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Abstract.  We report the results of a theoretical study of the evolu-
tion of a probe pulse under electromagnetically induced transpar-
ency conditions in the lambda scheme of degenerate inhomoge-
neously broadened quantum transitions. It is assumed that the 
interacting fields are elliptically polarised, and their effect on the 
medium can be either strictly resonant or quasi-resonant. It is 
shown that probe light in a medium can be represented as the sum 
of two normal modes, i.e. quasi-monochromatic elliptically polar-
ised fields propagating independently of each other. The major axis 
of the polarisation ellipse of the normal mode of the first type is 
parallel, and that of the second type is perpendicular to the major 
axis of the polarisation ellipse of the control light. Due to the fact 
that velocities of normal-mode pulses are different, a single probe 
pulse entering a medium splits into individual pulses inside the 
medium, each of which transfers the energy of one of the normal 
modes. In the case of quasi-resonance, the splitting occurs at a 
shorter distance than in the case of strict resonance. If normal 
modes are not phase modulated at the input surface of the medium, 
then in the case of quasi-resonance they become phase modulated 
during their propagation inside the medium, whereas this does not 
occur in the case of strict resonance. It is shown that in the case of 
quasi-resonance, the phase modulation value of the mode of the sec-
ond of the above types significantly exceeds that of the first type. 
The medium transparency for the normal mode of the first type 
slightly decreases with the transition from the case of strict reso-
nance to the case of quasi-resonance, while the medium transpar-
ency for the mode of the second type decreases significantly. The 
total probe field, which is the sum of the normal modes, has phase 
modulation before it splits into mode pulses in cases of both strict 
resonance and quasi-resonance, even if it does not have it on the 
input surface.

Keywords: electromagnetically induced transparency, quasi-reso-
nance, phase modulation, normal modes.

1. Introduction

Destructive interference of population probability amplitudes 
of the energy levels of quantum transitions in some double 
resonance regimes [1] is the basis for a number of widely stud-
ied effects. Of great importance among them is stimulated 
Raman adiabatic transport [2] and electromagnetically 

induced transparency (EIT) [3 – 5]. In particular, the use of 
the EIT phenomenon is promising for the development of 
optical quantum memory systems [4], quantum communica-
tion [4, 6, 7] and quantum information systems [3 – 5] and pre-
cision magnetic measurement [8] and chronometry [9] devices. 
The same effect underlies the methods for producing high 
optical nonlinearities [5, 10] and amplifying light without 
population inversion [11]. The study of the specifics of EIT in 
various new situations is being continued. For example, the 
distinctive features of this phenomenon are being investigated 
in strongly correlated quantum gases [12], in the radiofre-
quency range [13], on impurities in photonic crystals [14], in 
the presence of nanofibre [15].

The EIT phenomenon leads to a number of effects related 
to polarisation characteristics of interacting fields in the pres-
ence of degeneracy of the energy levels of quantum transi-
tions. Wielandy and Gaeta [16] and Bo Wang et al. [17] theo-
retically and experimentally studied the probe field polarisa-
tion plane rotation, accompanying EIT, with a change in 
control field intensity, and Agrawal and Dasgupta [18] and 
Sautenkov et al. [19] investigated the influence of a constant 
magnetic field on the evolution of the circular components of 
probe light. Linear and circular birefringence of the probe 
field in the case of EIT was examined theoretically and exper-
imentally in [20]. In a theoretical study, Kis et al. [21] pre-
dicted the possibility of EIT probe field propagation in the 
form of two modes with different polarisation states.

In our paper [22], we reported the results of a theoretical 
study of birefringence accompanying EIT under elliptical 
polarisation of the probe and control fields at the input to a 
resonant medium. The investigation in this work was limited 
by strict resonance conditions, i.e., the coincidence of the car-
rier frequencies of the probe and control fields with the centre 
frequencies of the corresponding inhomogeneously broad-
ened quantum transitions. The object of study in [22] was a 
lambda scheme of quantum transitions between  3P0, 3P2, 3P10 
degenerate energy levels of the 208Pb isotope. In the vapours 
of this isotope, EIT was experimentally observed for circu-
larly polarised laser fields [23, 24]. Analytical methods [22] 
demonstrate that a probe pulse in a medium can be repre-
sented as the sum of elliptically polarised normal modes prop-
agating independently of each other.

In this paper we present the results of an analytical and 
numerical study of EIT on the same quantum transitions and 
for the same characteristics of the interacting fields as in [22], 
but in the case of quasi-resonance. By quasi-resonance we 
mean a situation where the carrier frequencies of the fields are 
detuned from the centre frequencies of the corresponding 
quantum transitions by a value comparable with the line-
widths of the inhomogeneous broadening of these transitions. 
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New results related to the strict resonance regime of EIT are 
also presented.

2. Initial equations

The lambda scheme in question is shown in Fig. 1. Levels 1, 2, 
3 are identified with nondegenerate lower ( 3P0), threefold 
degenerate upper ( 3P10 ) and fivefold degenerate intermediate 
( 3P2 ) levels of the 208Pb isotope, respectively. Let fk (k = 1, 
2, ..., 9) be an orthonormal basis of common eigenfunctions 
of energy operators, the squared angular momentum and its 
projection onto the z axis for an isolated atom corresponding 
to level 1(k = 1, M = 0), level 2 (k = 2, 3, 4, M = –1, 0, 1) and 
level 3 (k = 5, 6, …, 9, M = –2, –1, 0, 1, 2). Let D1 and D2 be 
the reduced electric dipole moments of 1 ® 2 and 3 ® 2 transi-
tions, respectively, and w210 and w230 (w210 > w230) be the cen-
tre frequencies of these transitions. To take into account the 
thermal motion of gas atoms, we introduce the quantity T1 = 
1/D1, where D1 is the half-width (at the e–1 level) of the w21 
frequency distribution density of quantum transitions 
between levels 1 and 2 due to the Doppler effect.

The total electric field of two laser pulses propagating 
along the z axis is represented the form

E = E1 + E2,

e[ cos( )E t k zEl l xl l l xlxm w d= - +u u 	 (1)

	 e cos( )], ,E t k z l 1 2yl l l yly w d+ - + =u u ,

where El and wl are the strengths and carrier frequencies of 
the probe (l = 1) and control (l = 2) electric fields; ml = 

/(| | )l D T2 1 ll' + ; ex and ey are the unit vectors of the x and 
y axes; Exlu , Eylu  are the amplitudes; andxl yld du u  are the phase 
shifts of the x and y components of the probe and control 
fields; and kl = wl /c. The quantities , , , andE Exl yl xl yld du u u u  are 
real, differentiable as many times as necessary, functions of 
the variables s and w. The effect of the light on the medium is 
assumed to be quasi-resonant: | |210 1w w-  << w210 and 
| |230 2w w-  << w230.

Let fl and gl be the amplitudes of the left and right circular 
components [25] of the probe and control fields:
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We represent the wave function Y of the atom in field (1) as 
an expansion in the basis of fk:
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where ckr  (k = 1,  2, ...,  9) are the probability amplitudes of 
quantum state population, and xl = wl t – kl z. The normalised 
independent variables s and w are introduced in the form

s = z/z0,    w = (t – z/c)/T1,

where z0 = 3ћc /(2pN | D1 |2T1w210); N is the concentration of 
atoms. Using Maxwell’s and Schrӧdinger equations, as well 
as introducing the notation
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we obtain, as a first slow envelope approximation, the system 
of equations:
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Figure 1.  Lambda scheme of quantum transitions. The frequency inter-
vals between energy levels correspond to an atom at rest and the case 
with e10 > 0, e20 > 0.
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g = T1 /(2t); t is the radiative lifetime of the 3P1
0 level. The 

parameters e10 and e20 describe the degree of the nonreso-
nance effect of the light on the medium and are determined by 
the formulas

( ) / , ( ) /10 210 1 20 2301 2 1e w w e w wD D= - = - 	 (3)

(Fig. 1). These quantities are hereinafter referred to as reso-
nance detunings. The resonance is strict if e10 = e20 = 0. System 
(2) is formally identical to the system of equations used in 
[22]. However, the relationship between the parameters e10 
and e20 is more complicated than in [22], where it was assumed 
that strict resonance conditions were satisfied.

Let al, al and gl be the parameters of the polarisation 
ellipse (PE) of the probe (l = 1) and control (l = 2) light. Here, 
al is the semimajor axis of the PE, measured in units of ml ; al 
is the angle of its inclination to the x axis (0 £ al £ p); and 
gl is the compression parameter (–1 £ gl £ +1) [26]. The 
value of | gl | determines the ratio of the minor axis of the PE 
to its major axis. Negative and positive values of gl corre-
spond to the right and left elliptical polarisations, respec-
tively [25].

The   andEul uldu u  (u = x, y) values in formulas (1) can be 
represented as

exp ,iE Eul ul ul ulul ulj d d j= = +u u^ h ,

where | | ;E E 0ul ul ulj= =u , if Eulu  ³ 0; and jul = –  p, if Eulu  < 0. 
The function dxl (dyl ) experiences jumps by ±p at the nodal 
points, i.e., at points (s, w), where ( )E Exl yl

u u  reverses its sign. 
Between these points, the function dxl (dyl ) is continuous. The 
values of Eul and dul are uniquely related to the PE parameters 
of the corresponding light and to one of the phase shifts [22]. 
Therefore, specifying the parameters al, al, gl, and also one of 
the quantities dxl and dyl is equivalent to the definition of the 
field by formula (1).

The initial conditions were imposed on the values of the 
populations of quantum states at the initial instant of time 
(w = 0) and had the form

c1 = 2, c4 = c5 = c7 = c9 = 0, w = 0, s ³ 0, e1 Î (– ¥, +¥).	 (4)

These conditions correspond to the case when, before the 
interaction of the light with the medium, all atoms are at the 
lower energy level of the lambda scheme. The boundary con-
ditions for system (2) were set as follows:

al = al 0, al = al 0, gl = gl 0, dxl = dxl 0, s = 0, w ³ 0,	 (5)

where al 0, al 0, gl 0, and dxl 0 are functions of w that describe the 
evolution of al, al, gl, and dxl on the input surface (s = 0) of the 
resonant medium. It was also assumed that a10(0) = 0. Taking 
into account the fact that an initial population of levels that 
form a quantum transition quasi-resonant to the control field 
is absent, this means that the interaction of the light with the 
medium begins at time moment w = 0.

3. Normal modes and phase modulation

Let the probe field be much weaker than the control field, so 
that the condition

/E E E Ex y x y1
2

1
2

2
2

2
2

+ +  << 1

is met. Let also the control light be elliptically polarised. In 
[22], we showed for the case of strict resonance that the 
probe field in the medium, described by the solution of the 
boundary value problem (2), (4), (5) and hereinafter referred 
to as the total probe field, is the sum of two fields with con-
stant polarisation characteristics al and gl. These light fields 
are elliptically polarised, and the major axis of the PE of one 
of them is parallel, and the other is perpendicular to the 
major axis of the PE of the control field. The PE compres-
sion parameters of the modes are identical in modulus and 
opposite in sign. The probe light of the first type is called in 
[22] the parallel normal mode, and that of the second type is 
called the perpendicular normal mode. The modes do not 
interact with each other when propagating in a medium. The 
boundary conditions for each mode have the form of (5) for 
l  = 1, and the values of a10, a10, g10, and dx10 are determined 
by their values for the total probe field at the input surface 
(s = 0). The procedure for finding the boundary conditions 
for each normal mode in the absence of phase modulation of 
the total probe field at the input surface of the medium is 
described in [22].

The justification of the above statements presented in [22], 
in fact, does not depend on the type of coupling between the 
resonance detunings e10 and e20. Therefore, these statements 
remain true for quasi-resonant conditions. However, the evo-
lution of normal modes, as well as the total field in a medium 
in the case of quasi-resonance, differs markedly from their 
evolution in the case of strict resonance. In particular, we will 
show below that in the case of strict resonance, normal modes 
are not phase modulated although the total probe field has 
phase modulation at some stages. In the case of quasi-reso-
nance, phase modulation is present both in the modes and in 
the total probe field.

In representing the fields in the form of (1), the presence of 
phase modulation for the x component of the parallel mode 
in the medium means that the function ( )

x1
1du  is not constant. 

Let us consider in more detail the conditions for the absence 
of phase modulation for the parallel normal mode. Its evolu-
tion can be described by the system of equations [22]:
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where k and q1 are constant values;

; ( )U c c V c c c11 2 4 1 5 2 7 2 9k k k k k= - = - + + ;	

and k2 is a constant value. (Hereafter, superscripts 1 and 2 
correspond to the characteristics of the parallel and perpen-
dicular normal modes, respectively.) The value of g1

(1) can be 
represented as

(i )expg g( ) ( ) ( )
x x1

1
1
1

1
1d= u u ,	 (7)

where иg ( )x x1
1

1d( )1u u  are real, differentiable enough times, func-
tions of s and w.
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The boundary conditions for system (6) are determined by 
boundary conditions (4) and (5) for the total probe field:

( ) ( ),, exp ,U Vw g w 00 0 = == ,wig 0( ) ( ) ( )
x x1

1
10
1

10
1

1 1du u_ ]i g , w ³ 0,	 (8)

( ) ( ) ( ), , ,g s U s V s0 0 0 0( )
1
1

1 1= = = , s ³ 0.	 (9)

Here g and( )
x x10
1

10d( )1u u  are the specified real functions of the argu-
ment w.

Suppose that   , wherex1d d d=
( )1u r r  is a constant. This means 

that the parallel normal mode is not phase modulated. We 
introduce the notations

e = e1 – e10, D0 = e10 – e20,

where D0 is the detuning from the resonance of the Raman 
scattering type, and we also set

idexp iU d expV( ) ( ),i iP Q( ) ( )
x x1 1
1

1 1
1

= - = -
) )r r .

Then, using expression (7), the boundary value problem (6), 
(8), (9) can be represented as
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1
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The functions P and Q depend parametrically on e. 
However, boundary conditions (13) and (14) are the same for  
P and Q, corresponding to different values of e.

According to (11), the value of P is generally not real, so 
that the integral on the right-hand side of equation (10) may 
turn out to be an imaginary value. Moreover, the left-hand 
side of this equation is real. This means that in the general 
case a solution of form (7) with a constant value of the phase 
shift ( )

x1
1du  does not exist and the x component of the parallel 

normal mode will be phase modulated.
One possible exception is the case of strict resonance con-

ditions for the probe and control fields:

e10 = D0 = 0.	 (15)

To prove this fact, we write equation (10) in the form

( )1 3+

¶
¶

[ ( ) ( )] exp( )d
s
g

P P2
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0p k
e e e e=
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u y .	 (16)

Here P(e) and P(– e) are the functions satisfying equations 
(11) and (12) and boundary conditions (13) and (14) for the 
detuning parameters e and – e. It is easy to show that bound-
ary value problems for a pair of functions P(– e) and Q(– e) 
completely coincide with the boundary value problem for a 

pair of functions P*(e) and Q*(e). However, this means that  
P(– e) = P*(e); therefore,

P(e) + P(– e) = P(e) + P*(e) = 2ReP(e).

Thus, the right-hand side of equation (16) is a real value. The 
solution of the boundary value problem (10) – (14) and the use 
of formula (7) at ( )

x1
1d d=u r  then determines the x component of 

the parallel mode without phase modulation.
We can show that the function g1

(1) in equation (6) has the 
form

i{ [ ]}expg g y
( ) ( ) ( ) ( )

y1
1

1
1

1
1

1
1d d= -u u ,

where andg ( ) ( )
y y1
1

1
1du u  are real continuous functions of s and w; 

and d1
(1) is a constant. With the arguments similar to those 

given above, we conclude that, under conditions (15), the y 
component of the parallel mode is also devoid of phase mod-
ulation. The absence of phase modulation for the components 
of the perpendicular normal mode is justified similarly.

Let us enumerate the conditions necessary for the absence 
of phase modulation for normal modes in the medium. 
Firstly, this is the absence of phase modulation for the total 
probe light at the input surface of the medium. Moreover, 
according to [22], the light of normal modes at the entrance to 
the medium will also not be phase modulated. Secondly, this 
is the zero population of the upper levels of the lambda 
scheme until the moment of its interaction with the fields of 
the probe and control light. Thirdly, this is the fulfilment of 
strict resonance conditions (15).

In the general case, the light of normal modes is phase 
modulated. Using the results presented in [22], we can obtain 
expressions relating the phase shifts of the components of the 
mode of each type at all spatiotemporal points:

' ', , ,m m m m
2

2
2

2 Zy x y x1 1 1 1 !p p p pd d d d= + + = - +
( ) ( ) ( ) ( )1 1 2 1u u u u ,	 (17)

with the phase shifts being continuous functions of the vari-
ables s and w.

4. Numerical results

We specify boundary conditions (5) as follows:

. [( 300) /50]wsecha 0 210 = - ,

/6 0.5,, 0x10 10 10pa g d= =- = ,

	 (18)

a20 = 6.516, a20 = 0, g20 = –0.3, dx20 = 0.	 (19)

Conditions (18) describe the input pulse of the total probe 
light with a duration of 15 ns and a peak intensity of 
65 W cm–2. The intensity of the control light according to (19) 
is constant and is approximately 20 kW cm–2. The peak inten-
sity of the input probe pulse is more than 300 times less than 
the intensity of the control field; therefore, the situation 
described by formulas (18) and (19) refers to the case of weak 
probe light. (The rationale for choosing the values of the 
parameters of the resonant medium and input light is given in 
detail in [27].)

Using the technique described in [22], we obtain the 
boundary conditions for normal modes on the input surface 
of the medium:
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. [( 300) /50]wsecha 0 0720( )1
10 = - ,

0 0.7417, ., 0 4993( )
x10

1
10 10a g d= = =-

( ) ( )1 1

	 (20)

for the parallel normal mode and

.1645 [( 300) /50]wsecha 0( )2
10 = - ,

/2 0.7417, ., 0 2884( )
x10

2
10 10pa g d= =- =

( ) ( )2 2

	 (21)

for the perpendicular mode. For the modes of both types, the 
parameters of the input control light are given by formulas 
(19). In addition to conditions (19) – (21), the evolution of the 
total probe and normal-mode fields in a medium depends on 
the values of e10 and e20 determined by formulas (3).

4.1. Strict resonance

We assume that strict resonance conditions are satisfied: e10 = 
e20 = 0. The time evolution of a1, a1 and g1 of the total probe 
field for several fixed distances s is shown in Fig. 2. According 
to Figs 2b – 2d, the splitting of the input pulse of the total 
probe field into two separate pulses becomes noticeable at 
distances s > 1500. Since the polarisation characteristics a1 
and g1 in the region where the pulse is located at the initial 
stage of its splitting (Fig. 2b) change significantly, the probe 
light is not elliptically polarised. (The jumps in the value of a1 
from p to 0 occur due to the limitation of the range of a1 val-
ues.) At a large distance (Fig. 2d) the polarisation characteris-
tics in the region where both pulses are located are constant, 
with a1 = p and g1 = 0.7417 for the left pulse and a1 = p/2 and 

g1 = –0.7421 for the right pulse. These values are in good 
agreement with those in formulas (20) and (21) (taking into 
account that a1 = 0 and a1 = p describe the same position of 
the major axis of the polarisation ellipse). Therefore, the left 
pulse in Fig. 2d shows a parallel normal mode of the light 
field, and the right one shows a perpendicular normal mode.

Figure 3 illustrates the evolution of a1 together with the 
evolution of phase shifts andx y1 1d du u  for two distances s. One 
can see from Fig. 3a that, before the pulse splits into normal 
modes, the phase shifts are not constant in the region where 
the probe field energy is concentrated, and, therefore, the 
probe light is phase modulated. To explain this fact, let  s0 ³ 0 
be a fixed distance s. The total field at s0 is the sum of the 
normal mode fields at the same point. The mode fields are 
amplitude modulated (see Section 3) rather than phase modu-
lated, since the major axes of the PE of the modes at s0 depend 
on w. Elementary considerations show that the sum of the 
mode fields at point s0 will not be phase modulated only if the 
condition 1( ) ( )2( , ) ( , )a s w a s w1 10 0h=  is met, where h is a con-
stant. According to (20) and (21), this condition is satisfied at 
s0 = 0, which means that phase modulation of the total probe 
field is absent at the input surface in accordance with the con-
stancy of the value of dx10 in (18). However, due to the differ-
ence in the velocities of the pulses of the normal modes and 
their varying degrees of deformation during propagation to a 
distance s0 > 0, this condition is violated. This means that the 
sum of the normal modes, i.e., the total probe field, is phase 
modulated at s0 > 0.

At a large distance, after the input probe pulse splits into 
normal-mode pulses (Fig. 3b), phase shifts are constant in the 
region where the pulse of each mode is located. Moreover, in 
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Figure 2.  Evolution of the total probe field characteristics a1 (thick solid curves), a1 (dashed curves) and g1 (thin solid curves) in a medium at s = (a) 
0, (b) 1500, (c) 3000 and (d) 4000.
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the region of the left pulse (parallel mode) 0.5014x1d =-u , 
while in the region of the right pulse (perpendicular mode) 

.0 2793x1d =u . These values are close to the values of  
andx x10 10d d( ) ( )1 2 specified in (19) and, (20). In addition, the calcu-

lation confirms that the phase shifts of both modes satisfy 
relations (17) at m = m' = 0.

4.2. Quasi-resonance

We assume that e10 = – 0.3 and e20 = 0.6, keeping the bound-
ary conditions (18) and (19) unchanged. This situation corre-
sponds to the quasi-resonant interaction of the fields with the 
medium and will be described below in more detail. The evo-
lution of a1, a1 and g1 for the total probe field at several fixed 
distances s is shown in Fig. 4. Near the input surface (Fig. 4 b), 
as in the case of strict resonance, the total probe light is not 
elliptically polarised. However, in the case of quasi-resonance, 
the total probe pulse splits into normal-mode pulses at much 
shorter distances (s = 500, Fig. 4b) than in the case of strict 
resonance (s = 1500, see Fig. 2b). During the splitting, three 
pulses arise: pulse 1 and poorly separated pulses 2 and 3 
(Figs 4b – 4d). The values of a1 and g1 in the region of pulse 1 
and pulses 2 and  3 are close to the values typical of normal 
modes specified in formulas (20) and (21). It follows that 
pulse 1 in Figs 4b – 4d is a parallel normal-mode field, and 
pulses 2 and 3 are perpendicular normal-mode fields. Recall 
that in the case of strict resonance, each normal mode was 
represented as a single bell-shaped pulse (see Fig. 2).

Figure 5 shows the evolution of a1 together with the evolu-
tion of phase shifts andx y1 1d du u  for two distances s. The jumps 
in andx y1 1d du u  are equal to ±2p and are due to the limitation of 
the range of values of these quantities by 2p.

The change in phase shifts over time, shown in Fig. 5, 
means the presence of phase modulation of the total probe 
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Figure 3.  Evolution of a1 (thick solid curves), x1du (thin solid curves) and 
y1du  (dashed curves) of the total probe field at s = (a) 1000 and (b) 4000.
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Figure 4.  Evolution of the total probe field characteristics a1 (thick solid curves), a1 (dashed curves) and g1 (thin solid curves) in a medium at s = (a) 
0, (b) 500, (c) 1000 and (d) 1500. Curve 1 is a parallel mode, and curves 2 and 3 are a perpendicular mode.
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light at both small and large distances inside the medium. 
Moreover, at distances s sufficient for the complete splitting 
of the input probe pulse (Fig. 5b), andx y1 1d du u  in the region of 
normal modes are related by expressions (17) at m = m’ = 0. 
This fact agrees with the conclusions of the analytical theories 
of normal modes. However, at small distances (Fig. 5a), 
expressions (17) are not satisfied in the region of the total 
probe field.

The boundary conditions for normal modes that form the 
total probe light in the medium have the form of (20), (21). 
The calculation showed that, in accordance with the conclu-
sions of the analytic theory, the polarisation characteristics  
a1
(i) and g1

(i)  (i = 1, 2) of the normal modes do not change dur-
ing their propagation, remaining equal to their values at the 
input to the medium. Therefore, the curves describing the 
results of calculating these characteristics are not presented. 
Figure 6 shows curves demonstrating the evolution of the 
amplitude   (а1

(i))] and phase [( x1d( )iu )] characteristics of normal 
modes. Figure 6a demonstrates the modes on the input sur-
face of the medium, where, according to (20), (21), they are 
not phase modulated (see curves 2 in Fig. 6a). Inside the 
medium, as follows from Figs 6b – 6d, phase shifts x1d( )iu  are 
variables in each mode emission region. However, a change in 
the phase shift )1

x1d(u  of the parallel mode is extremely small 
(dashed curves 2 in Figs 6b – 6d), so that the parallel mode can 
almost be considered devoid of phase modulation at each 
fixed distance s.

The phase modulation of the perpendicular normal mode 
is much stronger than that of the parallel mode (cf. solid and 
dashed curves 2 in Figs 6b – 6d). The energy of the perpen-
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Figure 5.  Evolution of a1 (thick solid curves), x1du  (thin solid curves) and 
y1du (dashed curves) of the total probe field at s = (a) 400 and (b) 1500.
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dicular mode is contained in two poorly separated pulses, 
which were mentioned above. We will call the larger of them 
the main part of the mode, and the smaller – the secondary. 
Let us consider the main part of the mode at a distance s = 
1500. According to Fig. 6d, in the region of the main part of 
the mode, the value of ¶ ¶/ wx1d( )2u  is negative and, therefore, the 
x component of the main part of the mode has a negative 
chirp. The second of conditions (17) yields ¶ ¶/ wy1d( )2u  = ¶ ¶/ .wx1d( )2u  
Therefore, the instantaneous frequencies of the x and y com-
ponents of the main part of the perpendicular mode are the 
same at each spatiotemporal point (s, w), so that both compo-
nents have the same negative chirp.

To estimate the magnitude of the chirp, we note that the 
instantaneous intensity I 1

(2) of the perpendicular normal mode 
at fixed s and w is proportional to the square of a1

(2)(s, w)   [22]. 
The calculations showed that at s = 1500 the dependence of 
the intensity I 1

(2) of the main pulse on w is a bell-shaped curve 
and describes a perturbation with a duration of 85 (in units of 
w) at the e–1 level of the maximum intensity 

2
I ( )m1 . Let us 

approximate the dependence of I 1
(2) on w for s = 1500 by a 

Gaussian function that describes a pulse with such a duration. 
Then it can be shown that over a period of time during which 
the condition I 1

(2) ³ 0.1I1m
(2) is satisfied, the change in the 

instantaneous frequency ( )
1
2wu  defined by the formula

¶
¶

T w
1( ) x

1
2

1
1w w

d
= +

( )2

1
u

u
,

is approximately 15 % in absolute value of the width of the 
spectral contour of the main part of the perpendicular mode 
at the e–1 level. This value of the instantaneous frequency 
deviation means that the phase modulation of the main part 
of the normal mode makes a significant contribution to the 
formation of the contour of its spectral intensity.

The maximum intensity of the secondary part of the 
pulse of the perpendicular mode is approximately 170 times 
less than the maximum intensity of its main part. Therefore, 
allowance for this part practically does not affect the shape 
of the Fourier spectrum of the light of the entire perpendicu-
lar mode. It is worth noting that in the region of the second-
ary part, the chirp is positive, and the magnitude of the 
instantaneous frequency deviation in absolute vale is 
approximately the same as that of the main part of the per-
pendicular mode.

We denote by F(s) the total energy transferred by the 
probe field through the unit area of the wavefront at a dis-
tance s from the input surface. We call the quantity  T(s) = 
F(s) /F(0) the transmission of probe light at a distance s. 
Figure 7 shows the transmission curves for normal modes in 
cases of strict resonance and quasi-resonance. Comparing 
curves 1 and 2, as well as curves 3 and 4, we conclude that in 
both cases the parallel normal mode experiences less energy 
losses than the perpendicular one during propagation. On the 
other hand, it follows from Fig. 7 that in the case of quasi-
resonance, the energy losses of the modes during propagation 
exceed such losses in the case of strict resonance. The decrease 
in transmission is especially pronounced in the evolution of 
the perpendicular normal mode. In particular, its light in the 
case of quasi-resonance (curve 4 in Fig. 7) is almost com-
pletely absorbed by the medium at a distance s » 2000.

Note that in the absence of a control field, weak light, 
whose frequency is equal to the frequency of the probe field, 
is almost completely absorbed when the distance s is of the 
order of several units. Therefore, we can assume that in the 

above cases the efficiency of the EIT phenomenon is quite 
large.

5. Conclusions

We have shown that in the case of quasi-resonance under the 
condition that the probe field is sufficiently weak compared 
to the control field, the total probe light in the medium can 
be represented as the sum of normal modes propagating 
independently of each other. The polarisation parameters of 
normal modes do not change during their propagation, so 
that the modes are elliptically polarised. The major axis of 
the PE of the first of the normal modes (parallel mode) is 
parallel, and of the second (perpendicular mode) is perpen-
dicular to the major axis of the PE of the control field, while 
the compression parameters of the PE of the modes are 
opposite in sign. In the case of strict resonance and in the 
absence of phase modulation of normal modes on the input 
surface of the medium, the normal modes in the medium are 
also not phase modulated. In the case of quasi-resonance, 
both normal modes in the medium become phase modulated 
even in the absence of phase modulation of these modes on 
the input surface of the medium. In this case, the phase mod-
ulation value of the parallel mode in the case of pulses of the 
considered duration (about 15 ns) turns out to be negligibly 
small.

If the input probe light is a pulse, then in the medium this 
pulse splits into pulses, each of which contains the energy of 
one of the normal modes. The distance travelled by a pulse in 
a medium prior to its splitting into mode pulses is shorter in 
the case of quasi-resonance than in the case of strict reso-
nance. In the case of strict resonance, the pulse of the total 
probe field in the medium phase modulated up to its splitting 
into mode pulses without phase modulation, even if this pulse 
did not have phase modulation on the input surface of the 
sample. In the case of quasi-resonance and in the absence of 
phase modulation of the input probe pulse, pulses in which 
the total probe field energy is contained are phase modulated 
at all stages of their propagation.

It is shown that the transparency of the medium associ-
ated with the EIT phenomenon decreases with the transition 
from the case of strict resonance to the case of quasi-reso-
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Figure 7.  Transmission curves for ( 1, 3 ) parallel and ( 2, 4 ) perpendicu-
lar modes in the cases of ( 1, 2 ) strict resonance and ( 3, 4 ) quasi-reso-
nance.
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nance. Moreover, for the perpendicular normal mode, this 
effect is more significant than for the parallel one.
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