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Abstract.  An integrated zigzag laser diode amplifier, with each 
segment (zigzag) consisting of three sections, is considered. The 
operation of this amplifier is analysed. It is shown that the presence 
of three sections with independent pump currents makes it possible 
to combine coherently all amplifier output beams. The first two sec-
tions in this configuration play the role of a phase shifter, and the 
third serves as a power amplifier. The influence of fluctuations of 
the output radiation phase in each segment on the resulting bright-
ness of total output beam of the entire amplifier is investigated.

Keywords: diode optical amplifier, coherent beam combining.

1. Introduction

Currently, the diode laser is one of the most widespread types 
of lasers that are used in practice. Due to the high research 
intensity of diode lasers, they can be constantly upgraded 
using new technologies. The most urgent line of research in 
this field is aimed at increasing their output power. Specifica­
lly in this parameter diode lasers may be (and are) inferior to 
lasers of other types. Concerning the studies in this field, the 
investigations devoted to combining coherent beams from 
individual diode lasers appear to be especially promising. In 
particular, the most convenient method of forming many 
mutually coherent beams is the use of systems of amplifiers 
with radiation from the same master oscillator applied to 
their inputs.

The master oscillator – power amplifier (MOPA) system 
with a common optical axis has been known for diode lasers, 
including their integrated design (see, e. g., [1 – 5]). In this study 
we consider an amplifier with a zigzag optical axis. The sys­
tem consists of a single-frequency oscillator and many succes­
sive amplifiers with a spatially distributed output of amplified 
mutually coherent radiation at each tilt of the optical axis.

Note that interferometric devices with a zigzag beam path 
between two reflecting planes have been known in optics for a 
long time (an example is the classical version in the form of 
Lummer – Gehrcke plate [6]). This scheme was also applied in 
an optical amplifier; see, e. g., the studies devoted to a zigzag 

Nd : glass slab amplifier [7]. However, a zigzag beam path was 
used in that amplifier version to compensate for the regular 
spatial inhomogeneity in the amplifier cross section rather 
than to implement distributed radiation output. The optical 
axis tilt angle in the zigzag exceeded the double total internal 
reflection angle. A version of a cavity zigzag diode laser with 
a broken optical axis and distributed radiation output was 
experimentally implemented in [8]; the operation of that laser 
was theoretically analysed in [9].

We analyse below a version of MOPA diode system, who­
se amplifier is most similar to the laser used in [8]. Nevertheless, 
despite the external similarity, there is a significant and fun­
damental difference between the zigzag laser and MOPA sys­
tem: the cavity of such a laser with N periodically repeated 
segments has an equivalent optical length exceeding the opti­
cal length of one segment by a factor of N. This cavity has a 
system of high-density eigenmodes with different frequencies 
and distributed radiation output from each segment (at the 
optical axis tilt). The spatial distributions of saturable gain and 
refractive index determine which specific modes are excited in 
this laser and which set of phases is implemented at each out­
put from the cavity. As a result, one meets hard-to-solve pro­
blems with coherent beam combining (which calls for strictly 
determined phase relations).

This is the main reason why the results of [8] cannot be 
applied in our analysis. In addition, the parameters of mod­
ern heterostructures with quantum-well active regions differ 
significantly from the structural parameters used in [8].

In this paper, we report the results of a theoretical simula­
tion of a system composed of a master oscillator and a zigzag 
diode power amplifier, fabricated on the basis of modern qua­
ntum-well heterostructures.

2. Analysis of amplifier

Figure 1 shows a simplified schematic of this system, which 
includes two units. The first is a master oscillator based on a 
single-frequency diode laser with an external spectrally selec­
tive cavity, whose selective element is, e. g., a single-mode fibre 
with a Bragg phase grating. The second unit is a diode bar 
with a zigzag electrical contact and upper layers specially pro­
cessed to form optical waveguiding regions (ridge-like wave­
guides). Thus, this diode bar is a periodic sequence of diode 
amplifiers in the form of N zigzags with partial radiation out­
put from each zigzag on one of the bar faces. The other face 
has a highly reflective coating. A simplified schematic of one 
zigzag, composed of three sections, is shown in Fig. 2. The 
first part of a zigzag, with a negative tilt (– j0), is a two-section 
amplifier, which provides radiation phase and intensity con­
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trol. The second part, with a positive tilt (j0) with respect to 
the normal to the output face, is the third section of the ampli­
fier, which serves as an output power amplifier.

The difference in the section designs is related to the pla­
nar technology of optical confinement in the plane parallel to 
the structure layers. This difference is as follows: the first sec­
tion has a much larger waveguide value of the phase – ampli­
tude coupling coefficient R1 than the two other sections (with 
coefficients R2 and R3); for example, the first-section wave­
guide is a gain-guided one, while the waveguides of the two 
other sections are index-guided ones, which can be fabricated, 
for example, similar to the design described in [10].

When analysing the amplifier operation, we will use the 
dimensionless radiation intensity, normalised to the saturation 
intensity: u (z) = I (z)/Is, where Is = 'w/(st), 'w is the photon 
energy, s is the stimulated emission cross section; and t is the 
spontaneous recombination time of carriers. An input beam 
with an intensity u0

(1), having passed through the first two parts 
(preliminary amplification stage) of the first zigzag, reaches its 
third part (power amplifier), and then arrives at the bar output 
face, thus forming two beams: an output beam with intensity 
u(1) and a reflected beam with intensity u0

(2); the latter beam is an 
input beam for the second zigzag. The process is repeated in the 
second zigzag and leads again to the formation of two beams: 
output, with intensity u(2), and reflected, with intensity u0

(3), 
which is an input beam for the third zigzag. The same occurs in 
the next zigzags. As a result, a combined beam is formed on the 
output face (within the bar), which consists of N individual 
beams with intensities u(1), u(2), ..., u(N). We will analyse the 
operation of this system using the results of [11].

Let us consider one zigzag (e. g., with number j ) (Fig. 2). 
The working point of its three sections is set by the values of 
the three currents through them (J1, J2, J3). It will be shown 
below that, varying these currents, one can tune independen­
tly the output beam phase and intensity, which is necessary 
for subsequent coherent combining of beams from different 
zigzags. According to [11], the intensities of the input and out­
put beams in the jth zigzag are related by the system of tran­
scendental equations
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n1 and n2 are the dimensionless output intensities in the first 
and second zigzag sections, respectively; a is the nonresonant 
loss factor; е is the elementary charge; and da is the total thick­
ness of active region. For each kth zigzag section, gk is the 
dimensionless gain, Gk is the mode gain, Jk is the pump cur­
rent, J kt r is the transparency current, Gk is the optical confine­
ment factor (for two transverse directions), Wk is the width of 
the pumped region, and lk is the section length. The variable 
part x of the phase difference for the output and input beams 
is found from the equation
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where Rk is the mode phase – amplitude coupling coefficient 
for the kth section.

The most interesting case is where all output intensities are 
equal to each other. Obviously, to implement it, the following 
matching condition must be satisfied for each jth zigzag:
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Figure 1.  Schematic of an integrated zigzag optical amplifier with a 
master oscillator.
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Figure 2.  Schematic of a three-section optical amplifier, forming one 
segment ( zigzag ) of the integrated amplifier: j is the segment number; j0 
is the tilt angle of the sections to the z axis; and J1, J2, and J3 are the 
pump currents of the sections.
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u ( )j
0

1+  = u(  j )r = u0,   u(  j ) º u,	 (3)

where r is the output face reflectance. Equation (3) implies 
equality of intensities of all input beams and the same for the 
output beams at a complete gain K = 1/r for all three zigzag 
sections. It can easily be seen that the number of independent 
variable parameters entering (1) – (3) exceeds the number of 
equations; therefore, one can always choose them so as to 
simultaneously satisfy condition (3) and, varying the currents 
J1 and J2 (and, correspondingly, g1 and g2), change the output 
radiation phase by a value Dx that is much larger than 2p. 
Figure 3 presents a calculated dependence of Dx on the cur­
rents J1 and J2. In the case of the constant pump current J3 for 
the third section, this dependence provides constant intensi­
ties u0 and u of the input and output beams. The parameter 
values used in the calculation are listed in Table 1.

Thus, the first two zigzag sections play the role of not only 
an amplifier but also of a phase shifter, which is due to the 
presence of a section with a phase – amplitude coupling coef­
ficient R greatly exceeding the corresponding coefficients for 
the other sections. In the case under consideration, this is the 
first section with a horizontal gain-guided waveguide, the R 
value of which, according to [12], may be anomalously large 
(R1 =12).

The vertical waveguide (with a transverse distribution of 
the refractive index along the x axis) in the overwhelming 
majority of diode lasers and amplifiers is formed by hetero­
structure layers and maintains only one fundamental trans­
verse mode with practically invariable amplitude distribution. 
For another transverse direction [horizontal, lying in the ( yz) 
plane], special measures must be taken to form a waveguide. 
For example, a heterostructure with ridge-shaped upper lay­
ers can be used [13]. We will proceed from the geometry of 
diode amplifiers possessing this horizontal waveguide for at 
least two sections, including the output amplifier, and assume 
that the parameters of this waveguide allow it to maintain the 
propagation and amplification of only one fundamental 
transverse mode with an effective width w. Then we restrict 
ourselves to the consideration of only the two-dimensional 

problem in the ( yz) plane, in which optical beams are added. 
This approach is justified by the fact that the transverse spa­
tial distribution of wave amplitude for diode lasers is facto­
rised relative to the transverse axes x and y in the overwhelm­
ing majority of cases. Since the transverse field amplitude 
distribution along the x axis from the sum of beams coincides 
with the amplitude distribution from one beam, the field 
amplitude distribution along the x axis will not be considered. 
We proceed from the fact that the output radiation power for 
each zigzag is P0, with a Gaussian intensity distribution (along 
the y axis) outside (near the bar output face). In this situation, 
the amplitude of output electromagnetic wave in the scalar 
approximation will be approximated by a component of mag­
netic field strength Hj

x along the x axis for the jth zigzag:

Hj
x( y, z) » Aexp{i [ bzcos j0 + b( ysin j0 – D (  j –1)) + xj]

	 – [( y – D (  j –1))cos j0 /w]2/2},	 (4)
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cos

cos

cwd

P8
/

eff m

0 0
1 2p

j
je o ;   jm = arcsin( b sinj0 /k0)

is the tilt angle of the beam axis in free space (Fig. 2), b = 
k0 neff is the propagation constant for the waveguide mode in 
the diode bar, neff is the effective refractive index, xj is the con­
stant component of beam phase for the jth zigzag, P0 = (1 – 
r) u Is  deff  w, deff = da /Gx is the effective transverse size of opti­
cal beam along the x axis, Gx is the optical confinement factor 
along the x axis, and k0 is the wave vector modulus in vac­

0

–1

–2

–3

–4

120 140 160 180 J1/mA

71.3 63.1 52.7 40.8 30.0
J2/mA

Dx
/p

Figure 3.  Phase change Dx for the output radiation of an individual seg­
ment at a simultaneous change in the pump currents J1 and J2 of the 
first two sections of this segment. The output power P0 = 1 W, the pump 
current of the third section is J3 = 0.72 A, and the input radiation power 
for the first section is 10 mW.

Table  1.  Power amplifier parameters used for calculation.

Parameter
1st section, 
gain-guided

2nd section, 
index-guided

3rd section, 
index-guided

Differential gain (stimulated-
emission cross section)  
s/10–15 cm2

0.4 1.0 1.0

Loss factor a/cm–1 15 0.8 0.8

Active-region transparency 
density Ntr/1018 cm–3 14.7 1.7 2

Pump region width W0/mm 8.0 6.0 6.0

Amplifier length L/cm 0.07 0.07 0.14

Effective beam size in the 
heterostructure layer plane  
w/mm

10 6.0 6.0

Saturation intensity  
Is/105 W  cm–2 5.84 2.34 2.34

Transparency current  
Jtr/mА

106 9 22

Mode phase – amplitude 
coupling coefficient R1

12 3 5

Active-region thickness  
da/nm

8 8 8

Master oscillator wavelength 
l0/nm

850 850 850

Carrier spontaneous 
recombination time t/ns

1.0 1.0 1.0

Optical confinement factor Gx 0.02 0.02 0.02

Effective beam size in the 
direction perpendicular to  
the heterostructure layers  
d » da/Gx/mm

0.4 0.4 0.4
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uum. Distribution (4) is the most typical case of approxima­
tion of the fundamental transverse mode with TE polarisation.

With allowance for the aforesaid, the total distribution of 
the output wave amplitude along the entire diode bar for z = 
+ 0 takes the form

H0( y) » [ ( )] /exp cosA y D j w1 2
j

N
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2 2
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2j- - -
=

" ,/

	 ´ exp{i [ b ( y – D (  j – 1)) sin j0 + xj]}.	 (5)

The intensity distribution in the far-field zone can be found 
using the Stratton – Chu formula [14] for a distant point 
(x0, y0, z0). As a result, we arrive at
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)ik R3 (

( )
cos expi

d d
k

R
H y x y

2
m0 0

0p
j

3- u

u
y ,	 (6)

where Ru  is the distance from bar surface points to the distant 
point. Having introduced a local coordinate yu  according to 
the equality y = D (  j – 1) + yu  and using the standard appro­
ach [15], we transform (6) into the expression
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where R0
u  is the distance from the origin of coordinates to the 

distant point. Thus, we obtain the expression for the output-
power angular distribution I (j):

I (j) » ( , )
cos

cosP k w
f

m

0

0 0
0

pj

j
j j

	 ´  [ ( ) ]exp sini ik D j 1 j
j

N

0
1

2

j x- +
=

/ .	 (8)

Here f (j0, j) = exp[– ( b sin j0 – k0 sin j)2w2/(cos2j0)] is the 
envelope of the general directional pattern. The maximum 
f (j0, j) value is obtained for the angle j = jm, satisfying the 
refraction law on the diode bar output face.

When analysing (8), we should note the following. To imp­
lement coherent combining of all beams for any chosen angle 
j = ju , one must choose an appropriate j

0x  value (the output-
wave phase difference) by varying the currents in the first two 
sections in each zigzag so as to make valid the equality

k0Dj sinju  + j
0x  = 2pmj,	 (9)

where mj is an integer. Based on Eqn (8), one can easily find 
analytically I (j) for

j = ju  + Dj,	 (10) 

where the angle ju  satisfies Eqn (9). For example, a possible value 
is ju  = jm. In this case, we obtain the following expression for I (j):
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where

F(Dju ) = exp cos
cosk w
0

m0
2

j
j jD

-
u

c m= G;

Dju  = [sin(Dj) – 2sin2(Dj/2)tan jm] » Dj.

Expression (11) yields an angular distribution I (Dj) in the 
form of a set of lobes with an angular width dj » l/(ND cos jm) 
and an angular distance F »  l/(D cos jm) between them. The 
number of these lobes is determined by the envelope of func­
tion F(Dju ). It can be seen that the intensity in each lobe inc­
reased by a factor of N 2 in comparison with the case of a sin­
gle amplifier. However, with allowance for the fact that the 
total power also increased N times, the brightness of the total 
beam (obtained by coherent combining), increased, as was 
suggested initially, by a factor of N. Obviously, an additional 
introduction of a regular phase shift of the output wave for 
the jth zigzag by Dxj = ± j psk0 D cos jm /N, where s lies in the 
range – N < s < N, should lead to a shift of all directional pat­
tern lobes by an angle Dj in the range – F/2 < Dj < F/2.

The above analytical result refers to the ideal case of exact 
adjustment of output-wave phases by varying xj up to the val­
ues j

0x  satisfying (9). In reality, there always may be (and are) 
random deviations dxj from exact adjustment. A numerical 
simulation of directional pattern makes it possible to deter­
mine quantitatively the degree of influence of these random 
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Figure 4.  Influence of phase fluctuations in the output radiation from 
segments of a zigzag amplifier on its directional pattern at coherent 
combining of output beams. The parameter s~ is the mean-square phase 
deviation for segment output radiation from the target phase value. The 
section tilt angle is 6 °, the amplifier width is 1.5 mm, the output power 
of each segment is 1 W, and the number of segments is 16. The other 
parameters are listed in Table 1. The insets show fragments of the cor­
responding directional patterns with enlarged angular resolution.
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deviations. Figure 4 shows the results of calculating the direc­
tional pattern using formula (8). The role of parameter su  for 
the curves was played by the random phase deviation dxj from 
exact adjustment in the form

xj = j
0x  + dxj,   su  = j

2dx .	 (12)

Figure 4 demonstrates that, at su  < 0.6, the intensity in the 
maximum decreases by no more than 30 % in comparison 
with the case of exact adjustment. The condition su  < 0.6 can 
be considered as a requirement and some criterion for the 
accuracy of phase adjustment in output beams.

The modern level of technology makes it possible to inte­
grate more than 20 diode amplifiers in one diode bar. Cur­
rently, the attainable brightness level for one amplifier [10, 16] 
is ~109 W cm–2 sr–1 at a power of ~1 W. Thus, one would 
expect coherent combining to yield a brightness level of 
~ 1010 W cm–2 sr–1 and, correspondingly, output power of 
~ 20 W in our case.

Obviously, this is valid for only the case where the uncon­
trolled phase shift is dxj º 0, i. e., when exact beam phasing 
occurs. If the mean-square phase deviation in the beams has a 
finite value j

2x  = su2, the additive to the total-beam brightness 
as a result of coherent combining decreases by a factor of 
exp(– su2) in comparison with the case of exact phasing.

3. Conclusions

It was shown that coherent combining of optical beams in a 
diode amplifier with a zigzag optical axis can be used to 
increase multiply the total beam brightness with a simultane­
ous increase in the total radiation power. An essential condi­
tion for this procedure is a stable and identical field amplitude 
distribution, corresponding to one transverse mode, in each 
output beam. In this context the potential of coherent com­
bining of wide (more than 6 mm) output beams appears to be 
limited. For example, when using an output amplifier with an 
expanding active region [shaped as a horn in the plane of 
structure layers (yz)] along the optical axis, beam filamenta­
tion leads inevitably to uncontrolled transverse (along the y 
axis) phase deviation, which is equivalent to the occurrence of 
a random variable dxj. As a consequence, the total beam brig­
htness may be significantly reduced.

The presence of M lobes instead of one in the directional 
pattern is related to only the filling factor; i. e., М = D/w. This 
circumstance, which may be inconvenient for practical appli­
cations, is not of fundamental importance, because, using 
passive external optics, one can converge the lobes into one 
with preservation of total beam brightness.
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