction and privacy amplification to 
obtain a matching key, about which the eavesdropper has 
little information.

Using this protocol and in the absence of attenuation 
in the communication channel, Eve does not know the 
selected basis at the time of the state transfer and intro-
duces an error when trying to obtain information from 
the signal (in the simplest case, when trying to guess the 
basis and perform a measurement, but this is not the best 
strategy). However, due to the nonorthogonality of the 
states within the basis and the attenuation in the commu-
nication channel, Bob does not expect detectors to be 
triggered in all positions, which gives Eve new opportuni-
ties for eavesdropping. In particular, she can block part 
of the message for which she could not receive all the 
information. This leads to an unambiguous state discrim-
ination (USD) attack [20]. In such an attack, the eaves-
dropper performs an unambiguous measurement, which 
gives either complete information about the transmitted 
state or an inconclusive result. In the latter case, the 
eavesdropper blocks the message; otherwise, the eaves-
dropper sends a state without errors, if necessary with 
increased intensity. With sufficiently large losses in the 
communication channel, this attack strategy allows the 
eavesdropper to obtain complete information about the 
key without being detected.

The states of the 4 + 2 protocol have symmetry, namely, 
they can be obtained by the action of the transformation U: 
| ai +1ñ = U | ai ñ, U N = I. An important result for symmetric 
(sometimes also called geometrically uniform) coherent states 
is an estimate of the probability of their unambiguous dis-
crimination [21, 22], which limits the use of the USD attack – 
for a fixed intensity, the more states the legitimate users use, 
the more difficult they are unambiguously discriminated. The 
4 + 2 protocol uses only two bases, which makes the use of the 
USD attack quite simple. Then the natural suggestion is to 
use more bases, because Eve will have more difficulties to dis-
tinguish them. However, this will also interfer with the legiti-
mate users, since the key generation rate will decrease with 
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increasing number of bases due to their frequent mismatch 
between Alice and Bob.

We should also mention the protocol with geometrically 
uniform coherent states [23], in which the transmitted mes-
sage is encoded into 2M coherent states forming M bases, 
with a phase shift between the basis states d = p/M. Let us 
also mention the protocol [24, 25], which uses a similar set of 
symmetric coherent states with a phase shift p within the 
basis, but employing a different (compared to the 4 + 2 pro-
tocols and the aforementioned protocol with geometrically 
uniform states) side-frequency measurement scheme on 
Bob’s side.

Our proposal is that the use of a large number of bases M 
allows us to select them in a pseudorandom manner, i.e., in 
accordance with the pseudorandom sequence specified by the 
common seed shared between Alice and Bob. We can also use 
an arbitrary phase shift between states within the basis, 
instead of d = p in the 4 + 2 protocol and d = p/M in the pro-
tocol with geometrically uniform states. Thus, it is possible to 
construct a whole family of quantum key distribution 
schemes, special cases of which will be two of the above pro-
tocols.

Let us consider the case of arbitrary values of d and M 
and describe the actions of legitimate users. Two cases are dis-
cussed separately, because different measurement schemes 
are used for them.

1. Let d = p, then we choose bases of the form
,{| | }e e/ /i ib M b MH Ha a-

p p , b = 0,..., M – 1...
2. If d ¹ p, then we additionally require that d ¹ 2pk/M, 

where k Î Z. The corresponding bases will be chosen in the 
form ,{| | }e e e/ /i i ib M b M2 2H Ha ap pd , b = 0,..., M – 1.

Figure 1 shows the images of the states transmitted in the 
protocol in the phase plane for eight bases; two options are 
considered: d = 3p/8 and d = p.

A step-by-step description of the protocol is as follows.
1. Alice and Bob choose an integer M corresponding to 

the number of bases, and a phase shift d.
2. Next, the following actions are repeated N times:
a) Alice randomly selects the basis b Î {0, 1,..., M – 1} and 

the value of the bit k Î {0, 1};
b) Alice sends the state | | e e( ) i i

k
b kbH Ha a=

q d , where

(1 [ ])M
b

b !
p pq d= + 	 (3)

(here [d ¹ p] is an indicator that d ¹ p); and

c) Bob randomly selects the basis b' Î {0, 1,..., M – 1} and 
performs an unambiguous measurement, discriminating 
between the states | a 0

(b) ñ and | a 0
(b') ñ. As a result, Bob obtains 

either an inconclusive result, or the number k' corresponding 
to the state |  ( )

'
'

k
ba  ñ. 

3. Alice and Bob reveal the bases b and b' through the 
open channel. Messages with noncoinciding b and b' are dis-
carded. In addition, all the messages with the inconclusive 
result on Bob’s side are discarded.

4. Alice and Bob reveal part of their sequences k and k' to 
assess the probability of error. If the error turns out to be 
more critical, the protocol execution is interrupted, and error 
correction is performed through the open channel.

5. Alice and Bob carry out a procedure for privacy ampli-
fication, as a result of which they receive a bit string of shorter 
length, about which Eve’s information is small.

The measurement scheme on Bob’s side is shown in 
Fig. 2. Alice sends a reference signal | a ñ in every message 
and then, an information state | a k

(b) ñ with a fixed delay rela-
tive to the reference signal. The Mach – Zehnder interferom-
eter is used on the receiver side. To observe the interference 
of the part of the reference signal passing along the lower 
path and the part of the information state travelling along 
the upper path, a delay on the lower path is equal to that 
while sending states. In addition, on the lower path, Bob, 
using a phase modulator, ‘twists’ the phase of the reference 
state in accordance with b' and k' to obtain information 
about Alice’s transmitted bit.

The beam splitter BS1 at the interferometer input divides 
the state | a ñ in two parts: | / 2a ñ on the upper path and
| /i 2a  on the lower path. Two mirrors M1 and M2 on the 
lower path change the total phase by 2p, and the phase modu-
lator PM transforms the input signal state | a ñ into | eiqa ñ; the 
choice of q is made by Bob.

When d = p, the transformation of the reference signal 
between the beginning and end of the lower path has the form

a b

4p/M

2p/M 2p/M

p/M

d

d0 0

Figure 1.  Examples of states transmitted by Alice for M = 8. The states 
of the first three bases  (b Î {0, 1, 2})  are shown for (a) d = 3p/8 and (b) 
d = p. The same types of lines indicate the states of one basis.

BS1 BS2

PMM1 M2

a
D1

D0

|ak(b)

Figure 2.  Measurement scheme on Bob’s side: (BS1, BS2) beam split-
ters; (M1, M2) mirrors; (D0, D1) detectors. Part of the reference sig-
nal | a ñ passes along the lower path through the delay line and on 
changes its phase the phase modulator PM in accordance with the pa-
rameters b' Î {0,...,M – 1} and l Î {0,1} chosen by Bob. The resulting 
state | /i 2( )'

l
ba- , after passing through BS2, interferes with part of 

the signal state   | /i 2( )
k
ba  that has passed through the upper path. 

The possible options are: if d = p, then l is always set equal to zero, b' 
is chosen randomly, and the triggering of the detectors D0 and D1 
correspond to k' = 0 and k' = 1; at d ¹ p, the parameters b' and l are 
randomly selected, the readings of the detector D0 are ignored, and if 
the detector D1 is triggered, the value  k' = l Å 1 is assigned to the 
parameter k'. 
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i ie
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Then both beams pass through the beam splitter BS2. Consider 
the time moment when part of the information state that has 
passed along the upper path is received by the detectors. 
Suppose that the basis is correctly guessed, i.e., b' = b. Then, 
after the beam splitter BS2, the state / ( 1)e e Ha+| /i ib M k

2
p p1  

arrives at the input of the detector D0, and the state 
/ ( 1)e e Ha| /i ib M k
2 -

p p1  arrives at the input of the detector D1. 
When the state | a 0

(b) ñ is sent, there is a nonzero probability of 
the detector D0 being triggered, which indicates that the clas-
sic bit 0 was sent, i.e. k' = 0. The second detector should not 
be triggered, and this event is considered to be an error. If 
Alice sent the state | a1

(b) ñ , and the basis is correctly guessed, 
then the detector D1 is triggered with some nonzero probabil-
ity and k' = 1. The triggering of both detectors is treated as an 
error. As a result, the probability that Bob guessed the basis 
and one of his detectors was triggered takes the form

1 ep M= -
m-

.	 (5)

Let us now consider the option d ¹ p. In this case, Bob not 
only tries to guess the basis, but also adjusts the scheme for 
each information state, i.e., selects a random bit l and uses the 
phase modulator to perform the transformation

'
i ie e i

2 2 2

( )i i l
l
b

'b

"
a a a

=
q d

.	 (6)

Suppose again that the basis was correctly guessed, i.e., 
b' = b, and consider the moment of arrival of part of the infor-
mation state along the upper path. After the beam splitter 
BS2, the state / ( )e Ha| e e/i i ib M k l

2 -
p d d1  arrives at the input of 

the detector D1. The detector D1 can only be triggered if 
1l k5 = , and so Bob assumes k' = 1l 5 . In other cases, Bob 

obtained an inconclusive result. We will ignore the possible 
triggering of the detector D0; it can be removed from the 
scheme. For the probability of a conclusive result, we obtain 
the expression

[ | ( ) / | ]exp e
p

M2
1 2i 2a a

=
- - -

d

	
/sin 2m d( ( ))exp

M2
1 2

=
- - .	 (7)

The key generation rate is a value proportional to the 
probability p of successfully receiving information about the 
sent state.

3. Choice of a basis using a pseudorandom 
number generator

Note that for a fixed d, the conclusive result probability is 
inversely proportional to the number of bases used in the pro-
tocol. This, in turn, limits the key generation rate.

The basis b in the above-described protocol was randomly 
selected. It makes sense to consider the possibility of using a 
pseudorandom sequence generator to select the values of the 
parameter b. In other words, Alice and Bob initially have 
some common secret, a seed of a pseudorandom sequence. 
Using this information, they can deterministically obtain 

identical sequences of bases b. In this case, the schemes given 
below will no longer be unconditionally secure protocols of 
quantum key distribution; however, if certain assumptions 
are fulfilled, we can talk about their security. An important 
protocol that uses a pseudorandom sequence to select bases is 
the Y-00 protocol [12, 13]. This protocol uses the above-dis-
cussed configuration of states for a large number of bases (M 
>> 1) with a phase shift between the basis states d = p. The pro-
tocol also uses the high intensity of the transmitted coherent 
states (m >> 1), which makes it possible to employ homodyne 
detection that, at a high intensity and with Bob’s knowledge 
of the basis, yields a small error.

The Y-00 protocol has a high key generation rate with 
relatively simple implementation [14]; however, it provides 
only practical security when the eavesdropper is limited by 
the current technological level and cannot, for example, store 
states in quantum memory for a long time and perform col-
lective measurements over quantum states in a space of large 
dimension.

We propose generating the numbers of bases b in a pseu-
dorandom manner, as in the Y-00 protocol, but we assume 
that Bob uses a single-photon detector. This allows weak 
coherent states to be used in transmission. Note that for 
small m, the basis states become less distinguishable, which 
makes it difficult to eavesdrop even in the absence of 
assumptions about the technological capabilities of the 
eavesdropper: Even after calculating the seeed of the pseu-
dorandom sequence, Eve cannot obtain enough information 
about the key due to the indistinguishability of the measured 
states. However, if Eve calculates the seed of the pseudoran-
dom sequence before the transfer of quantum states is com-
pleted, then the protocol we are describing is vulnerable to a 
USD attack, because Eve can make an error-free measure-
ment in each position in the basis known to her, after which, 
according to the USD attack scenario, she blocks the state 
with an inconclusive result or increases its intensity when 
receiving all the information. As a result, the protocol is 
secure under the assumption that the calculation time of the 
seed of the pseudorandom sequence is longer than the com-
munication session between Alice and Bob, and this weak 
computational assumption is the only assumption about the 
eavesdropper capabilities in the proposed scheme.

It will be shown below that the protocol is still secure 
when the seed of the pseudorandom sequence is calculated 
after the communication session, because Eve is no longer 
able to block the messages from which she was unable to 
extract information. Since, in addition to the seed, there is 
no information that can help Eve obtain the secret key, the 
key security does not change over time, which is an impor-
tant advantage of the quantum key distribution. Between 
communication sessions, Alice and Bob change the seed of 
the pseudorandom number generator, taking part of the 
secret key distributed between them, and therefore calculat-
ing the seed of previous sessions is not relevant when inter-
cepting the key distributed during the next communication 
sessions.

Finally, we can consider a whole family of protocols, each 
representative of which is determined by the selected values of 
the parameters μ, d and M. Since the bases are selected in 
accordance with a pseudorandom sequence, in the protocols 
we propose, the conclusive result probability for Bob will not 
depend on the number of bases used and according to ( 6) and 
(7) is equal to 1 – e–m and (1 – e–msin2(d/2))/2 for d = p and d ¹ p , 
respectively.
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Thus, an increase in the parameter M does not affect the 
key generation rate. Using a large number of bases makes the 
protocol more secure to a USD attack.

4. Beam-splitting attack

For the protocol (μ, M, d), we will consider one of the basic 
attacks on coherent-state protocols under the conditions of 
communication channel attenuation – a beam-splitting 
attack. With such an attack, for every state | ak

(b) | sent by 
Alice, Eve uses a beam splitter, which divides the beam into 
two (Fig. 3). One part (| tak

(b) |) is sent to Bob, and the other  
(| rak

(b) |, where |t|2 + |r|2 = 1) is used for the optimal collec-
tive measurement to obtain maximum information about 
the value of the bit k. Note that Eve has the ability to store 
states in quantum memory and take measurements on the 
deferred part of the state after she computes the pseudo-
random sequence. This means that at the moment of mea-
surement the basis will be known to the eavesdropper and 
she will need to distinguish between the states | ra0

(b) | and 
| ra1

(b) |.

The greatest information that can be extracted is limited 
by the Holevo value [26], which has the following form for 
two equally probable pure states:

, H(| | )
| | | |

r r
r r r r

2
( ) ( )

( ) ( ) ( ) ( )
b b

b b b b

0 1
0 0 1 1H H HG HG

c a a
a a a a

=
+c m

	
1 | | |e

h
r r
2

i

2
G Ha a

=
-

d
c m,	 (8)

where ( ) ( )logTrH r r r=t t t  is the von Neumann entropy, and  
h2(x) = (1 ) (1 )log logx x x x- - - -  is the binary entropy.

The expected signal intensity at the receiver in the atten-
uating communication channel is m10–kL/10, where L is the 
channel length and k > 0 is the attenuation parameter. 
Below, we will assume k = 0.2 dB km–1, which corresponds 
to the parameters of optical fibre. By assumption, Eve can 
replace the channel between Alice and Bob with a perfect 
lossless channel, and then, in order for the expected intensity 
signals to arrive at the receiver, the parameters of Eve’s 
beam splitter should be determined by the relations

| | 1 10 , | | 10r t
L L2
10

2
10= - =

k k
- - .	 (9)

We denote the initial scalar product of Alice’s states 
within the basis by e. Then

| | | | |e e e( ) ( / )sini e 1 2 2i 2

G He a a= = =
d m m d- -

d
,	 (10)

and using this quantity we express the probability of a conclu-
sive result on Bob’s side (this probability depends on the 
length of the communication line L, rather than on whether 
the attack was performed or not, because Eve simulates the 
attenuation in the channel by the beam splitter):

,( )p L
2

1
2

1| | / /

s

t

s

2 101 /L2
2

10

e e e
= - = -

k-

,	 (11)

where, in accordance with the measurement schemes described 
in the previous section, s = 0, if d = p, otherwise s = 1.

For the information that Eve can extract from her states, 
we obtain

,( , ) (| | )L r r( ) ( )b b
0 1H Hc e c a a=

h h
2

1
2

1| |r

2 2

1 10 /L2 10

e e
= - = - -

k-

c cm m.	 (12)

Thus, both the largest information extracted by Eve dur-
ing measurement and the conclusive result probability on 
Bob’s side depend only on the initial scalar product of states 
within the basis e = |á a|eida ñ| and the communication channel 
length L.

For the secret key generation rate [27], taking into account 
the conclusive result probability, Bob has

, , ,( ) ( ) [1 ( ) ( )]R L p L h q L2e e c e= - - ,	 (13)

where q is the average observed probability of an error in the 
channel between Alice and Bob (quantum bit error rate, 
QBER). The critical error Q, at which the key generation rate 
vanishes, is determined by the expression

h2(Q) = 1 – c(e, L).	 (14)

Solving the following equation

¶
¶ ( , )R L

0e
e

= ,	 (15)

we can find the dependence of the optimal scalar product 
eopt(L) of Alice’s states within the basis, giving the highest key 
generation rate, on the communication channel length L. In 
the case of a zero error level (q = 0), this dependence is shown 
in Fig. 4.

The given value of e can be obtained by varying the 
parameters μ and d. In other words, for optimal protocol 
operation, it is necessary to choose such values of the phase 
shift and intensity of transmitted signals so that the rela-
tion

( )sin ln
2 2

1
opt

2m d e=- 	 (16)

is fulfilled.
Suppose that one of the parameters, d or m, should remain 

unchanged regardless of the current length L of the communi-
cation channel. Let us assume that we use light signals of only 
certain intensity. Then the optimal value of e can be obtained 

BS

|tak(b)

|rak(b)

|ak(b)
Alice

Bob

Eve

Figure 3.  Beam-splitting attack: (BS) beam splitter; |t|2 and |r|2 are the 
transmission and reflection coefficients, respectively. 
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by changing the value of the phase shift between the basis 
states d. It also means that on Bob’s side, a single-detector 
measurement scheme is used. If it is technically possible to 
change the signal intensity, then it is more preferable to use a 
scheme with two detectors, setting d = p. In this case, the 
intensity value of the signals used must coincide with the opti-
mal value of the parameter  for a given length of the commu-
nication line, i.e.

( ) ( ( ))lnL L
2
1

optm e=- .	 (17)

The obtained dependence of the key generation rate on L 
for both cases is presented in Fig. 5.

With a large number of M bases used and large losses in 
the channel (which corresponds to key transmission over a 
long distance), the beam-splitting attack is close to an optimal 
one. Indeed, since, according to our assumption, Eve does not 
know the basis at the time of signal transmission (because she 
cannot calculate the seed of the pseudorandom sequence), she 
cannot use the USD measurement, which gives complete 
information about the transmitted states, and an attempt to 

perform such a measurement without knowing the basis will 
have a very low success probability, as shown in [21]. Further, 
due to the fact that the attenuation in the communication 
channel is large, Eve sends after the beam splitter a very low 
intensity state to Bob, from which she cannot extract much 
information (since the Holevo value for these states is very 
small); therefore, an attempt to apply a coherent attack intro-
ducing an error will not lead to any noticeable increase in 
amount of information on the eavesdropper’s side.

5. Possible protocol modifications

The above-described beam-splitting attack requires the 
eavesdropper to be able to store states in quantum memory 
for the entire time during which the seed of the pseudoran-
dom sequence is calculated, and the only restriction imposed 
on the eavesdropper is the inability to calculate the seed of 
the pseudorandom sequence during the communication ses-
sion. We can also consider another practical limitation on 
the eavesdropper: decoherence of its quantum memory. In 
this case, its information about the states will be less than 
c(e, L)  in (12), which means an increase in the key genera-
tion rate under yet another assumption about the eaves-
dropper’s capabilities – nonideality of the quantum mem-
ory. Thus, the optimal value of the scalar product of states 
within the basis on Alice’s side can become less than the 
value calculated under the assumption of Eve’s ideal quan-
tum memory, which also means an increase in the secret key 
length due to Bob’s greater number of conclusive results due 
to the greater distinguishability of the states. Therefore, 
using the assumption of a technical limitation on Eve’s 
quantum memory, it is possible to increase the key genera-
tion rate in the proposed scheme.

Let us discuss one more modification of the constructed 
protocol family. Thus, the scheme with parameters  (μ, d and 
M) turned out to be secret under the assumption that the 
eavesdropper cannot calculate the pseudorandom sequence 
during the transmission of signals and measurements of tsession 
at the receiver’. If we denote the time for calculating the seed 
of the pseudorandom sequence by tcalc, we obtain that secu-
rity is ensured if the inequality

tcalc > tsession	 (18)

holds.
If the last condition is not met, the protocol is vulnerable 

to a USD attack. To avoid loss of security, it is necessary to 
increase the tcalc time. An obvious opportunity to do this is 
to return to truly random basis generation. In this case, Eve, 
in principle, cannot in a deterministic way find out in what 
basis the signals are transmitted. Thus, we return to the orig-
inal quantum key distribution protocols in which the gener-
ation rate is inversely proportional to the number of the 
used bases.

To avoid a large drop in the key generation rate, we con-
sider an intermediate version between truly random and pseu-
dorandom basis choices. The number of bits required to 
encode the basis in one message is [log (M)]. We will select a 
certain number of bits m < [log (M)] at random, and the rest 
using a pseudorandom sequence. In this case, Eve will need to 
carry out an additional enumeration of 2m options in the cal-
culations, which, in turn, increases tcalc. Thus, we select m so 
that condition (18) is satisfied. Then for the probability of a 
conclusive result, we have

10–3

10–2

10–1

R

0 20 40 60 80 L/km

Figure 5.  Dependence of the key generation rate R on the communica-
tion channel length L at q = 0 and the optimal choice of e. Two cases 
were considered: (solid curve) the intensity μ depends on the length of 
the communication channel, d = p; and (dashed curve) the phase shift d 
depends on the length of the communication channel, and μ = 1.0.

eopt
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0
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Figure 4.  Dependence of the optimal scalar product of basis vectors eopt 
on the communication channel length L at q = 0.



	 A.S. Avanesov, D.A. Kronberg980

1 ,ep
2m

pd= - =
m-

,	 (19)

1 ,ep
2

( / )sin

m 1

22

! pd= -
m d

+

-

.	 (20)

Taking into account the new parameter m, we expand the 
family of the introduced protocols. Now each representative 
will have its own set of signal intensities, bases, phase shifts 
between the states of one basis and random bits encoded in 
the basis b. With the introduced designations, we will use the 
notation (μ, M, d, m) for the corresponding protocol. The 
measurements on Bob’s side will also be described by the 
scheme depicted in Fig. 2.

6. Conclusions

A family of protocols is proposed that combine the use of 
random and pseudorandom choice of bases and can be con-
sidered as a generalisation of the previously proposed 4 + 2 
protocols and the protocol on geometrically uniform states, 
as well as the Y-00 protocol. The security of this family with 
respect to two basic attacks – a USD attack and a beam-split-
ting attack– is shown under a weak computational assump-
tion of the eavesdropper’s capabilities. However, at the 
moment it is premature to talk about the security of the con-
structed family of protocols against an arbitrary attack, 
because even for a completely random choice of bases the tol-
erance of the protocol against attacks of general form has not 
been proved. Thus, there are more effective attacks on coher-
ent-state quantum cryptography protocols, generalising the 
beam-splitting attack [28 – 30], although for the constructed 
family of protocols the benefit from their use is small due to 
the large number of bases. On the whole, the proof of the 
security of the constructed family of protocols against an 
arbitrary attack remains an open problem.

It is important to note that this family of protocols allows 
one to keep the main advantage of quantum cryptography, 
namely, the security of the key for unlimited time, which dis-
tinguishes this scheme from the schemes of classical cryptog-
raphy and the Y-00 protocol.

The proposed family of protocols makes it possible to 
adjust the key generation rate under various assumptions 
about the capabilities of the eavesdropper. Thus, under the 
assumption of a restriction on quantum memory, this may be 
a scheme with more distinguishable states within the basis, 
which provides a higher key generation rate by reducing the 
conclusive result probability at the receiver. In situations 
where more stringent requirements are applied to the security 
of the key, the scheme makes it possible to use less distin-
guishable states within the basis and increase the share of true 
randomness in the choice of the basis, which means approxi-
mation to the schemes of truly quantum key distribution. 
Such regulation can be carried out only by changing the soft-
ware part (without changing the hardware implementation), 
while it is possible to quickly switch between key generation 
regimes.

Two schemes for practical implementation are proposed: 
with two detectors and with one detector at the receiver’s side, 
which reduces the cost of the scheme but decreases the key 
generation rate. Switching between different rates and secu-
rity regimes in the second scheme does not require a change in 
intensity, which can be attributed to its advantages.

This work can be considered as an addition of the classical 
technology of pseudorandom generators to two existing pro-
tocols of quantum key distribution. However, according to a 
similar principle, this approach can be applied to other quan-
tum cryptography protocols to increase the key generation 
rate and maintain stability against the USD attack. However, 
this is an issue of future research.
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